Subversion Repositories Kolibri OS

Rev

Rev 3746 | Rev 4246 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2326 Serge 1
/*
2
 * Copyright © 2008 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Eric Anholt 
25
 *
26
 */
27
 
3031 serge 28
#include 
29
#include 
2326 Serge 30
#include "i915_drv.h"
2351 Serge 31
#include "i915_trace.h"
2326 Serge 32
#include "intel_drv.h"
3260 Serge 33
#include 
2330 Serge 34
#include 
2326 Serge 35
//#include 
3746 Serge 36
#include 
2326 Serge 37
#include 
38
 
2344 Serge 39
extern int x86_clflush_size;
2332 Serge 40
 
3263 Serge 41
#define PROT_READ       0x1             /* page can be read */
42
#define PROT_WRITE      0x2             /* page can be written */
43
#define MAP_SHARED      0x01            /* Share changes */
44
 
2344 Serge 45
#undef mb
46
#undef rmb
47
#undef wmb
48
#define mb() asm volatile("mfence")
49
#define rmb() asm volatile ("lfence")
50
#define wmb() asm volatile ("sfence")
51
 
3266 Serge 52
struct drm_i915_gem_object *get_fb_obj();
53
 
3263 Serge 54
unsigned long vm_mmap(struct file *file, unsigned long addr,
55
         unsigned long len, unsigned long prot,
56
         unsigned long flag, unsigned long offset);
57
 
2344 Serge 58
static inline void clflush(volatile void *__p)
59
{
60
    asm volatile("clflush %0" : "+m" (*(volatile char*)__p));
61
}
62
 
2332 Serge 63
#define MAX_ERRNO       4095
64
 
65
#define IS_ERR_VALUE(x) unlikely((x) >= (unsigned long)-MAX_ERRNO)
66
 
67
 
2326 Serge 68
#define I915_EXEC_CONSTANTS_MASK        (3<<6)
69
#define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
70
#define I915_EXEC_CONSTANTS_ABSOLUTE    (1<<6)
71
#define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
72
 
2332 Serge 73
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
4104 Serge 74
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
75
						   bool force);
76
static __must_check int
77
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
78
			   struct i915_address_space *vm,
2332 Serge 79
						    unsigned alignment,
3031 serge 80
						    bool map_and_fenceable,
81
						    bool nonblocking);
2332 Serge 82
static int i915_gem_phys_pwrite(struct drm_device *dev,
83
				struct drm_i915_gem_object *obj,
84
				struct drm_i915_gem_pwrite *args,
85
				struct drm_file *file);
2326 Serge 86
 
3031 serge 87
static void i915_gem_write_fence(struct drm_device *dev, int reg,
88
				 struct drm_i915_gem_object *obj);
89
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
90
					 struct drm_i915_fence_reg *fence,
91
					 bool enable);
2332 Serge 92
 
3031 serge 93
static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
4104 Serge 94
static long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3031 serge 95
static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
96
 
4104 Serge 97
static bool cpu_cache_is_coherent(struct drm_device *dev,
98
				  enum i915_cache_level level)
99
{
100
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
101
}
102
 
103
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
104
{
105
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
106
		return true;
107
 
108
	return obj->pin_display;
109
}
110
 
3031 serge 111
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
112
{
113
	if (obj->tiling_mode)
114
		i915_gem_release_mmap(obj);
115
 
116
	/* As we do not have an associated fence register, we will force
117
	 * a tiling change if we ever need to acquire one.
118
	 */
119
	obj->fence_dirty = false;
120
	obj->fence_reg = I915_FENCE_REG_NONE;
121
}
122
 
2332 Serge 123
/* some bookkeeping */
124
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
125
				  size_t size)
126
{
4104 Serge 127
	spin_lock(&dev_priv->mm.object_stat_lock);
2332 Serge 128
	dev_priv->mm.object_count++;
129
	dev_priv->mm.object_memory += size;
4104 Serge 130
	spin_unlock(&dev_priv->mm.object_stat_lock);
2332 Serge 131
}
132
 
133
static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
134
				     size_t size)
135
{
4104 Serge 136
	spin_lock(&dev_priv->mm.object_stat_lock);
2332 Serge 137
	dev_priv->mm.object_count--;
138
	dev_priv->mm.object_memory -= size;
4104 Serge 139
	spin_unlock(&dev_priv->mm.object_stat_lock);
2332 Serge 140
}
141
 
142
static int
3480 Serge 143
i915_gem_wait_for_error(struct i915_gpu_error *error)
2332 Serge 144
{
145
	int ret;
146
 
3480 Serge 147
#define EXIT_COND (!i915_reset_in_progress(error))
148
	if (EXIT_COND)
2332 Serge 149
		return 0;
3255 Serge 150
#if 0
3031 serge 151
	/*
152
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
153
	 * userspace. If it takes that long something really bad is going on and
154
	 * we should simply try to bail out and fail as gracefully as possible.
155
	 */
3480 Serge 156
	ret = wait_event_interruptible_timeout(error->reset_queue,
157
					       EXIT_COND,
158
					       10*HZ);
3031 serge 159
	if (ret == 0) {
160
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
161
		return -EIO;
162
	} else if (ret < 0) {
2332 Serge 163
		return ret;
3031 serge 164
	}
2332 Serge 165
 
3255 Serge 166
#endif
3480 Serge 167
#undef EXIT_COND
3255 Serge 168
 
2332 Serge 169
	return 0;
170
}
171
 
172
int i915_mutex_lock_interruptible(struct drm_device *dev)
173
{
3480 Serge 174
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 175
	int ret;
176
 
3480 Serge 177
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
2332 Serge 178
	if (ret)
179
		return ret;
180
 
3480 Serge 181
	ret = mutex_lock_interruptible(&dev->struct_mutex);
182
	if (ret)
183
		return ret;
2332 Serge 184
 
185
	WARN_ON(i915_verify_lists(dev));
186
	return 0;
187
}
188
 
189
static inline bool
190
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
191
{
4104 Serge 192
	return i915_gem_obj_bound_any(obj) && !obj->active;
2332 Serge 193
}
194
 
195
 
196
#if 0
197
 
198
int
199
i915_gem_init_ioctl(struct drm_device *dev, void *data,
200
		    struct drm_file *file)
201
{
3480 Serge 202
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 203
	struct drm_i915_gem_init *args = data;
204
 
3031 serge 205
	if (drm_core_check_feature(dev, DRIVER_MODESET))
206
		return -ENODEV;
207
 
2332 Serge 208
	if (args->gtt_start >= args->gtt_end ||
209
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
210
		return -EINVAL;
211
 
3031 serge 212
	/* GEM with user mode setting was never supported on ilk and later. */
213
	if (INTEL_INFO(dev)->gen >= 5)
214
		return -ENODEV;
215
 
2332 Serge 216
	mutex_lock(&dev->struct_mutex);
3480 Serge 217
	i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
218
				  args->gtt_end);
219
	dev_priv->gtt.mappable_end = args->gtt_end;
2332 Serge 220
	mutex_unlock(&dev->struct_mutex);
221
 
222
	return 0;
223
}
2351 Serge 224
#endif
2332 Serge 225
 
226
int
227
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
228
			    struct drm_file *file)
229
{
230
	struct drm_i915_private *dev_priv = dev->dev_private;
231
	struct drm_i915_gem_get_aperture *args = data;
232
	struct drm_i915_gem_object *obj;
233
	size_t pinned;
234
 
235
	pinned = 0;
236
	mutex_lock(&dev->struct_mutex);
4104 Serge 237
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
3031 serge 238
		if (obj->pin_count)
4104 Serge 239
			pinned += i915_gem_obj_ggtt_size(obj);
2332 Serge 240
	mutex_unlock(&dev->struct_mutex);
241
 
4104 Serge 242
	args->aper_size = dev_priv->gtt.base.total;
2342 Serge 243
	args->aper_available_size = args->aper_size - pinned;
2332 Serge 244
 
245
	return 0;
246
}
247
 
3480 Serge 248
void *i915_gem_object_alloc(struct drm_device *dev)
249
{
250
	struct drm_i915_private *dev_priv = dev->dev_private;
251
	return kmalloc(sizeof(struct drm_i915_gem_object), 0);
252
}
253
 
254
void i915_gem_object_free(struct drm_i915_gem_object *obj)
255
{
256
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
257
	kfree(obj);
258
}
259
 
3031 serge 260
static int
261
i915_gem_create(struct drm_file *file,
2332 Serge 262
		struct drm_device *dev,
263
		uint64_t size,
264
		uint32_t *handle_p)
265
{
266
	struct drm_i915_gem_object *obj;
267
	int ret;
268
	u32 handle;
269
 
270
	size = roundup(size, PAGE_SIZE);
2342 Serge 271
	if (size == 0)
272
		return -EINVAL;
2332 Serge 273
 
274
	/* Allocate the new object */
275
	obj = i915_gem_alloc_object(dev, size);
276
	if (obj == NULL)
277
		return -ENOMEM;
278
 
279
	ret = drm_gem_handle_create(file, &obj->base, &handle);
4104 Serge 280
	/* drop reference from allocate - handle holds it now */
281
	drm_gem_object_unreference_unlocked(&obj->base);
282
	if (ret)
2332 Serge 283
		return ret;
284
 
285
	*handle_p = handle;
286
	return 0;
287
}
288
 
289
int
290
i915_gem_dumb_create(struct drm_file *file,
291
		     struct drm_device *dev,
292
		     struct drm_mode_create_dumb *args)
293
{
294
	/* have to work out size/pitch and return them */
295
	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
296
	args->size = args->pitch * args->height;
297
	return i915_gem_create(file, dev,
298
			       args->size, &args->handle);
299
}
300
 
2326 Serge 301
/**
2332 Serge 302
 * Creates a new mm object and returns a handle to it.
303
 */
304
int
305
i915_gem_create_ioctl(struct drm_device *dev, void *data,
306
		      struct drm_file *file)
307
{
308
	struct drm_i915_gem_create *args = data;
3031 serge 309
 
2332 Serge 310
	return i915_gem_create(file, dev,
311
			       args->size, &args->handle);
312
}
313
 
314
 
3260 Serge 315
#if 0
2332 Serge 316
 
3031 serge 317
static inline int
318
__copy_to_user_swizzled(char __user *cpu_vaddr,
319
			const char *gpu_vaddr, int gpu_offset,
2332 Serge 320
		int length)
321
{
3031 serge 322
	int ret, cpu_offset = 0;
2332 Serge 323
 
3031 serge 324
	while (length > 0) {
325
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
326
		int this_length = min(cacheline_end - gpu_offset, length);
327
		int swizzled_gpu_offset = gpu_offset ^ 64;
2332 Serge 328
 
3031 serge 329
		ret = __copy_to_user(cpu_vaddr + cpu_offset,
330
				     gpu_vaddr + swizzled_gpu_offset,
331
				     this_length);
332
		if (ret)
333
			return ret + length;
2332 Serge 334
 
3031 serge 335
		cpu_offset += this_length;
336
		gpu_offset += this_length;
337
		length -= this_length;
338
	}
339
 
340
	return 0;
2332 Serge 341
}
342
 
3031 serge 343
static inline int
344
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
345
			  const char __user *cpu_vaddr,
346
			  int length)
2332 Serge 347
{
3031 serge 348
	int ret, cpu_offset = 0;
2332 Serge 349
 
350
	while (length > 0) {
351
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
352
		int this_length = min(cacheline_end - gpu_offset, length);
353
		int swizzled_gpu_offset = gpu_offset ^ 64;
354
 
3031 serge 355
		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
2332 Serge 356
			       cpu_vaddr + cpu_offset,
357
			       this_length);
3031 serge 358
		if (ret)
359
			return ret + length;
360
 
2332 Serge 361
		cpu_offset += this_length;
362
		gpu_offset += this_length;
363
		length -= this_length;
364
	}
365
 
3031 serge 366
	return 0;
2332 Serge 367
}
368
 
3031 serge 369
/* Per-page copy function for the shmem pread fastpath.
370
 * Flushes invalid cachelines before reading the target if
371
 * needs_clflush is set. */
2332 Serge 372
static int
3031 serge 373
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
374
		 char __user *user_data,
375
		 bool page_do_bit17_swizzling, bool needs_clflush)
376
{
377
		char *vaddr;
378
		int ret;
379
 
380
	if (unlikely(page_do_bit17_swizzling))
381
		return -EINVAL;
382
 
383
		vaddr = kmap_atomic(page);
384
	if (needs_clflush)
385
		drm_clflush_virt_range(vaddr + shmem_page_offset,
386
				       page_length);
387
		ret = __copy_to_user_inatomic(user_data,
388
				      vaddr + shmem_page_offset,
389
					      page_length);
390
		kunmap_atomic(vaddr);
391
 
392
	return ret ? -EFAULT : 0;
393
}
394
 
395
static void
396
shmem_clflush_swizzled_range(char *addr, unsigned long length,
397
			     bool swizzled)
398
{
399
	if (unlikely(swizzled)) {
400
		unsigned long start = (unsigned long) addr;
401
		unsigned long end = (unsigned long) addr + length;
402
 
403
		/* For swizzling simply ensure that we always flush both
404
		 * channels. Lame, but simple and it works. Swizzled
405
		 * pwrite/pread is far from a hotpath - current userspace
406
		 * doesn't use it at all. */
407
		start = round_down(start, 128);
408
		end = round_up(end, 128);
409
 
410
		drm_clflush_virt_range((void *)start, end - start);
411
	} else {
412
		drm_clflush_virt_range(addr, length);
413
	}
414
 
415
}
416
 
417
/* Only difference to the fast-path function is that this can handle bit17
418
 * and uses non-atomic copy and kmap functions. */
419
static int
420
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
421
		 char __user *user_data,
422
		 bool page_do_bit17_swizzling, bool needs_clflush)
423
{
424
	char *vaddr;
425
	int ret;
426
 
427
	vaddr = kmap(page);
428
	if (needs_clflush)
429
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
430
					     page_length,
431
					     page_do_bit17_swizzling);
432
 
433
	if (page_do_bit17_swizzling)
434
		ret = __copy_to_user_swizzled(user_data,
435
					      vaddr, shmem_page_offset,
436
					      page_length);
437
	else
438
		ret = __copy_to_user(user_data,
439
				     vaddr + shmem_page_offset,
440
				     page_length);
441
	kunmap(page);
442
 
443
	return ret ? - EFAULT : 0;
444
}
445
 
446
static int
447
i915_gem_shmem_pread(struct drm_device *dev,
2332 Serge 448
			  struct drm_i915_gem_object *obj,
449
			  struct drm_i915_gem_pread *args,
450
			  struct drm_file *file)
451
{
3031 serge 452
	char __user *user_data;
2332 Serge 453
	ssize_t remain;
454
	loff_t offset;
3031 serge 455
	int shmem_page_offset, page_length, ret = 0;
456
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
457
	int prefaulted = 0;
458
	int needs_clflush = 0;
3746 Serge 459
	struct sg_page_iter sg_iter;
2332 Serge 460
 
3746 Serge 461
	user_data = to_user_ptr(args->data_ptr);
2332 Serge 462
	remain = args->size;
463
 
3031 serge 464
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
465
 
466
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
467
		/* If we're not in the cpu read domain, set ourself into the gtt
468
		 * read domain and manually flush cachelines (if required). This
469
		 * optimizes for the case when the gpu will dirty the data
470
		 * anyway again before the next pread happens. */
4104 Serge 471
		needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
472
		if (i915_gem_obj_bound_any(obj)) {
3031 serge 473
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
474
			if (ret)
475
				return ret;
476
		}
477
	}
478
 
479
	ret = i915_gem_object_get_pages(obj);
480
	if (ret)
481
		return ret;
482
 
483
	i915_gem_object_pin_pages(obj);
484
 
2332 Serge 485
	offset = args->offset;
486
 
3746 Serge 487
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
488
			 offset >> PAGE_SHIFT) {
489
		struct page *page = sg_page_iter_page(&sg_iter);
2332 Serge 490
 
3031 serge 491
		if (remain <= 0)
492
			break;
493
 
2332 Serge 494
		/* Operation in this page
495
		 *
3031 serge 496
		 * shmem_page_offset = offset within page in shmem file
2332 Serge 497
		 * page_length = bytes to copy for this page
498
		 */
3031 serge 499
		shmem_page_offset = offset_in_page(offset);
2332 Serge 500
		page_length = remain;
3031 serge 501
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
502
			page_length = PAGE_SIZE - shmem_page_offset;
2332 Serge 503
 
3031 serge 504
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
505
			(page_to_phys(page) & (1 << 17)) != 0;
2332 Serge 506
 
3031 serge 507
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
508
				       user_data, page_do_bit17_swizzling,
509
				       needs_clflush);
510
		if (ret == 0)
511
			goto next_page;
2332 Serge 512
 
3031 serge 513
		mutex_unlock(&dev->struct_mutex);
514
 
4104 Serge 515
		if (likely(!i915_prefault_disable) && !prefaulted) {
3031 serge 516
			ret = fault_in_multipages_writeable(user_data, remain);
517
			/* Userspace is tricking us, but we've already clobbered
518
			 * its pages with the prefault and promised to write the
519
			 * data up to the first fault. Hence ignore any errors
520
			 * and just continue. */
521
			(void)ret;
522
			prefaulted = 1;
523
		}
524
 
525
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
526
				       user_data, page_do_bit17_swizzling,
527
				       needs_clflush);
528
 
529
		mutex_lock(&dev->struct_mutex);
530
 
531
next_page:
2332 Serge 532
		mark_page_accessed(page);
3031 serge 533
 
2332 Serge 534
		if (ret)
3031 serge 535
			goto out;
2332 Serge 536
 
537
		remain -= page_length;
538
		user_data += page_length;
539
		offset += page_length;
540
	}
541
 
3031 serge 542
out:
543
	i915_gem_object_unpin_pages(obj);
544
 
545
	return ret;
2332 Serge 546
}
547
 
548
/**
3031 serge 549
 * Reads data from the object referenced by handle.
550
 *
551
 * On error, the contents of *data are undefined.
2332 Serge 552
 */
3031 serge 553
int
554
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
555
		     struct drm_file *file)
556
{
557
	struct drm_i915_gem_pread *args = data;
558
	struct drm_i915_gem_object *obj;
559
	int ret = 0;
560
 
561
	if (args->size == 0)
562
		return 0;
563
 
564
	if (!access_ok(VERIFY_WRITE,
3746 Serge 565
		       to_user_ptr(args->data_ptr),
3031 serge 566
		       args->size))
567
		return -EFAULT;
568
 
569
	ret = i915_mutex_lock_interruptible(dev);
570
	if (ret)
571
		return ret;
572
 
573
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
574
	if (&obj->base == NULL) {
575
		ret = -ENOENT;
576
		goto unlock;
577
	}
578
 
579
	/* Bounds check source.  */
580
	if (args->offset > obj->base.size ||
581
	    args->size > obj->base.size - args->offset) {
582
		ret = -EINVAL;
583
		goto out;
584
	}
585
 
586
	/* prime objects have no backing filp to GEM pread/pwrite
587
	 * pages from.
588
	 */
589
	if (!obj->base.filp) {
590
		ret = -EINVAL;
591
		goto out;
592
	}
593
 
594
	trace_i915_gem_object_pread(obj, args->offset, args->size);
595
 
596
	ret = i915_gem_shmem_pread(dev, obj, args, file);
597
 
598
out:
599
	drm_gem_object_unreference(&obj->base);
600
unlock:
601
	mutex_unlock(&dev->struct_mutex);
602
	return ret;
603
}
604
 
605
/* This is the fast write path which cannot handle
606
 * page faults in the source data
607
 */
608
 
609
static inline int
610
fast_user_write(struct io_mapping *mapping,
611
		loff_t page_base, int page_offset,
612
		char __user *user_data,
613
		int length)
614
{
615
	void __iomem *vaddr_atomic;
616
	void *vaddr;
617
	unsigned long unwritten;
618
 
619
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
620
	/* We can use the cpu mem copy function because this is X86. */
621
	vaddr = (void __force*)vaddr_atomic + page_offset;
622
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
623
						      user_data, length);
624
	io_mapping_unmap_atomic(vaddr_atomic);
625
	return unwritten;
626
}
3260 Serge 627
#endif
3031 serge 628
 
3260 Serge 629
#define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
3031 serge 630
/**
631
 * This is the fast pwrite path, where we copy the data directly from the
632
 * user into the GTT, uncached.
633
 */
2332 Serge 634
static int
3031 serge 635
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
636
			 struct drm_i915_gem_object *obj,
637
			 struct drm_i915_gem_pwrite *args,
638
			 struct drm_file *file)
2332 Serge 639
{
3031 serge 640
	drm_i915_private_t *dev_priv = dev->dev_private;
2332 Serge 641
	ssize_t remain;
3031 serge 642
	loff_t offset, page_base;
643
	char __user *user_data;
644
	int page_offset, page_length, ret;
3260 Serge 645
    char *vaddr;
2332 Serge 646
 
4104 Serge 647
	ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
3031 serge 648
	if (ret)
649
		goto out;
650
 
651
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
652
	if (ret)
653
		goto out_unpin;
654
 
655
	ret = i915_gem_object_put_fence(obj);
656
	if (ret)
657
		goto out_unpin;
658
 
3260 Serge 659
    vaddr = AllocKernelSpace(4096);
660
    if(vaddr == NULL)
661
    {
662
        ret = -ENOSPC;
663
        goto out_unpin;
664
    };
665
 
3031 serge 666
	user_data = (char __user *) (uintptr_t) args->data_ptr;
2332 Serge 667
	remain = args->size;
668
 
4104 Serge 669
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
2332 Serge 670
 
3031 serge 671
	while (remain > 0) {
672
		/* Operation in this page
673
		 *
674
		 * page_base = page offset within aperture
675
		 * page_offset = offset within page
676
		 * page_length = bytes to copy for this page
677
		 */
678
		page_base = offset & PAGE_MASK;
679
		page_offset = offset_in_page(offset);
680
		page_length = remain;
681
		if ((page_offset + remain) > PAGE_SIZE)
682
			page_length = PAGE_SIZE - page_offset;
2332 Serge 683
 
3260 Serge 684
        MapPage(vaddr, page_base, PG_SW|PG_NOCACHE);
3031 serge 685
 
3260 Serge 686
        memcpy(vaddr+page_offset, user_data, page_length);
687
 
3031 serge 688
		remain -= page_length;
689
		user_data += page_length;
690
		offset += page_length;
2332 Serge 691
	}
692
 
3260 Serge 693
    FreeKernelSpace(vaddr);
694
 
3031 serge 695
out_unpin:
696
	i915_gem_object_unpin(obj);
697
out:
698
	return ret;
699
}
700
 
701
/* Per-page copy function for the shmem pwrite fastpath.
702
 * Flushes invalid cachelines before writing to the target if
703
 * needs_clflush_before is set and flushes out any written cachelines after
704
 * writing if needs_clflush is set. */
705
static int
706
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
707
		  char __user *user_data,
708
		  bool page_do_bit17_swizzling,
709
		  bool needs_clflush_before,
710
		  bool needs_clflush_after)
711
{
712
	char *vaddr;
3260 Serge 713
	int ret = 0;
3031 serge 714
 
715
	if (unlikely(page_do_bit17_swizzling))
716
		return -EINVAL;
717
 
3260 Serge 718
	vaddr = (char *)MapIoMem((addr_t)page, 4096, PG_SW);
3031 serge 719
	if (needs_clflush_before)
720
		drm_clflush_virt_range(vaddr + shmem_page_offset,
721
				       page_length);
3260 Serge 722
	memcpy(vaddr + shmem_page_offset,
3031 serge 723
						user_data,
724
						page_length);
725
	if (needs_clflush_after)
726
		drm_clflush_virt_range(vaddr + shmem_page_offset,
727
				       page_length);
3260 Serge 728
	FreeKernelSpace(vaddr);
3031 serge 729
 
730
	return ret ? -EFAULT : 0;
731
}
3260 Serge 732
#if 0
3031 serge 733
 
734
/* Only difference to the fast-path function is that this can handle bit17
735
 * and uses non-atomic copy and kmap functions. */
736
static int
737
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
738
		  char __user *user_data,
739
		  bool page_do_bit17_swizzling,
740
		  bool needs_clflush_before,
741
		  bool needs_clflush_after)
742
{
743
	char *vaddr;
744
	int ret;
745
 
746
	vaddr = kmap(page);
747
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
748
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
749
					     page_length,
750
					     page_do_bit17_swizzling);
751
	if (page_do_bit17_swizzling)
752
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
753
						user_data,
754
						page_length);
755
	else
756
		ret = __copy_from_user(vaddr + shmem_page_offset,
757
				       user_data,
758
				       page_length);
759
	if (needs_clflush_after)
760
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
761
					     page_length,
762
					     page_do_bit17_swizzling);
763
	kunmap(page);
764
 
765
	return ret ? -EFAULT : 0;
766
}
3260 Serge 767
#endif
3031 serge 768
 
3260 Serge 769
 
3031 serge 770
static int
771
i915_gem_shmem_pwrite(struct drm_device *dev,
772
		      struct drm_i915_gem_object *obj,
773
		      struct drm_i915_gem_pwrite *args,
774
		      struct drm_file *file)
775
{
776
	ssize_t remain;
777
	loff_t offset;
778
	char __user *user_data;
779
	int shmem_page_offset, page_length, ret = 0;
780
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
781
	int hit_slowpath = 0;
782
	int needs_clflush_after = 0;
783
	int needs_clflush_before = 0;
3746 Serge 784
	struct sg_page_iter sg_iter;
3031 serge 785
 
3746 Serge 786
	user_data = to_user_ptr(args->data_ptr);
3031 serge 787
	remain = args->size;
788
 
789
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
790
 
791
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
792
		/* If we're not in the cpu write domain, set ourself into the gtt
793
		 * write domain and manually flush cachelines (if required). This
794
		 * optimizes for the case when the gpu will use the data
795
		 * right away and we therefore have to clflush anyway. */
4104 Serge 796
		needs_clflush_after = cpu_write_needs_clflush(obj);
797
		if (i915_gem_obj_bound_any(obj)) {
3031 serge 798
			ret = i915_gem_object_set_to_gtt_domain(obj, true);
799
			if (ret)
800
				return ret;
801
		}
802
	}
4104 Serge 803
	/* Same trick applies to invalidate partially written cachelines read
804
	 * before writing. */
805
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
806
		needs_clflush_before =
807
			!cpu_cache_is_coherent(dev, obj->cache_level);
3031 serge 808
 
809
	ret = i915_gem_object_get_pages(obj);
2332 Serge 810
	if (ret)
3031 serge 811
		return ret;
2332 Serge 812
 
3031 serge 813
	i915_gem_object_pin_pages(obj);
2332 Serge 814
 
815
	offset = args->offset;
3031 serge 816
	obj->dirty = 1;
2332 Serge 817
 
3746 Serge 818
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
819
			 offset >> PAGE_SHIFT) {
820
		struct page *page = sg_page_iter_page(&sg_iter);
3031 serge 821
		int partial_cacheline_write;
2332 Serge 822
 
3031 serge 823
		if (remain <= 0)
824
			break;
825
 
2332 Serge 826
		/* Operation in this page
827
		 *
828
		 * shmem_page_offset = offset within page in shmem file
829
		 * page_length = bytes to copy for this page
830
		 */
831
		shmem_page_offset = offset_in_page(offset);
832
 
833
		page_length = remain;
834
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
835
			page_length = PAGE_SIZE - shmem_page_offset;
836
 
3031 serge 837
		/* If we don't overwrite a cacheline completely we need to be
838
		 * careful to have up-to-date data by first clflushing. Don't
839
		 * overcomplicate things and flush the entire patch. */
840
		partial_cacheline_write = needs_clflush_before &&
841
			((shmem_page_offset | page_length)
3260 Serge 842
				& (x86_clflush_size - 1));
2332 Serge 843
 
3031 serge 844
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
845
			(page_to_phys(page) & (1 << 17)) != 0;
2332 Serge 846
 
3031 serge 847
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
848
					user_data, page_do_bit17_swizzling,
849
					partial_cacheline_write,
850
					needs_clflush_after);
851
		if (ret == 0)
852
			goto next_page;
853
 
854
		hit_slowpath = 1;
855
		mutex_unlock(&dev->struct_mutex);
3260 Serge 856
		dbgprintf("%s need shmem_pwrite_slow\n",__FUNCTION__);
3031 serge 857
 
3260 Serge 858
//		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
859
//					user_data, page_do_bit17_swizzling,
860
//					partial_cacheline_write,
861
//					needs_clflush_after);
862
 
3031 serge 863
		mutex_lock(&dev->struct_mutex);
864
 
865
next_page:
2332 Serge 866
 
3031 serge 867
		if (ret)
868
			goto out;
869
 
2332 Serge 870
		remain -= page_length;
3031 serge 871
		user_data += page_length;
2332 Serge 872
		offset += page_length;
873
	}
874
 
875
out:
3031 serge 876
	i915_gem_object_unpin_pages(obj);
877
 
878
	if (hit_slowpath) {
3480 Serge 879
		/*
880
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
881
		 * cachelines in-line while writing and the object moved
882
		 * out of the cpu write domain while we've dropped the lock.
883
		 */
884
		if (!needs_clflush_after &&
885
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
4104 Serge 886
			if (i915_gem_clflush_object(obj, obj->pin_display))
3243 Serge 887
			i915_gem_chipset_flush(dev);
3031 serge 888
		}
2332 Serge 889
	}
890
 
3031 serge 891
	if (needs_clflush_after)
3243 Serge 892
		i915_gem_chipset_flush(dev);
3031 serge 893
 
2332 Serge 894
	return ret;
895
}
3031 serge 896
 
897
/**
898
 * Writes data to the object referenced by handle.
899
 *
900
 * On error, the contents of the buffer that were to be modified are undefined.
901
 */
902
int
903
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
904
		      struct drm_file *file)
905
{
906
	struct drm_i915_gem_pwrite *args = data;
907
	struct drm_i915_gem_object *obj;
908
	int ret;
909
 
4104 Serge 910
	if (args->size == 0)
911
		return 0;
912
 
3480 Serge 913
     if(args->handle == -2)
914
     {
915
        printf("%s handle %d\n", __FUNCTION__, args->handle);
916
        return 0;
917
     }
918
 
3031 serge 919
	ret = i915_mutex_lock_interruptible(dev);
920
	if (ret)
921
		return ret;
922
 
923
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
924
	if (&obj->base == NULL) {
925
		ret = -ENOENT;
926
		goto unlock;
927
	}
928
 
929
	/* Bounds check destination. */
930
	if (args->offset > obj->base.size ||
931
	    args->size > obj->base.size - args->offset) {
932
		ret = -EINVAL;
933
		goto out;
934
	}
935
 
936
	/* prime objects have no backing filp to GEM pread/pwrite
937
	 * pages from.
938
	 */
939
	if (!obj->base.filp) {
940
		ret = -EINVAL;
941
		goto out;
942
	}
943
 
944
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
945
 
946
	ret = -EFAULT;
947
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
948
	 * it would end up going through the fenced access, and we'll get
949
	 * different detiling behavior between reading and writing.
950
	 * pread/pwrite currently are reading and writing from the CPU
951
	 * perspective, requiring manual detiling by the client.
952
	 */
3260 Serge 953
//   if (obj->phys_obj) {
954
//       ret = i915_gem_phys_pwrite(dev, obj, args, file);
955
//       goto out;
956
//   }
3031 serge 957
 
4104 Serge 958
	if (obj->tiling_mode == I915_TILING_NONE &&
959
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
960
	    cpu_write_needs_clflush(obj)) {
3031 serge 961
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
962
		/* Note that the gtt paths might fail with non-page-backed user
963
		 * pointers (e.g. gtt mappings when moving data between
964
		 * textures). Fallback to the shmem path in that case. */
965
	}
966
 
967
	if (ret == -EFAULT || ret == -ENOSPC)
3260 Serge 968
       ret = i915_gem_shmem_pwrite(dev, obj, args, file);
3031 serge 969
 
970
out:
971
	drm_gem_object_unreference(&obj->base);
972
unlock:
973
	mutex_unlock(&dev->struct_mutex);
974
	return ret;
975
}
976
 
977
int
3480 Serge 978
i915_gem_check_wedge(struct i915_gpu_error *error,
3031 serge 979
		     bool interruptible)
980
{
3480 Serge 981
	if (i915_reset_in_progress(error)) {
3031 serge 982
		/* Non-interruptible callers can't handle -EAGAIN, hence return
983
		 * -EIO unconditionally for these. */
984
		if (!interruptible)
985
			return -EIO;
2332 Serge 986
 
3480 Serge 987
		/* Recovery complete, but the reset failed ... */
988
		if (i915_terminally_wedged(error))
3031 serge 989
			return -EIO;
2332 Serge 990
 
3031 serge 991
		return -EAGAIN;
992
	}
2332 Serge 993
 
3031 serge 994
	return 0;
995
}
2332 Serge 996
 
3031 serge 997
/*
998
 * Compare seqno against outstanding lazy request. Emit a request if they are
999
 * equal.
1000
 */
1001
static int
1002
i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1003
{
1004
	int ret;
2332 Serge 1005
 
3031 serge 1006
	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
2332 Serge 1007
 
3031 serge 1008
	ret = 0;
1009
	if (seqno == ring->outstanding_lazy_request)
4104 Serge 1010
		ret = i915_add_request(ring, NULL);
2332 Serge 1011
 
3031 serge 1012
	return ret;
1013
}
2332 Serge 1014
 
3031 serge 1015
/**
1016
 * __wait_seqno - wait until execution of seqno has finished
1017
 * @ring: the ring expected to report seqno
1018
 * @seqno: duh!
3480 Serge 1019
 * @reset_counter: reset sequence associated with the given seqno
3031 serge 1020
 * @interruptible: do an interruptible wait (normally yes)
1021
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1022
 *
3480 Serge 1023
 * Note: It is of utmost importance that the passed in seqno and reset_counter
1024
 * values have been read by the caller in an smp safe manner. Where read-side
1025
 * locks are involved, it is sufficient to read the reset_counter before
1026
 * unlocking the lock that protects the seqno. For lockless tricks, the
1027
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1028
 * inserted.
1029
 *
3031 serge 1030
 * Returns 0 if the seqno was found within the alloted time. Else returns the
1031
 * errno with remaining time filled in timeout argument.
1032
 */
1033
static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
3480 Serge 1034
			unsigned reset_counter,
3031 serge 1035
			bool interruptible, struct timespec *timeout)
1036
{
1037
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1038
	struct timespec before, now, wait_time={1,0};
1039
	unsigned long timeout_jiffies;
1040
	long end;
1041
	bool wait_forever = true;
1042
	int ret;
2332 Serge 1043
 
4104 Serge 1044
	WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1045
 
3031 serge 1046
	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1047
		return 0;
2332 Serge 1048
 
3031 serge 1049
	trace_i915_gem_request_wait_begin(ring, seqno);
2332 Serge 1050
 
3031 serge 1051
	if (timeout != NULL) {
1052
		wait_time = *timeout;
1053
		wait_forever = false;
1054
	}
2332 Serge 1055
 
4104 Serge 1056
	timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
2332 Serge 1057
 
3031 serge 1058
	if (WARN_ON(!ring->irq_get(ring)))
1059
		return -ENODEV;
2332 Serge 1060
 
3031 serge 1061
    /* Record current time in case interrupted by signal, or wedged * */
1062
	getrawmonotonic(&before);
2332 Serge 1063
 
3031 serge 1064
#define EXIT_COND \
1065
	(i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
3480 Serge 1066
	 i915_reset_in_progress(&dev_priv->gpu_error) || \
1067
	 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3031 serge 1068
	do {
3266 Serge 1069
		if (interruptible)
1070
			end = wait_event_interruptible_timeout(ring->irq_queue,
1071
							       EXIT_COND,
1072
							       timeout_jiffies);
1073
		else
3031 serge 1074
			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1075
						 timeout_jiffies);
2332 Serge 1076
 
3480 Serge 1077
		/* We need to check whether any gpu reset happened in between
1078
		 * the caller grabbing the seqno and now ... */
1079
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1080
			end = -EAGAIN;
1081
 
1082
		/* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1083
		 * gone. */
1084
		ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
3031 serge 1085
		if (ret)
1086
			end = ret;
1087
	} while (end == 0 && wait_forever);
2332 Serge 1088
 
3031 serge 1089
	getrawmonotonic(&now);
2332 Serge 1090
 
3031 serge 1091
	ring->irq_put(ring);
1092
	trace_i915_gem_request_wait_end(ring, seqno);
1093
#undef EXIT_COND
2332 Serge 1094
 
3031 serge 1095
	if (timeout) {
4104 Serge 1096
//		struct timespec sleep_time = timespec_sub(now, before);
1097
//		*timeout = timespec_sub(*timeout, sleep_time);
3031 serge 1098
	}
2332 Serge 1099
 
3031 serge 1100
	switch (end) {
1101
	case -EIO:
1102
	case -EAGAIN: /* Wedged */
1103
	case -ERESTARTSYS: /* Signal */
1104
		return (int)end;
1105
	case 0: /* Timeout */
1106
		return -ETIME;
1107
	default: /* Completed */
1108
		WARN_ON(end < 0); /* We're not aware of other errors */
1109
		return 0;
1110
	}
1111
}
2332 Serge 1112
 
3031 serge 1113
/**
1114
 * Waits for a sequence number to be signaled, and cleans up the
1115
 * request and object lists appropriately for that event.
1116
 */
1117
int
1118
i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1119
{
1120
	struct drm_device *dev = ring->dev;
1121
	struct drm_i915_private *dev_priv = dev->dev_private;
1122
	bool interruptible = dev_priv->mm.interruptible;
1123
	int ret;
2332 Serge 1124
 
3031 serge 1125
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1126
	BUG_ON(seqno == 0);
2332 Serge 1127
 
3480 Serge 1128
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
3031 serge 1129
	if (ret)
1130
		return ret;
2332 Serge 1131
 
3031 serge 1132
	ret = i915_gem_check_olr(ring, seqno);
1133
	if (ret)
1134
		return ret;
2332 Serge 1135
 
3480 Serge 1136
	return __wait_seqno(ring, seqno,
1137
			    atomic_read(&dev_priv->gpu_error.reset_counter),
1138
			    interruptible, NULL);
3031 serge 1139
}
2332 Serge 1140
 
4104 Serge 1141
static int
1142
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1143
				     struct intel_ring_buffer *ring)
1144
{
1145
	i915_gem_retire_requests_ring(ring);
1146
 
1147
	/* Manually manage the write flush as we may have not yet
1148
	 * retired the buffer.
1149
	 *
1150
	 * Note that the last_write_seqno is always the earlier of
1151
	 * the two (read/write) seqno, so if we haved successfully waited,
1152
	 * we know we have passed the last write.
1153
	 */
1154
	obj->last_write_seqno = 0;
1155
	obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1156
 
1157
	return 0;
1158
}
1159
 
3031 serge 1160
/**
1161
 * Ensures that all rendering to the object has completed and the object is
1162
 * safe to unbind from the GTT or access from the CPU.
1163
 */
1164
static __must_check int
1165
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1166
			       bool readonly)
1167
{
1168
	struct intel_ring_buffer *ring = obj->ring;
1169
	u32 seqno;
1170
	int ret;
2332 Serge 1171
 
3031 serge 1172
	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1173
	if (seqno == 0)
1174
		return 0;
2332 Serge 1175
 
3031 serge 1176
	ret = i915_wait_seqno(ring, seqno);
4104 Serge 1177
    if (ret)
1178
        return ret;
2332 Serge 1179
 
4104 Serge 1180
	return i915_gem_object_wait_rendering__tail(obj, ring);
3031 serge 1181
}
2332 Serge 1182
 
3260 Serge 1183
/* A nonblocking variant of the above wait. This is a highly dangerous routine
1184
 * as the object state may change during this call.
1185
 */
1186
static __must_check int
1187
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1188
					    bool readonly)
1189
{
1190
	struct drm_device *dev = obj->base.dev;
1191
	struct drm_i915_private *dev_priv = dev->dev_private;
1192
	struct intel_ring_buffer *ring = obj->ring;
3480 Serge 1193
	unsigned reset_counter;
3260 Serge 1194
	u32 seqno;
1195
	int ret;
2332 Serge 1196
 
3260 Serge 1197
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1198
	BUG_ON(!dev_priv->mm.interruptible);
2332 Serge 1199
 
3260 Serge 1200
	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1201
	if (seqno == 0)
1202
		return 0;
2332 Serge 1203
 
3480 Serge 1204
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3260 Serge 1205
	if (ret)
1206
		return ret;
2332 Serge 1207
 
3260 Serge 1208
	ret = i915_gem_check_olr(ring, seqno);
1209
	if (ret)
1210
		return ret;
2332 Serge 1211
 
3480 Serge 1212
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3260 Serge 1213
	mutex_unlock(&dev->struct_mutex);
3480 Serge 1214
	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3260 Serge 1215
	mutex_lock(&dev->struct_mutex);
4104 Serge 1216
	if (ret)
1217
		return ret;
2332 Serge 1218
 
4104 Serge 1219
	return i915_gem_object_wait_rendering__tail(obj, ring);
3260 Serge 1220
}
2332 Serge 1221
 
3260 Serge 1222
/**
1223
 * Called when user space prepares to use an object with the CPU, either
1224
 * through the mmap ioctl's mapping or a GTT mapping.
1225
 */
1226
int
1227
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1228
			  struct drm_file *file)
1229
{
1230
	struct drm_i915_gem_set_domain *args = data;
1231
	struct drm_i915_gem_object *obj;
1232
	uint32_t read_domains = args->read_domains;
1233
	uint32_t write_domain = args->write_domain;
1234
	int ret;
2332 Serge 1235
 
3480 Serge 1236
 
1237
     if(args->handle == -2)
1238
     {
1239
        printf("%s handle %d\n", __FUNCTION__, args->handle);
1240
        return 0;
1241
     }
1242
 
3260 Serge 1243
	/* Only handle setting domains to types used by the CPU. */
1244
	if (write_domain & I915_GEM_GPU_DOMAINS)
1245
		return -EINVAL;
2332 Serge 1246
 
3260 Serge 1247
	if (read_domains & I915_GEM_GPU_DOMAINS)
1248
		return -EINVAL;
2332 Serge 1249
 
3260 Serge 1250
	/* Having something in the write domain implies it's in the read
1251
	 * domain, and only that read domain.  Enforce that in the request.
1252
	 */
1253
	if (write_domain != 0 && read_domains != write_domain)
1254
		return -EINVAL;
2332 Serge 1255
 
3260 Serge 1256
	ret = i915_mutex_lock_interruptible(dev);
1257
	if (ret)
1258
		return ret;
2332 Serge 1259
 
3260 Serge 1260
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1261
	if (&obj->base == NULL) {
1262
		ret = -ENOENT;
1263
		goto unlock;
1264
	}
2332 Serge 1265
 
3260 Serge 1266
	/* Try to flush the object off the GPU without holding the lock.
1267
	 * We will repeat the flush holding the lock in the normal manner
1268
	 * to catch cases where we are gazumped.
1269
	 */
1270
	ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1271
	if (ret)
1272
		goto unref;
2332 Serge 1273
 
3260 Serge 1274
	if (read_domains & I915_GEM_DOMAIN_GTT) {
1275
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
2332 Serge 1276
 
3260 Serge 1277
		/* Silently promote "you're not bound, there was nothing to do"
1278
		 * to success, since the client was just asking us to
1279
		 * make sure everything was done.
1280
		 */
1281
		if (ret == -EINVAL)
1282
			ret = 0;
1283
	} else {
1284
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1285
	}
2332 Serge 1286
 
3260 Serge 1287
unref:
1288
	drm_gem_object_unreference(&obj->base);
1289
unlock:
1290
	mutex_unlock(&dev->struct_mutex);
1291
	return ret;
1292
}
2332 Serge 1293
 
1294
 
1295
 
1296
 
1297
 
1298
 
3260 Serge 1299
/**
1300
 * Maps the contents of an object, returning the address it is mapped
1301
 * into.
1302
 *
1303
 * While the mapping holds a reference on the contents of the object, it doesn't
1304
 * imply a ref on the object itself.
1305
 */
1306
int
1307
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1308
		    struct drm_file *file)
1309
{
1310
	struct drm_i915_gem_mmap *args = data;
1311
	struct drm_gem_object *obj;
1312
	unsigned long addr = 0;
2332 Serge 1313
 
3480 Serge 1314
     if(args->handle == -2)
1315
     {
1316
        printf("%s handle %d\n", __FUNCTION__, args->handle);
1317
        return 0;
1318
     }
1319
 
3260 Serge 1320
	obj = drm_gem_object_lookup(dev, file, args->handle);
1321
	if (obj == NULL)
1322
		return -ENOENT;
4104 Serge 1323
 
3298 Serge 1324
    //dbgprintf("%s offset %lld size %lld\n",
1325
//                __FUNCTION__, args->offset, args->size);
3260 Serge 1326
	/* prime objects have no backing filp to GEM mmap
1327
	 * pages from.
1328
	 */
1329
	if (!obj->filp) {
1330
		drm_gem_object_unreference_unlocked(obj);
1331
		return -EINVAL;
1332
	}
2332 Serge 1333
 
3263 Serge 1334
    addr = vm_mmap(obj->filp, 0, args->size,
1335
              PROT_READ | PROT_WRITE, MAP_SHARED,
1336
              args->offset);
3260 Serge 1337
	drm_gem_object_unreference_unlocked(obj);
3263 Serge 1338
    if (IS_ERR((void *)addr))
1339
        return addr;
2332 Serge 1340
 
3260 Serge 1341
	args->addr_ptr = (uint64_t) addr;
2332 Serge 1342
 
3263 Serge 1343
    return 0;
3260 Serge 1344
}
2332 Serge 1345
 
1346
 
1347
 
1348
 
1349
 
1350
 
1351
 
1352
 
3031 serge 1353
 
1354
 
1355
 
1356
 
1357
 
1358
/**
1359
 * i915_gem_release_mmap - remove physical page mappings
1360
 * @obj: obj in question
1361
 *
1362
 * Preserve the reservation of the mmapping with the DRM core code, but
1363
 * relinquish ownership of the pages back to the system.
1364
 *
1365
 * It is vital that we remove the page mapping if we have mapped a tiled
1366
 * object through the GTT and then lose the fence register due to
1367
 * resource pressure. Similarly if the object has been moved out of the
1368
 * aperture, than pages mapped into userspace must be revoked. Removing the
1369
 * mapping will then trigger a page fault on the next user access, allowing
1370
 * fixup by i915_gem_fault().
1371
 */
1372
void
1373
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1374
{
1375
	if (!obj->fault_mappable)
1376
		return;
1377
 
4104 Serge 1378
//	drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
3031 serge 1379
	obj->fault_mappable = false;
1380
}
1381
 
3480 Serge 1382
uint32_t
2332 Serge 1383
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1384
{
1385
	uint32_t gtt_size;
1386
 
1387
	if (INTEL_INFO(dev)->gen >= 4 ||
1388
	    tiling_mode == I915_TILING_NONE)
1389
		return size;
1390
 
1391
	/* Previous chips need a power-of-two fence region when tiling */
1392
	if (INTEL_INFO(dev)->gen == 3)
1393
		gtt_size = 1024*1024;
1394
	else
1395
		gtt_size = 512*1024;
1396
 
1397
	while (gtt_size < size)
1398
		gtt_size <<= 1;
1399
 
1400
	return gtt_size;
1401
}
1402
 
1403
/**
1404
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1405
 * @obj: object to check
1406
 *
1407
 * Return the required GTT alignment for an object, taking into account
1408
 * potential fence register mapping.
1409
 */
3480 Serge 1410
uint32_t
1411
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1412
			   int tiling_mode, bool fenced)
2332 Serge 1413
{
1414
	/*
1415
	 * Minimum alignment is 4k (GTT page size), but might be greater
1416
	 * if a fence register is needed for the object.
1417
	 */
3480 Serge 1418
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2332 Serge 1419
	    tiling_mode == I915_TILING_NONE)
1420
		return 4096;
1421
 
1422
	/*
1423
	 * Previous chips need to be aligned to the size of the smallest
1424
	 * fence register that can contain the object.
1425
	 */
1426
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1427
}
1428
 
1429
/**
1430
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1431
 *					 unfenced object
1432
 * @dev: the device
1433
 * @size: size of the object
1434
 * @tiling_mode: tiling mode of the object
1435
 *
1436
 * Return the required GTT alignment for an object, only taking into account
1437
 * unfenced tiled surface requirements.
1438
 */
1439
uint32_t
1440
i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1441
				    uint32_t size,
1442
				    int tiling_mode)
1443
{
1444
	/*
1445
	 * Minimum alignment is 4k (GTT page size) for sane hw.
1446
	 */
1447
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1448
	    tiling_mode == I915_TILING_NONE)
1449
		return 4096;
1450
 
1451
	/* Previous hardware however needs to be aligned to a power-of-two
1452
	 * tile height. The simplest method for determining this is to reuse
1453
	 * the power-of-tile object size.
1454
	 */
1455
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1456
}
1457
 
3480 Serge 1458
int
1459
i915_gem_mmap_gtt(struct drm_file *file,
1460
          struct drm_device *dev,
1461
          uint32_t handle,
1462
          uint64_t *offset)
1463
{
1464
    struct drm_i915_private *dev_priv = dev->dev_private;
1465
    struct drm_i915_gem_object *obj;
1466
    unsigned long pfn;
1467
    char *mem, *ptr;
1468
    int ret;
1469
 
1470
    ret = i915_mutex_lock_interruptible(dev);
1471
    if (ret)
1472
        return ret;
1473
 
1474
    obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1475
    if (&obj->base == NULL) {
1476
        ret = -ENOENT;
1477
        goto unlock;
1478
    }
1479
 
1480
    if (obj->base.size > dev_priv->gtt.mappable_end) {
1481
        ret = -E2BIG;
1482
        goto out;
1483
    }
1484
 
1485
    if (obj->madv != I915_MADV_WILLNEED) {
1486
        DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1487
        ret = -EINVAL;
1488
        goto out;
1489
    }
1490
    /* Now bind it into the GTT if needed */
4104 Serge 1491
    ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
3480 Serge 1492
    if (ret)
1493
        goto out;
1494
 
1495
    ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1496
    if (ret)
1497
        goto unpin;
1498
 
1499
    ret = i915_gem_object_get_fence(obj);
1500
    if (ret)
1501
        goto unpin;
1502
 
1503
    obj->fault_mappable = true;
1504
 
4104 Serge 1505
    pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
3480 Serge 1506
 
1507
    /* Finally, remap it using the new GTT offset */
1508
 
1509
    mem = UserAlloc(obj->base.size);
1510
    if(unlikely(mem == NULL))
1511
    {
1512
        ret = -ENOMEM;
1513
        goto unpin;
1514
    }
1515
 
1516
    for(ptr = mem; ptr < mem + obj->base.size; ptr+= 4096, pfn+= 4096)
1517
        MapPage(ptr, pfn, PG_SHARED|PG_UW);
1518
 
1519
unpin:
1520
    i915_gem_object_unpin(obj);
1521
 
1522
 
4104 Serge 1523
    *offset = mem;
3480 Serge 1524
 
1525
out:
1526
    drm_gem_object_unreference(&obj->base);
1527
unlock:
1528
    mutex_unlock(&dev->struct_mutex);
1529
    return ret;
1530
}
1531
 
1532
/**
1533
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1534
 * @dev: DRM device
1535
 * @data: GTT mapping ioctl data
1536
 * @file: GEM object info
1537
 *
1538
 * Simply returns the fake offset to userspace so it can mmap it.
1539
 * The mmap call will end up in drm_gem_mmap(), which will set things
1540
 * up so we can get faults in the handler above.
1541
 *
1542
 * The fault handler will take care of binding the object into the GTT
1543
 * (since it may have been evicted to make room for something), allocating
1544
 * a fence register, and mapping the appropriate aperture address into
1545
 * userspace.
1546
 */
1547
int
1548
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1549
            struct drm_file *file)
1550
{
1551
    struct drm_i915_gem_mmap_gtt *args = data;
1552
 
1553
    return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1554
}
1555
 
3031 serge 1556
/* Immediately discard the backing storage */
1557
static void
1558
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1559
{
1560
//	struct inode *inode;
2332 Serge 1561
 
3031 serge 1562
//	i915_gem_object_free_mmap_offset(obj);
2332 Serge 1563
 
3263 Serge 1564
	if (obj->base.filp == NULL)
1565
		return;
2332 Serge 1566
 
3031 serge 1567
	/* Our goal here is to return as much of the memory as
1568
	 * is possible back to the system as we are called from OOM.
1569
	 * To do this we must instruct the shmfs to drop all of its
1570
	 * backing pages, *now*.
1571
	 */
1572
//	inode = obj->base.filp->f_path.dentry->d_inode;
1573
//	shmem_truncate_range(inode, 0, (loff_t)-1);
2332 Serge 1574
 
3031 serge 1575
	obj->madv = __I915_MADV_PURGED;
1576
}
2332 Serge 1577
 
3031 serge 1578
static inline int
1579
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1580
{
1581
	return obj->madv == I915_MADV_DONTNEED;
1582
}
2332 Serge 1583
 
3031 serge 1584
static void
1585
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1586
{
3746 Serge 1587
	struct sg_page_iter sg_iter;
1588
	int ret;
2332 Serge 1589
 
3031 serge 1590
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2332 Serge 1591
 
3031 serge 1592
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
1593
	if (ret) {
1594
		/* In the event of a disaster, abandon all caches and
1595
		 * hope for the best.
1596
		 */
1597
		WARN_ON(ret != -EIO);
4104 Serge 1598
		i915_gem_clflush_object(obj, true);
3031 serge 1599
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1600
	}
2332 Serge 1601
 
3031 serge 1602
	if (obj->madv == I915_MADV_DONTNEED)
1603
		obj->dirty = 0;
2332 Serge 1604
 
3746 Serge 1605
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1606
		struct page *page = sg_page_iter_page(&sg_iter);
2332 Serge 1607
 
3290 Serge 1608
        page_cache_release(page);
3243 Serge 1609
	}
1610
    //DRM_DEBUG_KMS("%s release %d pages\n", __FUNCTION__, page_count);
3290 Serge 1611
 
4104 Serge 1612
    obj->dirty = 0;
3243 Serge 1613
 
1614
	sg_free_table(obj->pages);
1615
	kfree(obj->pages);
3031 serge 1616
}
2332 Serge 1617
 
3480 Serge 1618
int
3031 serge 1619
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1620
{
1621
	const struct drm_i915_gem_object_ops *ops = obj->ops;
2332 Serge 1622
 
3243 Serge 1623
	if (obj->pages == NULL)
3031 serge 1624
		return 0;
2332 Serge 1625
 
3031 serge 1626
	if (obj->pages_pin_count)
1627
		return -EBUSY;
1628
 
4104 Serge 1629
	BUG_ON(i915_gem_obj_bound_any(obj));
1630
 
3243 Serge 1631
	/* ->put_pages might need to allocate memory for the bit17 swizzle
1632
	 * array, hence protect them from being reaped by removing them from gtt
1633
	 * lists early. */
4104 Serge 1634
	list_del(&obj->global_list);
3243 Serge 1635
 
3031 serge 1636
	ops->put_pages(obj);
3243 Serge 1637
	obj->pages = NULL;
3031 serge 1638
 
1639
	if (i915_gem_object_is_purgeable(obj))
1640
		i915_gem_object_truncate(obj);
1641
 
1642
	return 0;
1643
}
1644
 
1645
 
1646
 
1647
 
1648
 
1649
 
1650
 
1651
 
2332 Serge 1652
static int
3031 serge 1653
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2332 Serge 1654
{
3260 Serge 1655
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3243 Serge 1656
    int page_count, i;
4104 Serge 1657
    struct sg_table *st;
3243 Serge 1658
	struct scatterlist *sg;
3746 Serge 1659
	struct sg_page_iter sg_iter;
3243 Serge 1660
	struct page *page;
3746 Serge 1661
	unsigned long last_pfn = 0;	/* suppress gcc warning */
3243 Serge 1662
	gfp_t gfp;
2332 Serge 1663
 
3243 Serge 1664
	/* Assert that the object is not currently in any GPU domain. As it
1665
	 * wasn't in the GTT, there shouldn't be any way it could have been in
1666
	 * a GPU cache
2332 Serge 1667
	 */
3243 Serge 1668
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1669
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1670
 
1671
	st = kmalloc(sizeof(*st), GFP_KERNEL);
1672
	if (st == NULL)
1673
		return -ENOMEM;
1674
 
2332 Serge 1675
	page_count = obj->base.size / PAGE_SIZE;
3243 Serge 1676
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1677
		kfree(st);
3746 Serge 1678
        FAIL();
2332 Serge 1679
		return -ENOMEM;
3243 Serge 1680
	}
2332 Serge 1681
 
3243 Serge 1682
	/* Get the list of pages out of our struct file.  They'll be pinned
1683
	 * at this point until we release them.
1684
	 *
1685
	 * Fail silently without starting the shrinker
1686
	 */
3746 Serge 1687
	sg = st->sgl;
1688
	st->nents = 0;
1689
	for (i = 0; i < page_count; i++) {
4104 Serge 1690
        page = shmem_read_mapping_page_gfp(obj->base.filp, i, gfp);
3260 Serge 1691
		if (IS_ERR(page)) {
1692
            dbgprintf("%s invalid page %p\n", __FUNCTION__, page);
2332 Serge 1693
			goto err_pages;
1694
 
3260 Serge 1695
		}
3746 Serge 1696
 
1697
		if (!i || page_to_pfn(page) != last_pfn + 1) {
1698
			if (i)
1699
				sg = sg_next(sg);
1700
			st->nents++;
3243 Serge 1701
		sg_set_page(sg, page, PAGE_SIZE, 0);
3746 Serge 1702
		} else {
1703
			sg->length += PAGE_SIZE;
1704
		}
1705
		last_pfn = page_to_pfn(page);
3243 Serge 1706
	}
3031 serge 1707
 
3746 Serge 1708
		sg_mark_end(sg);
3243 Serge 1709
	obj->pages = st;
3031 serge 1710
 
2332 Serge 1711
	return 0;
1712
 
1713
err_pages:
3746 Serge 1714
	sg_mark_end(sg);
1715
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1716
		page_cache_release(sg_page_iter_page(&sg_iter));
3243 Serge 1717
	sg_free_table(st);
1718
	kfree(st);
3746 Serge 1719
    FAIL();
3243 Serge 1720
	return PTR_ERR(page);
2332 Serge 1721
}
1722
 
3031 serge 1723
/* Ensure that the associated pages are gathered from the backing storage
1724
 * and pinned into our object. i915_gem_object_get_pages() may be called
1725
 * multiple times before they are released by a single call to
1726
 * i915_gem_object_put_pages() - once the pages are no longer referenced
1727
 * either as a result of memory pressure (reaping pages under the shrinker)
1728
 * or as the object is itself released.
1729
 */
1730
int
1731
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2332 Serge 1732
{
3031 serge 1733
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1734
	const struct drm_i915_gem_object_ops *ops = obj->ops;
1735
	int ret;
2332 Serge 1736
 
3243 Serge 1737
	if (obj->pages)
3031 serge 1738
		return 0;
2332 Serge 1739
 
3031 serge 1740
	BUG_ON(obj->pages_pin_count);
2332 Serge 1741
 
3031 serge 1742
	ret = ops->get_pages(obj);
1743
	if (ret)
1744
		return ret;
2344 Serge 1745
 
4104 Serge 1746
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3243 Serge 1747
    return 0;
2332 Serge 1748
}
1749
 
1750
void
1751
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
3243 Serge 1752
			       struct intel_ring_buffer *ring)
2332 Serge 1753
{
1754
	struct drm_device *dev = obj->base.dev;
1755
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 1756
	u32 seqno = intel_ring_get_seqno(ring);
2332 Serge 1757
 
1758
	BUG_ON(ring == NULL);
4104 Serge 1759
	if (obj->ring != ring && obj->last_write_seqno) {
1760
		/* Keep the seqno relative to the current ring */
1761
		obj->last_write_seqno = seqno;
1762
	}
2332 Serge 1763
	obj->ring = ring;
1764
 
1765
	/* Add a reference if we're newly entering the active list. */
1766
	if (!obj->active) {
2344 Serge 1767
		drm_gem_object_reference(&obj->base);
2332 Serge 1768
		obj->active = 1;
1769
	}
1770
 
1771
	list_move_tail(&obj->ring_list, &ring->active_list);
1772
 
3031 serge 1773
	obj->last_read_seqno = seqno;
1774
 
2332 Serge 1775
	if (obj->fenced_gpu_access) {
3031 serge 1776
		obj->last_fenced_seqno = seqno;
1777
 
1778
		/* Bump MRU to take account of the delayed flush */
1779
		if (obj->fence_reg != I915_FENCE_REG_NONE) {
2332 Serge 1780
		struct drm_i915_fence_reg *reg;
1781
 
1782
		reg = &dev_priv->fence_regs[obj->fence_reg];
3031 serge 1783
			list_move_tail(®->lru_list,
1784
				       &dev_priv->mm.fence_list);
1785
		}
2332 Serge 1786
	}
1787
}
1788
 
2344 Serge 1789
static void
3031 serge 1790
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2344 Serge 1791
{
4104 Serge 1792
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1793
	struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1794
	struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2332 Serge 1795
 
3031 serge 1796
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2344 Serge 1797
	BUG_ON(!obj->active);
2332 Serge 1798
 
4104 Serge 1799
	list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
2344 Serge 1800
 
3031 serge 1801
	list_del_init(&obj->ring_list);
2352 Serge 1802
	obj->ring = NULL;
2344 Serge 1803
 
3031 serge 1804
	obj->last_read_seqno = 0;
1805
	obj->last_write_seqno = 0;
1806
	obj->base.write_domain = 0;
1807
 
1808
	obj->last_fenced_seqno = 0;
2352 Serge 1809
	obj->fenced_gpu_access = false;
2344 Serge 1810
 
2352 Serge 1811
	obj->active = 0;
1812
	drm_gem_object_unreference(&obj->base);
1813
 
1814
	WARN_ON(i915_verify_lists(dev));
1815
}
1816
 
3243 Serge 1817
static int
3480 Serge 1818
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2344 Serge 1819
{
3243 Serge 1820
	struct drm_i915_private *dev_priv = dev->dev_private;
1821
	struct intel_ring_buffer *ring;
1822
	int ret, i, j;
2344 Serge 1823
 
3480 Serge 1824
	/* Carefully retire all requests without writing to the rings */
3243 Serge 1825
	for_each_ring(ring, dev_priv, i) {
3480 Serge 1826
		ret = intel_ring_idle(ring);
3243 Serge 1827
	if (ret)
1828
		return ret;
3480 Serge 1829
	}
1830
	i915_gem_retire_requests(dev);
3243 Serge 1831
 
3480 Serge 1832
	/* Finally reset hw state */
3243 Serge 1833
	for_each_ring(ring, dev_priv, i) {
3480 Serge 1834
		intel_ring_init_seqno(ring, seqno);
1835
 
3243 Serge 1836
		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1837
			ring->sync_seqno[j] = 0;
1838
	}
1839
 
1840
	return 0;
2344 Serge 1841
}
1842
 
3480 Serge 1843
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1844
{
1845
	struct drm_i915_private *dev_priv = dev->dev_private;
1846
	int ret;
1847
 
1848
	if (seqno == 0)
1849
		return -EINVAL;
1850
 
1851
	/* HWS page needs to be set less than what we
1852
	 * will inject to ring
1853
	 */
1854
	ret = i915_gem_init_seqno(dev, seqno - 1);
1855
	if (ret)
1856
		return ret;
1857
 
1858
	/* Carefully set the last_seqno value so that wrap
1859
	 * detection still works
1860
	 */
1861
	dev_priv->next_seqno = seqno;
1862
	dev_priv->last_seqno = seqno - 1;
1863
	if (dev_priv->last_seqno == 0)
1864
		dev_priv->last_seqno--;
1865
 
1866
	return 0;
1867
}
1868
 
3243 Serge 1869
int
1870
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2344 Serge 1871
{
3243 Serge 1872
	struct drm_i915_private *dev_priv = dev->dev_private;
2344 Serge 1873
 
3243 Serge 1874
	/* reserve 0 for non-seqno */
1875
	if (dev_priv->next_seqno == 0) {
3480 Serge 1876
		int ret = i915_gem_init_seqno(dev, 0);
3243 Serge 1877
		if (ret)
1878
			return ret;
1879
 
1880
		dev_priv->next_seqno = 1;
1881
	}
1882
 
3480 Serge 1883
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
3243 Serge 1884
	return 0;
2332 Serge 1885
}
1886
 
4104 Serge 1887
int __i915_add_request(struct intel_ring_buffer *ring,
2352 Serge 1888
		 struct drm_file *file,
4104 Serge 1889
		       struct drm_i915_gem_object *obj,
3031 serge 1890
		 u32 *out_seqno)
2352 Serge 1891
{
1892
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
3031 serge 1893
	struct drm_i915_gem_request *request;
4104 Serge 1894
	u32 request_ring_position, request_start;
2352 Serge 1895
	int was_empty;
1896
	int ret;
2332 Serge 1897
 
4104 Serge 1898
	request_start = intel_ring_get_tail(ring);
3031 serge 1899
	/*
1900
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
1901
	 * after having emitted the batchbuffer command. Hence we need to fix
1902
	 * things up similar to emitting the lazy request. The difference here
1903
	 * is that the flush _must_ happen before the next request, no matter
1904
	 * what.
1905
	 */
4104 Serge 1906
   ret = intel_ring_flush_all_caches(ring);
1907
   if (ret)
1908
       return ret;
2332 Serge 1909
 
3031 serge 1910
	request = kmalloc(sizeof(*request), GFP_KERNEL);
1911
	if (request == NULL)
1912
		return -ENOMEM;
1913
 
1914
 
1915
	/* Record the position of the start of the request so that
1916
	 * should we detect the updated seqno part-way through the
4104 Serge 1917
    * GPU processing the request, we never over-estimate the
3031 serge 1918
	 * position of the head.
1919
	 */
4104 Serge 1920
   request_ring_position = intel_ring_get_tail(ring);
3031 serge 1921
 
3243 Serge 1922
	ret = ring->add_request(ring);
3031 serge 1923
	if (ret) {
1924
		kfree(request);
4104 Serge 1925
		return ret;
3031 serge 1926
	}
2332 Serge 1927
 
3243 Serge 1928
	request->seqno = intel_ring_get_seqno(ring);
2352 Serge 1929
	request->ring = ring;
4104 Serge 1930
	request->head = request_start;
3031 serge 1931
	request->tail = request_ring_position;
4104 Serge 1932
	request->ctx = ring->last_context;
1933
	request->batch_obj = obj;
1934
 
1935
	/* Whilst this request exists, batch_obj will be on the
1936
	 * active_list, and so will hold the active reference. Only when this
1937
	 * request is retired will the the batch_obj be moved onto the
1938
	 * inactive_list and lose its active reference. Hence we do not need
1939
	 * to explicitly hold another reference here.
1940
	 */
1941
 
1942
	if (request->ctx)
1943
		i915_gem_context_reference(request->ctx);
1944
 
3031 serge 1945
    request->emitted_jiffies = GetTimerTicks();
2352 Serge 1946
	was_empty = list_empty(&ring->request_list);
1947
	list_add_tail(&request->list, &ring->request_list);
3031 serge 1948
	request->file_priv = NULL;
2332 Serge 1949
 
3263 Serge 1950
	if (file) {
1951
		struct drm_i915_file_private *file_priv = file->driver_priv;
2332 Serge 1952
 
3263 Serge 1953
		spin_lock(&file_priv->mm.lock);
1954
		request->file_priv = file_priv;
1955
		list_add_tail(&request->client_list,
1956
			      &file_priv->mm.request_list);
1957
		spin_unlock(&file_priv->mm.lock);
1958
	}
1959
 
1960
	trace_i915_gem_request_add(ring, request->seqno);
3031 serge 1961
	ring->outstanding_lazy_request = 0;
2332 Serge 1962
 
4104 Serge 1963
	if (!dev_priv->ums.mm_suspended) {
1964
//		i915_queue_hangcheck(ring->dev);
1965
 
1966
       if (was_empty) {
2360 Serge 1967
           queue_delayed_work(dev_priv->wq,
3482 Serge 1968
					   &dev_priv->mm.retire_work,
1969
					   round_jiffies_up_relative(HZ));
4104 Serge 1970
           intel_mark_busy(dev_priv->dev);
1971
       }
1972
   }
3031 serge 1973
 
1974
	if (out_seqno)
3243 Serge 1975
		*out_seqno = request->seqno;
2352 Serge 1976
	return 0;
1977
}
2332 Serge 1978
 
3263 Serge 1979
static inline void
1980
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1981
{
1982
	struct drm_i915_file_private *file_priv = request->file_priv;
2332 Serge 1983
 
3263 Serge 1984
	if (!file_priv)
1985
		return;
2332 Serge 1986
 
3263 Serge 1987
	spin_lock(&file_priv->mm.lock);
1988
	if (request->file_priv) {
1989
		list_del(&request->client_list);
1990
		request->file_priv = NULL;
1991
	}
1992
	spin_unlock(&file_priv->mm.lock);
1993
}
2332 Serge 1994
 
4104 Serge 1995
static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
1996
				    struct i915_address_space *vm)
1997
{
1998
	if (acthd >= i915_gem_obj_offset(obj, vm) &&
1999
	    acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
2000
		return true;
2001
 
2002
	return false;
2003
}
2004
 
2005
static bool i915_head_inside_request(const u32 acthd_unmasked,
2006
				     const u32 request_start,
2007
				     const u32 request_end)
2008
{
2009
	const u32 acthd = acthd_unmasked & HEAD_ADDR;
2010
 
2011
	if (request_start < request_end) {
2012
		if (acthd >= request_start && acthd < request_end)
2013
			return true;
2014
	} else if (request_start > request_end) {
2015
		if (acthd >= request_start || acthd < request_end)
2016
			return true;
2017
	}
2018
 
2019
	return false;
2020
}
2021
 
2022
static struct i915_address_space *
2023
request_to_vm(struct drm_i915_gem_request *request)
2024
{
2025
	struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2026
	struct i915_address_space *vm;
2027
 
2028
	vm = &dev_priv->gtt.base;
2029
 
2030
	return vm;
2031
}
2032
 
2033
static bool i915_request_guilty(struct drm_i915_gem_request *request,
2034
				const u32 acthd, bool *inside)
2035
{
2036
	/* There is a possibility that unmasked head address
2037
	 * pointing inside the ring, matches the batch_obj address range.
2038
	 * However this is extremely unlikely.
2039
	 */
2040
	if (request->batch_obj) {
2041
		if (i915_head_inside_object(acthd, request->batch_obj,
2042
					    request_to_vm(request))) {
2043
			*inside = true;
2044
			return true;
2045
		}
2046
	}
2047
 
2048
	if (i915_head_inside_request(acthd, request->head, request->tail)) {
2049
		*inside = false;
2050
		return true;
2051
	}
2052
 
2053
	return false;
2054
}
2055
 
2056
static void i915_set_reset_status(struct intel_ring_buffer *ring,
2057
				  struct drm_i915_gem_request *request,
2058
				  u32 acthd)
2059
{
2060
	struct i915_ctx_hang_stats *hs = NULL;
2061
	bool inside, guilty;
2062
	unsigned long offset = 0;
2063
 
2064
	/* Innocent until proven guilty */
2065
	guilty = false;
2066
 
2067
	if (request->batch_obj)
2068
		offset = i915_gem_obj_offset(request->batch_obj,
2069
					     request_to_vm(request));
2070
 
2071
	if (ring->hangcheck.action != HANGCHECK_WAIT &&
2072
	    i915_request_guilty(request, acthd, &inside)) {
2073
		DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2074
			  ring->name,
2075
			  inside ? "inside" : "flushing",
2076
			  offset,
2077
			  request->ctx ? request->ctx->id : 0,
2078
			  acthd);
2079
 
2080
		guilty = true;
2081
	}
2082
 
2083
	/* If contexts are disabled or this is the default context, use
2084
	 * file_priv->reset_state
2085
	 */
2086
	if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2087
		hs = &request->ctx->hang_stats;
2088
	else if (request->file_priv)
2089
		hs = &request->file_priv->hang_stats;
2090
 
2091
	if (hs) {
2092
		if (guilty)
2093
			hs->batch_active++;
2094
		else
2095
			hs->batch_pending++;
2096
	}
2097
}
2098
 
2099
static void i915_gem_free_request(struct drm_i915_gem_request *request)
2100
{
2101
	list_del(&request->list);
2102
	i915_gem_request_remove_from_client(request);
2103
 
2104
	if (request->ctx)
2105
		i915_gem_context_unreference(request->ctx);
2106
 
2107
	kfree(request);
2108
}
2109
 
3031 serge 2110
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2111
				      struct intel_ring_buffer *ring)
2112
{
4104 Serge 2113
	u32 completed_seqno;
2114
	u32 acthd;
2115
 
2116
	acthd = intel_ring_get_active_head(ring);
2117
	completed_seqno = ring->get_seqno(ring, false);
2118
 
3031 serge 2119
	while (!list_empty(&ring->request_list)) {
2120
		struct drm_i915_gem_request *request;
2332 Serge 2121
 
3031 serge 2122
		request = list_first_entry(&ring->request_list,
2123
					   struct drm_i915_gem_request,
2124
					   list);
2332 Serge 2125
 
4104 Serge 2126
		if (request->seqno > completed_seqno)
2127
			i915_set_reset_status(ring, request, acthd);
2128
 
2129
		i915_gem_free_request(request);
3031 serge 2130
	}
2332 Serge 2131
 
3031 serge 2132
	while (!list_empty(&ring->active_list)) {
2133
		struct drm_i915_gem_object *obj;
2332 Serge 2134
 
3031 serge 2135
		obj = list_first_entry(&ring->active_list,
2136
				       struct drm_i915_gem_object,
2137
				       ring_list);
2332 Serge 2138
 
3031 serge 2139
		i915_gem_object_move_to_inactive(obj);
2140
	}
2141
}
2332 Serge 2142
 
3746 Serge 2143
void i915_gem_restore_fences(struct drm_device *dev)
3031 serge 2144
{
2145
	struct drm_i915_private *dev_priv = dev->dev_private;
2146
	int i;
2332 Serge 2147
 
3031 serge 2148
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2149
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
4104 Serge 2150
 
2151
		/*
2152
		 * Commit delayed tiling changes if we have an object still
2153
		 * attached to the fence, otherwise just clear the fence.
2154
		 */
2155
		if (reg->obj) {
2156
			i915_gem_object_update_fence(reg->obj, reg,
2157
						     reg->obj->tiling_mode);
2158
		} else {
2159
			i915_gem_write_fence(dev, i, NULL);
2160
		}
3031 serge 2161
	}
2162
}
2360 Serge 2163
 
3031 serge 2164
void i915_gem_reset(struct drm_device *dev)
2165
{
2166
	struct drm_i915_private *dev_priv = dev->dev_private;
2167
	struct intel_ring_buffer *ring;
2168
	int i;
2360 Serge 2169
 
3031 serge 2170
	for_each_ring(ring, dev_priv, i)
2171
		i915_gem_reset_ring_lists(dev_priv, ring);
2360 Serge 2172
 
3746 Serge 2173
	i915_gem_restore_fences(dev);
3031 serge 2174
}
2360 Serge 2175
 
2352 Serge 2176
/**
2177
 * This function clears the request list as sequence numbers are passed.
2178
 */
3031 serge 2179
void
2352 Serge 2180
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2181
{
2182
	uint32_t seqno;
2332 Serge 2183
 
2352 Serge 2184
	if (list_empty(&ring->request_list))
2185
		return;
2332 Serge 2186
 
2352 Serge 2187
	WARN_ON(i915_verify_lists(ring->dev));
2332 Serge 2188
 
3031 serge 2189
	seqno = ring->get_seqno(ring, true);
2332 Serge 2190
 
2352 Serge 2191
	while (!list_empty(&ring->request_list)) {
2192
		struct drm_i915_gem_request *request;
2332 Serge 2193
 
2352 Serge 2194
		request = list_first_entry(&ring->request_list,
2195
					   struct drm_i915_gem_request,
2196
					   list);
2332 Serge 2197
 
2352 Serge 2198
		if (!i915_seqno_passed(seqno, request->seqno))
2199
			break;
2332 Serge 2200
 
2352 Serge 2201
		trace_i915_gem_request_retire(ring, request->seqno);
3031 serge 2202
		/* We know the GPU must have read the request to have
2203
		 * sent us the seqno + interrupt, so use the position
2204
		 * of tail of the request to update the last known position
2205
		 * of the GPU head.
2206
		 */
2207
		ring->last_retired_head = request->tail;
2332 Serge 2208
 
4104 Serge 2209
		i915_gem_free_request(request);
2352 Serge 2210
	}
2332 Serge 2211
 
2352 Serge 2212
	/* Move any buffers on the active list that are no longer referenced
2213
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
2214
	 */
2215
	while (!list_empty(&ring->active_list)) {
2216
		struct drm_i915_gem_object *obj;
2332 Serge 2217
 
2352 Serge 2218
		obj = list_first_entry(&ring->active_list,
2219
				      struct drm_i915_gem_object,
2220
				      ring_list);
2332 Serge 2221
 
3031 serge 2222
		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2352 Serge 2223
			break;
2332 Serge 2224
 
2352 Serge 2225
			i915_gem_object_move_to_inactive(obj);
2226
	}
2332 Serge 2227
 
2352 Serge 2228
	if (unlikely(ring->trace_irq_seqno &&
2229
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2230
		ring->irq_put(ring);
2231
		ring->trace_irq_seqno = 0;
2232
	}
2332 Serge 2233
 
2352 Serge 2234
	WARN_ON(i915_verify_lists(ring->dev));
2235
}
2332 Serge 2236
 
2352 Serge 2237
void
2238
i915_gem_retire_requests(struct drm_device *dev)
2239
{
2240
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 2241
	struct intel_ring_buffer *ring;
2352 Serge 2242
	int i;
2332 Serge 2243
 
3031 serge 2244
	for_each_ring(ring, dev_priv, i)
2245
		i915_gem_retire_requests_ring(ring);
2352 Serge 2246
}
2247
 
2360 Serge 2248
static void
2249
i915_gem_retire_work_handler(struct work_struct *work)
2250
{
2251
	drm_i915_private_t *dev_priv;
2252
	struct drm_device *dev;
3031 serge 2253
	struct intel_ring_buffer *ring;
2360 Serge 2254
	bool idle;
2255
	int i;
2352 Serge 2256
 
2360 Serge 2257
	dev_priv = container_of(work, drm_i915_private_t,
2258
				mm.retire_work.work);
2259
	dev = dev_priv->dev;
2352 Serge 2260
 
2360 Serge 2261
	/* Come back later if the device is busy... */
2262
	if (!mutex_trylock(&dev->struct_mutex)) {
3482 Serge 2263
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2264
				   round_jiffies_up_relative(HZ));
3243 Serge 2265
        return;
2360 Serge 2266
	}
2352 Serge 2267
 
2360 Serge 2268
	i915_gem_retire_requests(dev);
2352 Serge 2269
 
2360 Serge 2270
	/* Send a periodic flush down the ring so we don't hold onto GEM
2271
	 * objects indefinitely.
2272
	 */
2273
	idle = true;
3031 serge 2274
	for_each_ring(ring, dev_priv, i) {
2275
		if (ring->gpu_caches_dirty)
4104 Serge 2276
			i915_add_request(ring, NULL);
2352 Serge 2277
 
2360 Serge 2278
		idle &= list_empty(&ring->request_list);
2279
	}
2352 Serge 2280
 
4104 Serge 2281
	if (!dev_priv->ums.mm_suspended && !idle)
3482 Serge 2282
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2283
				   round_jiffies_up_relative(HZ));
3031 serge 2284
	if (idle)
2285
		intel_mark_idle(dev);
2360 Serge 2286
 
2287
	mutex_unlock(&dev->struct_mutex);
2288
}
2289
 
2344 Serge 2290
/**
3031 serge 2291
 * Ensures that an object will eventually get non-busy by flushing any required
2292
 * write domains, emitting any outstanding lazy request and retiring and
2293
 * completed requests.
2352 Serge 2294
 */
3031 serge 2295
static int
2296
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2352 Serge 2297
{
3031 serge 2298
	int ret;
2352 Serge 2299
 
3031 serge 2300
	if (obj->active) {
2301
		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2302
		if (ret)
2303
			return ret;
2352 Serge 2304
 
3031 serge 2305
		i915_gem_retire_requests_ring(obj->ring);
2306
	}
2352 Serge 2307
 
3031 serge 2308
	return 0;
2309
}
2352 Serge 2310
 
3243 Serge 2311
/**
2312
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2313
 * @DRM_IOCTL_ARGS: standard ioctl arguments
2314
 *
2315
 * Returns 0 if successful, else an error is returned with the remaining time in
2316
 * the timeout parameter.
2317
 *  -ETIME: object is still busy after timeout
2318
 *  -ERESTARTSYS: signal interrupted the wait
2319
 *  -ENONENT: object doesn't exist
2320
 * Also possible, but rare:
2321
 *  -EAGAIN: GPU wedged
2322
 *  -ENOMEM: damn
2323
 *  -ENODEV: Internal IRQ fail
2324
 *  -E?: The add request failed
2325
 *
2326
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2327
 * non-zero timeout parameter the wait ioctl will wait for the given number of
2328
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2329
 * without holding struct_mutex the object may become re-busied before this
2330
 * function completes. A similar but shorter * race condition exists in the busy
2331
 * ioctl
2332
 */
2352 Serge 2333
 
2334
 
2335
 
2336
 
2337
 
2338
 
2339
 
2340
 
2341
 
3243 Serge 2342
 
2343
 
2344
 
2352 Serge 2345
/**
3031 serge 2346
 * i915_gem_object_sync - sync an object to a ring.
2347
 *
2348
 * @obj: object which may be in use on another ring.
2349
 * @to: ring we wish to use the object on. May be NULL.
2350
 *
2351
 * This code is meant to abstract object synchronization with the GPU.
2352
 * Calling with NULL implies synchronizing the object with the CPU
2353
 * rather than a particular GPU ring.
2354
 *
2355
 * Returns 0 if successful, else propagates up the lower layer error.
2344 Serge 2356
 */
2357
int
3031 serge 2358
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2359
		     struct intel_ring_buffer *to)
2344 Serge 2360
{
3031 serge 2361
	struct intel_ring_buffer *from = obj->ring;
2362
	u32 seqno;
2363
	int ret, idx;
2332 Serge 2364
 
3031 serge 2365
	if (from == NULL || to == from)
2366
		return 0;
2332 Serge 2367
 
3031 serge 2368
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2369
		return i915_gem_object_wait_rendering(obj, false);
2332 Serge 2370
 
3031 serge 2371
	idx = intel_ring_sync_index(from, to);
2372
 
2373
	seqno = obj->last_read_seqno;
2374
	if (seqno <= from->sync_seqno[idx])
2375
		return 0;
2376
 
2377
	ret = i915_gem_check_olr(obj->ring, seqno);
2378
	if (ret)
2379
		return ret;
2380
 
2381
	ret = to->sync_to(to, from, seqno);
2382
	if (!ret)
3243 Serge 2383
		/* We use last_read_seqno because sync_to()
2384
		 * might have just caused seqno wrap under
2385
		 * the radar.
2386
		 */
2387
		from->sync_seqno[idx] = obj->last_read_seqno;
3031 serge 2388
 
2389
	return ret;
2344 Serge 2390
}
2332 Serge 2391
 
2344 Serge 2392
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2393
{
2394
	u32 old_write_domain, old_read_domains;
2332 Serge 2395
 
2344 Serge 2396
	/* Force a pagefault for domain tracking on next user access */
2397
//	i915_gem_release_mmap(obj);
2332 Serge 2398
 
2344 Serge 2399
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2400
		return;
2332 Serge 2401
 
3480 Serge 2402
	/* Wait for any direct GTT access to complete */
2403
	mb();
2404
 
2344 Serge 2405
	old_read_domains = obj->base.read_domains;
2406
	old_write_domain = obj->base.write_domain;
2351 Serge 2407
 
2344 Serge 2408
	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2409
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2332 Serge 2410
 
2351 Serge 2411
	trace_i915_gem_object_change_domain(obj,
2412
					    old_read_domains,
2413
					    old_write_domain);
2344 Serge 2414
}
2332 Serge 2415
 
4104 Serge 2416
int i915_vma_unbind(struct i915_vma *vma)
2344 Serge 2417
{
4104 Serge 2418
	struct drm_i915_gem_object *obj = vma->obj;
3031 serge 2419
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3480 Serge 2420
	int ret;
2332 Serge 2421
 
3263 Serge 2422
    if(obj == get_fb_obj())
2423
        return 0;
2424
 
4104 Serge 2425
	if (list_empty(&vma->vma_link))
2344 Serge 2426
		return 0;
2332 Serge 2427
 
4104 Serge 2428
	if (!drm_mm_node_allocated(&vma->node))
2429
		goto destroy;
2430
 
3031 serge 2431
	if (obj->pin_count)
2432
		return -EBUSY;
2332 Serge 2433
 
3243 Serge 2434
	BUG_ON(obj->pages == NULL);
3031 serge 2435
 
2344 Serge 2436
	ret = i915_gem_object_finish_gpu(obj);
3031 serge 2437
	if (ret)
2344 Serge 2438
		return ret;
2439
	/* Continue on if we fail due to EIO, the GPU is hung so we
2440
	 * should be safe and we need to cleanup or else we might
2441
	 * cause memory corruption through use-after-free.
2442
	 */
2332 Serge 2443
 
2344 Serge 2444
	i915_gem_object_finish_gtt(obj);
2332 Serge 2445
 
2344 Serge 2446
	/* release the fence reg _after_ flushing */
2447
	ret = i915_gem_object_put_fence(obj);
3031 serge 2448
	if (ret)
2344 Serge 2449
		return ret;
2332 Serge 2450
 
4104 Serge 2451
	trace_i915_vma_unbind(vma);
2332 Serge 2452
 
3031 serge 2453
	if (obj->has_global_gtt_mapping)
3243 Serge 2454
        i915_gem_gtt_unbind_object(obj);
3031 serge 2455
	if (obj->has_aliasing_ppgtt_mapping) {
2456
		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2457
		obj->has_aliasing_ppgtt_mapping = 0;
2458
	}
2459
	i915_gem_gtt_finish_object(obj);
4104 Serge 2460
	i915_gem_object_unpin_pages(obj);
2332 Serge 2461
 
4104 Serge 2462
	list_del(&vma->mm_list);
2344 Serge 2463
	/* Avoid an unnecessary call to unbind on rebind. */
4104 Serge 2464
	if (i915_is_ggtt(vma->vm))
2344 Serge 2465
	obj->map_and_fenceable = true;
2332 Serge 2466
 
4104 Serge 2467
	drm_mm_remove_node(&vma->node);
2332 Serge 2468
 
4104 Serge 2469
destroy:
2470
	i915_gem_vma_destroy(vma);
2471
 
2472
	/* Since the unbound list is global, only move to that list if
2473
	 * no more VMAs exist.
2474
	 * NB: Until we have real VMAs there will only ever be one */
2475
	WARN_ON(!list_empty(&obj->vma_list));
2476
	if (list_empty(&obj->vma_list))
2477
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2478
 
2344 Serge 2479
	return 0;
2480
}
2332 Serge 2481
 
4104 Serge 2482
/**
2483
 * Unbinds an object from the global GTT aperture.
2484
 */
2485
int
2486
i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2487
{
2488
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2489
	struct i915_address_space *ggtt = &dev_priv->gtt.base;
2490
 
2491
	if (!i915_gem_obj_ggtt_bound(obj))
2492
		return 0;
2493
 
2494
	if (obj->pin_count)
2495
		return -EBUSY;
2496
 
2497
	BUG_ON(obj->pages == NULL);
2498
 
2499
	return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2500
}
2501
 
3031 serge 2502
int i915_gpu_idle(struct drm_device *dev)
2344 Serge 2503
{
2504
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 2505
	struct intel_ring_buffer *ring;
2344 Serge 2506
	int ret, i;
2332 Serge 2507
 
2344 Serge 2508
	/* Flush everything onto the inactive list. */
3031 serge 2509
	for_each_ring(ring, dev_priv, i) {
2510
		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2344 Serge 2511
		if (ret)
2512
			return ret;
3031 serge 2513
 
3243 Serge 2514
		ret = intel_ring_idle(ring);
3031 serge 2515
		if (ret)
2516
			return ret;
2344 Serge 2517
	}
2332 Serge 2518
 
2344 Serge 2519
	return 0;
2520
}
2332 Serge 2521
 
3480 Serge 2522
static void i965_write_fence_reg(struct drm_device *dev, int reg,
3031 serge 2523
					struct drm_i915_gem_object *obj)
2524
{
2525
	drm_i915_private_t *dev_priv = dev->dev_private;
3480 Serge 2526
	int fence_reg;
2527
	int fence_pitch_shift;
2332 Serge 2528
 
3480 Serge 2529
	if (INTEL_INFO(dev)->gen >= 6) {
2530
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
2531
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2532
	} else {
2533
		fence_reg = FENCE_REG_965_0;
2534
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2535
	}
2332 Serge 2536
 
4104 Serge 2537
	fence_reg += reg * 8;
2538
 
2539
	/* To w/a incoherency with non-atomic 64-bit register updates,
2540
	 * we split the 64-bit update into two 32-bit writes. In order
2541
	 * for a partial fence not to be evaluated between writes, we
2542
	 * precede the update with write to turn off the fence register,
2543
	 * and only enable the fence as the last step.
2544
	 *
2545
	 * For extra levels of paranoia, we make sure each step lands
2546
	 * before applying the next step.
2547
	 */
2548
	I915_WRITE(fence_reg, 0);
2549
	POSTING_READ(fence_reg);
2550
 
3031 serge 2551
	if (obj) {
4104 Serge 2552
		u32 size = i915_gem_obj_ggtt_size(obj);
2553
		uint64_t val;
2332 Serge 2554
 
4104 Serge 2555
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3031 serge 2556
				 0xfffff000) << 32;
4104 Serge 2557
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3480 Serge 2558
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3031 serge 2559
		if (obj->tiling_mode == I915_TILING_Y)
2560
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2561
		val |= I965_FENCE_REG_VALID;
2332 Serge 2562
 
4104 Serge 2563
		I915_WRITE(fence_reg + 4, val >> 32);
2564
		POSTING_READ(fence_reg + 4);
2565
 
2566
		I915_WRITE(fence_reg + 0, val);
3480 Serge 2567
	POSTING_READ(fence_reg);
4104 Serge 2568
	} else {
2569
		I915_WRITE(fence_reg + 4, 0);
2570
		POSTING_READ(fence_reg + 4);
2571
	}
3031 serge 2572
}
2332 Serge 2573
 
3031 serge 2574
static void i915_write_fence_reg(struct drm_device *dev, int reg,
2575
				 struct drm_i915_gem_object *obj)
2576
{
2577
	drm_i915_private_t *dev_priv = dev->dev_private;
2578
	u32 val;
2332 Serge 2579
 
3031 serge 2580
	if (obj) {
4104 Serge 2581
		u32 size = i915_gem_obj_ggtt_size(obj);
3031 serge 2582
		int pitch_val;
2583
		int tile_width;
2332 Serge 2584
 
4104 Serge 2585
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3031 serge 2586
		     (size & -size) != size ||
4104 Serge 2587
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2588
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2589
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2332 Serge 2590
 
3031 serge 2591
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2592
			tile_width = 128;
2593
		else
2594
			tile_width = 512;
2332 Serge 2595
 
3031 serge 2596
		/* Note: pitch better be a power of two tile widths */
2597
		pitch_val = obj->stride / tile_width;
2598
		pitch_val = ffs(pitch_val) - 1;
2332 Serge 2599
 
4104 Serge 2600
		val = i915_gem_obj_ggtt_offset(obj);
3031 serge 2601
		if (obj->tiling_mode == I915_TILING_Y)
2602
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2603
		val |= I915_FENCE_SIZE_BITS(size);
2604
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2605
		val |= I830_FENCE_REG_VALID;
2606
	} else
2607
		val = 0;
2332 Serge 2608
 
3031 serge 2609
	if (reg < 8)
2610
		reg = FENCE_REG_830_0 + reg * 4;
2611
	else
2612
		reg = FENCE_REG_945_8 + (reg - 8) * 4;
2332 Serge 2613
 
3031 serge 2614
	I915_WRITE(reg, val);
2615
	POSTING_READ(reg);
2616
}
2332 Serge 2617
 
3031 serge 2618
static void i830_write_fence_reg(struct drm_device *dev, int reg,
2619
				struct drm_i915_gem_object *obj)
2620
{
2621
	drm_i915_private_t *dev_priv = dev->dev_private;
2622
	uint32_t val;
2344 Serge 2623
 
3031 serge 2624
	if (obj) {
4104 Serge 2625
		u32 size = i915_gem_obj_ggtt_size(obj);
3031 serge 2626
		uint32_t pitch_val;
2344 Serge 2627
 
4104 Serge 2628
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3031 serge 2629
		     (size & -size) != size ||
4104 Serge 2630
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2631
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2632
		     i915_gem_obj_ggtt_offset(obj), size);
2344 Serge 2633
 
3031 serge 2634
		pitch_val = obj->stride / 128;
2635
		pitch_val = ffs(pitch_val) - 1;
2344 Serge 2636
 
4104 Serge 2637
		val = i915_gem_obj_ggtt_offset(obj);
3031 serge 2638
		if (obj->tiling_mode == I915_TILING_Y)
2639
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2640
		val |= I830_FENCE_SIZE_BITS(size);
2641
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2642
		val |= I830_FENCE_REG_VALID;
2643
	} else
2644
		val = 0;
2645
 
2646
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2647
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
2648
}
2649
 
3480 Serge 2650
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2651
{
2652
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2653
}
2654
 
3031 serge 2655
static void i915_gem_write_fence(struct drm_device *dev, int reg,
2656
				 struct drm_i915_gem_object *obj)
2332 Serge 2657
{
3480 Serge 2658
	struct drm_i915_private *dev_priv = dev->dev_private;
2659
 
2660
	/* Ensure that all CPU reads are completed before installing a fence
2661
	 * and all writes before removing the fence.
2662
	 */
2663
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2664
		mb();
2665
 
4104 Serge 2666
	WARN(obj && (!obj->stride || !obj->tiling_mode),
2667
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2668
	     obj->stride, obj->tiling_mode);
2669
 
3031 serge 2670
	switch (INTEL_INFO(dev)->gen) {
2671
	case 7:
3480 Serge 2672
	case 6:
3031 serge 2673
	case 5:
2674
	case 4: i965_write_fence_reg(dev, reg, obj); break;
2675
	case 3: i915_write_fence_reg(dev, reg, obj); break;
2676
	case 2: i830_write_fence_reg(dev, reg, obj); break;
3480 Serge 2677
	default: BUG();
3031 serge 2678
	}
3480 Serge 2679
 
2680
	/* And similarly be paranoid that no direct access to this region
2681
	 * is reordered to before the fence is installed.
2682
	 */
2683
	if (i915_gem_object_needs_mb(obj))
2684
		mb();
2344 Serge 2685
}
2686
 
3031 serge 2687
static inline int fence_number(struct drm_i915_private *dev_priv,
2688
			       struct drm_i915_fence_reg *fence)
2344 Serge 2689
{
3031 serge 2690
	return fence - dev_priv->fence_regs;
2691
}
2332 Serge 2692
 
3031 serge 2693
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2694
					 struct drm_i915_fence_reg *fence,
2695
					 bool enable)
2696
{
4104 Serge 2697
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2698
	int reg = fence_number(dev_priv, fence);
2332 Serge 2699
 
4104 Serge 2700
	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3031 serge 2701
 
2702
	if (enable) {
4104 Serge 2703
		obj->fence_reg = reg;
3031 serge 2704
		fence->obj = obj;
2705
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2706
	} else {
2707
		obj->fence_reg = I915_FENCE_REG_NONE;
2708
		fence->obj = NULL;
2709
		list_del_init(&fence->lru_list);
2344 Serge 2710
	}
4104 Serge 2711
	obj->fence_dirty = false;
3031 serge 2712
}
2344 Serge 2713
 
3031 serge 2714
static int
3480 Serge 2715
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3031 serge 2716
{
2717
	if (obj->last_fenced_seqno) {
2718
		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2352 Serge 2719
			if (ret)
2720
				return ret;
2344 Serge 2721
 
2722
		obj->last_fenced_seqno = 0;
2723
	}
2724
 
3031 serge 2725
	obj->fenced_gpu_access = false;
2332 Serge 2726
	return 0;
2727
}
2728
 
2729
int
2344 Serge 2730
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2332 Serge 2731
{
3031 serge 2732
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3746 Serge 2733
	struct drm_i915_fence_reg *fence;
2332 Serge 2734
	int ret;
2735
 
3480 Serge 2736
	ret = i915_gem_object_wait_fence(obj);
2332 Serge 2737
	if (ret)
2738
		return ret;
2739
 
3031 serge 2740
	if (obj->fence_reg == I915_FENCE_REG_NONE)
2741
		return 0;
2332 Serge 2742
 
3746 Serge 2743
	fence = &dev_priv->fence_regs[obj->fence_reg];
2744
 
3031 serge 2745
	i915_gem_object_fence_lost(obj);
3746 Serge 2746
	i915_gem_object_update_fence(obj, fence, false);
2344 Serge 2747
 
2332 Serge 2748
	return 0;
2749
}
2750
 
3031 serge 2751
static struct drm_i915_fence_reg *
2752
i915_find_fence_reg(struct drm_device *dev)
2753
{
2754
	struct drm_i915_private *dev_priv = dev->dev_private;
2755
	struct drm_i915_fence_reg *reg, *avail;
2756
	int i;
2332 Serge 2757
 
3031 serge 2758
	/* First try to find a free reg */
2759
	avail = NULL;
2760
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2761
		reg = &dev_priv->fence_regs[i];
2762
		if (!reg->obj)
2763
			return reg;
2332 Serge 2764
 
3031 serge 2765
		if (!reg->pin_count)
2766
			avail = reg;
2767
	}
2332 Serge 2768
 
3031 serge 2769
	if (avail == NULL)
2770
		return NULL;
2332 Serge 2771
 
3031 serge 2772
	/* None available, try to steal one or wait for a user to finish */
2773
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2774
		if (reg->pin_count)
2775
			continue;
2332 Serge 2776
 
3031 serge 2777
		return reg;
2778
	}
2332 Serge 2779
 
3031 serge 2780
	return NULL;
2781
}
2332 Serge 2782
 
3031 serge 2783
/**
2784
 * i915_gem_object_get_fence - set up fencing for an object
2785
 * @obj: object to map through a fence reg
2786
 *
2787
 * When mapping objects through the GTT, userspace wants to be able to write
2788
 * to them without having to worry about swizzling if the object is tiled.
2789
 * This function walks the fence regs looking for a free one for @obj,
2790
 * stealing one if it can't find any.
2791
 *
2792
 * It then sets up the reg based on the object's properties: address, pitch
2793
 * and tiling format.
2794
 *
2795
 * For an untiled surface, this removes any existing fence.
2796
 */
2797
int
2798
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2799
{
2800
	struct drm_device *dev = obj->base.dev;
2801
	struct drm_i915_private *dev_priv = dev->dev_private;
2802
	bool enable = obj->tiling_mode != I915_TILING_NONE;
2803
	struct drm_i915_fence_reg *reg;
2804
	int ret;
2332 Serge 2805
 
3031 serge 2806
	/* Have we updated the tiling parameters upon the object and so
2807
	 * will need to serialise the write to the associated fence register?
2808
	 */
2809
	if (obj->fence_dirty) {
3480 Serge 2810
		ret = i915_gem_object_wait_fence(obj);
3031 serge 2811
		if (ret)
2812
			return ret;
2813
	}
2332 Serge 2814
 
3031 serge 2815
	/* Just update our place in the LRU if our fence is getting reused. */
2816
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2817
		reg = &dev_priv->fence_regs[obj->fence_reg];
2818
		if (!obj->fence_dirty) {
2819
			list_move_tail(®->lru_list,
2820
				       &dev_priv->mm.fence_list);
2821
			return 0;
2822
		}
2823
	} else if (enable) {
2824
		reg = i915_find_fence_reg(dev);
2825
		if (reg == NULL)
2826
			return -EDEADLK;
2332 Serge 2827
 
3031 serge 2828
		if (reg->obj) {
2829
			struct drm_i915_gem_object *old = reg->obj;
2332 Serge 2830
 
3480 Serge 2831
			ret = i915_gem_object_wait_fence(old);
3031 serge 2832
			if (ret)
2833
				return ret;
2332 Serge 2834
 
3031 serge 2835
			i915_gem_object_fence_lost(old);
2836
		}
2837
	} else
2838
		return 0;
2332 Serge 2839
 
3031 serge 2840
	i915_gem_object_update_fence(obj, reg, enable);
2332 Serge 2841
 
3031 serge 2842
	return 0;
2843
}
2332 Serge 2844
 
3031 serge 2845
static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2846
				     struct drm_mm_node *gtt_space,
2847
				     unsigned long cache_level)
2848
{
2849
	struct drm_mm_node *other;
2332 Serge 2850
 
3031 serge 2851
	/* On non-LLC machines we have to be careful when putting differing
2852
	 * types of snoopable memory together to avoid the prefetcher
3480 Serge 2853
	 * crossing memory domains and dying.
3031 serge 2854
	 */
2855
	if (HAS_LLC(dev))
2856
		return true;
2332 Serge 2857
 
4104 Serge 2858
	if (!drm_mm_node_allocated(gtt_space))
3031 serge 2859
		return true;
2332 Serge 2860
 
3031 serge 2861
	if (list_empty(>t_space->node_list))
2862
		return true;
2332 Serge 2863
 
3031 serge 2864
	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2865
	if (other->allocated && !other->hole_follows && other->color != cache_level)
2866
		return false;
2344 Serge 2867
 
3031 serge 2868
	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2869
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2870
		return false;
2344 Serge 2871
 
3031 serge 2872
	return true;
2873
}
2344 Serge 2874
 
3031 serge 2875
static void i915_gem_verify_gtt(struct drm_device *dev)
2876
{
2877
#if WATCH_GTT
2878
	struct drm_i915_private *dev_priv = dev->dev_private;
2879
	struct drm_i915_gem_object *obj;
2880
	int err = 0;
2344 Serge 2881
 
4104 Serge 2882
	list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3031 serge 2883
		if (obj->gtt_space == NULL) {
2884
			printk(KERN_ERR "object found on GTT list with no space reserved\n");
2885
			err++;
2886
			continue;
2887
		}
2344 Serge 2888
 
3031 serge 2889
		if (obj->cache_level != obj->gtt_space->color) {
2890
			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
4104 Serge 2891
			       i915_gem_obj_ggtt_offset(obj),
2892
			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3031 serge 2893
			       obj->cache_level,
2894
			       obj->gtt_space->color);
2895
			err++;
2896
			continue;
2897
		}
2344 Serge 2898
 
3031 serge 2899
		if (!i915_gem_valid_gtt_space(dev,
2900
					      obj->gtt_space,
2901
					      obj->cache_level)) {
2902
			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
4104 Serge 2903
			       i915_gem_obj_ggtt_offset(obj),
2904
			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3031 serge 2905
			       obj->cache_level);
2906
			err++;
2907
			continue;
2908
		}
2909
	}
2344 Serge 2910
 
3031 serge 2911
	WARN_ON(err);
2912
#endif
2326 Serge 2913
}
2914
 
2332 Serge 2915
/**
2916
 * Finds free space in the GTT aperture and binds the object there.
2917
 */
2918
static int
4104 Serge 2919
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
2920
			   struct i915_address_space *vm,
2332 Serge 2921
			    unsigned alignment,
3031 serge 2922
			    bool map_and_fenceable,
2923
			    bool nonblocking)
2332 Serge 2924
{
2925
	struct drm_device *dev = obj->base.dev;
2926
	drm_i915_private_t *dev_priv = dev->dev_private;
2927
	u32 size, fence_size, fence_alignment, unfenced_alignment;
4104 Serge 2928
	size_t gtt_max =
2929
		map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
2930
	struct i915_vma *vma;
2332 Serge 2931
	int ret;
2326 Serge 2932
 
2332 Serge 2933
	fence_size = i915_gem_get_gtt_size(dev,
2934
					   obj->base.size,
2935
					   obj->tiling_mode);
2936
	fence_alignment = i915_gem_get_gtt_alignment(dev,
2937
						     obj->base.size,
3480 Serge 2938
						     obj->tiling_mode, true);
2332 Serge 2939
	unfenced_alignment =
3480 Serge 2940
		i915_gem_get_gtt_alignment(dev,
2332 Serge 2941
						    obj->base.size,
3480 Serge 2942
						    obj->tiling_mode, false);
2332 Serge 2943
 
2944
	if (alignment == 0)
2945
		alignment = map_and_fenceable ? fence_alignment :
2946
						unfenced_alignment;
2947
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2948
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2949
		return -EINVAL;
2950
	}
2951
 
2952
	size = map_and_fenceable ? fence_size : obj->base.size;
2953
 
2954
	/* If the object is bigger than the entire aperture, reject it early
2955
	 * before evicting everything in a vain attempt to find space.
2956
	 */
4104 Serge 2957
	if (obj->base.size > gtt_max) {
2958
		DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
2959
			  obj->base.size,
2960
			  map_and_fenceable ? "mappable" : "total",
2961
			  gtt_max);
2332 Serge 2962
		return -E2BIG;
2963
	}
2964
 
3031 serge 2965
	ret = i915_gem_object_get_pages(obj);
2966
	if (ret)
2967
		return ret;
2968
 
3243 Serge 2969
	i915_gem_object_pin_pages(obj);
2970
 
4104 Serge 2971
	BUG_ON(!i915_is_ggtt(vm));
2972
 
2973
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
2974
	if (IS_ERR(vma)) {
2975
		ret = PTR_ERR(vma);
2976
		goto err_unpin;
3243 Serge 2977
	}
2978
 
4104 Serge 2979
	/* For now we only ever use 1 vma per object */
2980
	WARN_ON(!list_is_singular(&obj->vma_list));
2981
 
2982
search_free:
2983
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
2984
						  size, alignment,
2985
						  obj->cache_level, 0, gtt_max,
2986
						  DRM_MM_SEARCH_DEFAULT);
3243 Serge 2987
	if (ret) {
2332 Serge 2988
 
4104 Serge 2989
		goto err_free_vma;
2332 Serge 2990
	}
4104 Serge 2991
	if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
2992
					      obj->cache_level))) {
2993
		ret = -EINVAL;
2994
		goto err_remove_node;
3031 serge 2995
	}
2332 Serge 2996
 
3031 serge 2997
	ret = i915_gem_gtt_prepare_object(obj);
4104 Serge 2998
	if (ret)
2999
		goto err_remove_node;
2332 Serge 3000
 
4104 Serge 3001
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3002
	list_add_tail(&vma->mm_list, &vm->inactive_list);
2332 Serge 3003
 
4104 Serge 3004
	if (i915_is_ggtt(vm)) {
3005
		bool mappable, fenceable;
2332 Serge 3006
 
4104 Serge 3007
		fenceable = (vma->node.size == fence_size &&
3008
			     (vma->node.start & (fence_alignment - 1)) == 0);
2332 Serge 3009
 
4104 Serge 3010
		mappable = (vma->node.start + obj->base.size <=
3011
			    dev_priv->gtt.mappable_end);
2332 Serge 3012
 
3013
	obj->map_and_fenceable = mappable && fenceable;
4104 Serge 3014
	}
2332 Serge 3015
 
4104 Serge 3016
	WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3017
 
3018
	trace_i915_vma_bind(vma, map_and_fenceable);
3031 serge 3019
	i915_gem_verify_gtt(dev);
2332 Serge 3020
	return 0;
4104 Serge 3021
 
3022
err_remove_node:
3023
	drm_mm_remove_node(&vma->node);
3024
err_free_vma:
3025
	i915_gem_vma_destroy(vma);
3026
err_unpin:
3027
	i915_gem_object_unpin_pages(obj);
3028
	return ret;
2332 Serge 3029
}
3030
 
4104 Serge 3031
bool
3032
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3033
			bool force)
2332 Serge 3034
{
3035
	/* If we don't have a page list set up, then we're not pinned
3036
	 * to GPU, and we can ignore the cache flush because it'll happen
3037
	 * again at bind time.
3038
	 */
3243 Serge 3039
	if (obj->pages == NULL)
4104 Serge 3040
		return false;
2332 Serge 3041
 
3480 Serge 3042
	/*
3043
	 * Stolen memory is always coherent with the GPU as it is explicitly
3044
	 * marked as wc by the system, or the system is cache-coherent.
3045
	 */
3046
	if (obj->stolen)
4104 Serge 3047
		return false;
3480 Serge 3048
 
2332 Serge 3049
	/* If the GPU is snooping the contents of the CPU cache,
3050
	 * we do not need to manually clear the CPU cache lines.  However,
3051
	 * the caches are only snooped when the render cache is
3052
	 * flushed/invalidated.  As we always have to emit invalidations
3053
	 * and flushes when moving into and out of the RENDER domain, correct
3054
	 * snooping behaviour occurs naturally as the result of our domain
3055
	 * tracking.
3056
	 */
4104 Serge 3057
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3058
		return false;
3243 Serge 3059
#if 0
2344 Serge 3060
     if(obj->mapped != NULL)
3061
     {
3062
        uint8_t *page_virtual;
3063
        unsigned int i;
2332 Serge 3064
 
2344 Serge 3065
        page_virtual = obj->mapped;
3066
        asm volatile("mfence");
3067
        for (i = 0; i < obj->base.size; i += x86_clflush_size)
3068
            clflush(page_virtual + i);
3069
        asm volatile("mfence");
3070
     }
3071
     else
3072
     {
3073
        uint8_t *page_virtual;
3074
        unsigned int i;
3075
        page_virtual = AllocKernelSpace(obj->base.size);
3076
        if(page_virtual != NULL)
3077
        {
3031 serge 3078
            dma_addr_t *src, *dst;
2344 Serge 3079
            u32 count;
3080
 
3081
#define page_tabs  0xFDC00000      /* really dirty hack */
3082
 
3031 serge 3083
            src =  obj->pages.page;
3084
            dst =  &((dma_addr_t*)page_tabs)[(u32_t)page_virtual >> 12];
2344 Serge 3085
            count = obj->base.size/4096;
3086
 
3087
            while(count--)
3088
            {
3089
                *dst++ = (0xFFFFF000 & *src++) | 0x001 ;
3090
            };
3091
 
3092
            asm volatile("mfence");
3093
            for (i = 0; i < obj->base.size; i += x86_clflush_size)
3094
                clflush(page_virtual + i);
3095
            asm volatile("mfence");
3096
            FreeKernelSpace(page_virtual);
3097
        }
3098
        else
3099
        {
3100
            asm volatile (
3101
            "mfence         \n"
3102
            "wbinvd         \n"                 /* this is really ugly  */
3103
            "mfence");
3104
        }
3105
     }
3243 Serge 3106
#endif
3107
 
4104 Serge 3108
	return true;
2332 Serge 3109
}
3110
 
2344 Serge 3111
/** Flushes the GTT write domain for the object if it's dirty. */
3112
static void
3113
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3114
{
3115
	uint32_t old_write_domain;
2332 Serge 3116
 
2344 Serge 3117
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3118
		return;
2332 Serge 3119
 
2344 Serge 3120
	/* No actual flushing is required for the GTT write domain.  Writes
3121
	 * to it immediately go to main memory as far as we know, so there's
3122
	 * no chipset flush.  It also doesn't land in render cache.
3123
	 *
3124
	 * However, we do have to enforce the order so that all writes through
3125
	 * the GTT land before any writes to the device, such as updates to
3126
	 * the GATT itself.
3127
	 */
3128
	wmb();
2332 Serge 3129
 
2344 Serge 3130
	old_write_domain = obj->base.write_domain;
3131
	obj->base.write_domain = 0;
2332 Serge 3132
 
2351 Serge 3133
	trace_i915_gem_object_change_domain(obj,
3134
					    obj->base.read_domains,
3135
					    old_write_domain);
2344 Serge 3136
}
2332 Serge 3137
 
3138
/** Flushes the CPU write domain for the object if it's dirty. */
2326 Serge 3139
static void
4104 Serge 3140
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3141
				       bool force)
2332 Serge 3142
{
3143
	uint32_t old_write_domain;
3144
 
3145
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3146
		return;
3147
 
4104 Serge 3148
	if (i915_gem_clflush_object(obj, force))
3243 Serge 3149
	i915_gem_chipset_flush(obj->base.dev);
4104 Serge 3150
 
2332 Serge 3151
	old_write_domain = obj->base.write_domain;
3152
	obj->base.write_domain = 0;
3153
 
2351 Serge 3154
	trace_i915_gem_object_change_domain(obj,
3155
					    obj->base.read_domains,
3156
					    old_write_domain);
2332 Serge 3157
}
3158
 
3159
/**
3160
 * Moves a single object to the GTT read, and possibly write domain.
3161
 *
3162
 * This function returns when the move is complete, including waiting on
3163
 * flushes to occur.
3164
 */
3165
int
3166
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3167
{
3031 serge 3168
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2332 Serge 3169
	uint32_t old_write_domain, old_read_domains;
3170
	int ret;
3171
 
3172
	/* Not valid to be called on unbound objects. */
4104 Serge 3173
	if (!i915_gem_obj_bound_any(obj))
2332 Serge 3174
		return -EINVAL;
3175
 
3176
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3177
		return 0;
3178
 
3031 serge 3179
	ret = i915_gem_object_wait_rendering(obj, !write);
2332 Serge 3180
		if (ret)
3181
			return ret;
3182
 
4104 Serge 3183
	i915_gem_object_flush_cpu_write_domain(obj, false);
2332 Serge 3184
 
3480 Serge 3185
	/* Serialise direct access to this object with the barriers for
3186
	 * coherent writes from the GPU, by effectively invalidating the
3187
	 * GTT domain upon first access.
3188
	 */
3189
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3190
		mb();
3191
 
2332 Serge 3192
	old_write_domain = obj->base.write_domain;
3193
	old_read_domains = obj->base.read_domains;
3194
 
3195
	/* It should now be out of any other write domains, and we can update
3196
	 * the domain values for our changes.
3197
	 */
3198
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3199
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3200
	if (write) {
3201
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3202
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3203
		obj->dirty = 1;
3204
	}
3205
 
2351 Serge 3206
	trace_i915_gem_object_change_domain(obj,
3207
					    old_read_domains,
3208
					    old_write_domain);
3209
 
3031 serge 3210
	/* And bump the LRU for this access */
4104 Serge 3211
	if (i915_gem_object_is_inactive(obj)) {
3212
		struct i915_vma *vma = i915_gem_obj_to_vma(obj,
3213
							   &dev_priv->gtt.base);
3214
		if (vma)
3215
			list_move_tail(&vma->mm_list,
3216
				       &dev_priv->gtt.base.inactive_list);
3031 serge 3217
 
4104 Serge 3218
	}
3219
 
2332 Serge 3220
	return 0;
3221
}
3222
 
2335 Serge 3223
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3224
				    enum i915_cache_level cache_level)
3225
{
3031 serge 3226
	struct drm_device *dev = obj->base.dev;
3227
	drm_i915_private_t *dev_priv = dev->dev_private;
4104 Serge 3228
	struct i915_vma *vma;
2335 Serge 3229
	int ret;
2332 Serge 3230
 
2335 Serge 3231
	if (obj->cache_level == cache_level)
3232
		return 0;
2332 Serge 3233
 
2335 Serge 3234
	if (obj->pin_count) {
3235
		DRM_DEBUG("can not change the cache level of pinned objects\n");
3236
		return -EBUSY;
3237
	}
2332 Serge 3238
 
4104 Serge 3239
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
3240
		if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3241
			ret = i915_vma_unbind(vma);
3031 serge 3242
		if (ret)
3243
			return ret;
4104 Serge 3244
 
3245
			break;
3246
		}
3031 serge 3247
	}
3248
 
4104 Serge 3249
	if (i915_gem_obj_bound_any(obj)) {
2335 Serge 3250
		ret = i915_gem_object_finish_gpu(obj);
3251
		if (ret)
3252
			return ret;
2332 Serge 3253
 
2335 Serge 3254
		i915_gem_object_finish_gtt(obj);
2332 Serge 3255
 
2335 Serge 3256
		/* Before SandyBridge, you could not use tiling or fence
3257
		 * registers with snooped memory, so relinquish any fences
3258
		 * currently pointing to our region in the aperture.
3259
		 */
3031 serge 3260
		if (INTEL_INFO(dev)->gen < 6) {
2335 Serge 3261
			ret = i915_gem_object_put_fence(obj);
3262
			if (ret)
3263
				return ret;
3264
		}
2332 Serge 3265
 
3031 serge 3266
		if (obj->has_global_gtt_mapping)
3267
			i915_gem_gtt_bind_object(obj, cache_level);
3268
		if (obj->has_aliasing_ppgtt_mapping)
3269
			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3270
					       obj, cache_level);
2335 Serge 3271
	}
2332 Serge 3272
 
4104 Serge 3273
	list_for_each_entry(vma, &obj->vma_list, vma_link)
3274
		vma->node.color = cache_level;
3275
	obj->cache_level = cache_level;
3276
 
3277
	if (cpu_write_needs_clflush(obj)) {
2335 Serge 3278
		u32 old_read_domains, old_write_domain;
2332 Serge 3279
 
2335 Serge 3280
		/* If we're coming from LLC cached, then we haven't
3281
		 * actually been tracking whether the data is in the
3282
		 * CPU cache or not, since we only allow one bit set
3283
		 * in obj->write_domain and have been skipping the clflushes.
3284
		 * Just set it to the CPU cache for now.
3285
		 */
3286
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2332 Serge 3287
 
2335 Serge 3288
		old_read_domains = obj->base.read_domains;
3289
		old_write_domain = obj->base.write_domain;
2332 Serge 3290
 
2335 Serge 3291
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3292
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2332 Serge 3293
 
2351 Serge 3294
		trace_i915_gem_object_change_domain(obj,
3295
						    old_read_domains,
3296
						    old_write_domain);
2344 Serge 3297
    }
2332 Serge 3298
 
3031 serge 3299
	i915_gem_verify_gtt(dev);
2335 Serge 3300
	return 0;
3301
}
2332 Serge 3302
 
3260 Serge 3303
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3304
			       struct drm_file *file)
3305
{
3306
	struct drm_i915_gem_caching *args = data;
3307
	struct drm_i915_gem_object *obj;
3308
	int ret;
3309
 
3480 Serge 3310
     if(args->handle == -2)
3311
     {
3312
        printf("%s handle %d\n", __FUNCTION__, args->handle);
3313
        return 0;
3314
     }
3315
 
3260 Serge 3316
	ret = i915_mutex_lock_interruptible(dev);
3317
	if (ret)
3318
		return ret;
3319
 
3320
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3321
	if (&obj->base == NULL) {
3322
		ret = -ENOENT;
3323
		goto unlock;
3324
	}
3325
 
4104 Serge 3326
	switch (obj->cache_level) {
3327
	case I915_CACHE_LLC:
3328
	case I915_CACHE_L3_LLC:
3329
		args->caching = I915_CACHING_CACHED;
3330
		break;
3260 Serge 3331
 
4104 Serge 3332
	case I915_CACHE_WT:
3333
		args->caching = I915_CACHING_DISPLAY;
3334
		break;
3335
 
3336
	default:
3337
		args->caching = I915_CACHING_NONE;
3338
		break;
3339
	}
3340
 
3260 Serge 3341
	drm_gem_object_unreference(&obj->base);
3342
unlock:
3343
	mutex_unlock(&dev->struct_mutex);
3344
	return ret;
3345
}
3346
 
3347
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3348
			       struct drm_file *file)
3349
{
3350
	struct drm_i915_gem_caching *args = data;
3351
	struct drm_i915_gem_object *obj;
3352
	enum i915_cache_level level;
3353
	int ret;
3354
 
3480 Serge 3355
     if(args->handle == -2)
3356
     {
3357
        printf("%s handle %d\n", __FUNCTION__, args->handle);
3358
        return 0;
3359
     }
3360
 
3260 Serge 3361
	switch (args->caching) {
3362
	case I915_CACHING_NONE:
3363
		level = I915_CACHE_NONE;
3364
		break;
3365
	case I915_CACHING_CACHED:
3366
		level = I915_CACHE_LLC;
3367
		break;
4104 Serge 3368
	case I915_CACHING_DISPLAY:
3369
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3370
		break;
3260 Serge 3371
	default:
3372
		return -EINVAL;
3373
	}
3374
 
3375
	ret = i915_mutex_lock_interruptible(dev);
3376
	if (ret)
3377
		return ret;
3378
 
3379
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3380
	if (&obj->base == NULL) {
3381
		ret = -ENOENT;
3382
		goto unlock;
3383
	}
3384
 
3385
	ret = i915_gem_object_set_cache_level(obj, level);
3386
 
3387
	drm_gem_object_unreference(&obj->base);
3388
unlock:
3389
	mutex_unlock(&dev->struct_mutex);
3390
	return ret;
3391
}
3392
 
4104 Serge 3393
static bool is_pin_display(struct drm_i915_gem_object *obj)
3394
{
3395
	/* There are 3 sources that pin objects:
3396
	 *   1. The display engine (scanouts, sprites, cursors);
3397
	 *   2. Reservations for execbuffer;
3398
	 *   3. The user.
3399
	 *
3400
	 * We can ignore reservations as we hold the struct_mutex and
3401
	 * are only called outside of the reservation path.  The user
3402
	 * can only increment pin_count once, and so if after
3403
	 * subtracting the potential reference by the user, any pin_count
3404
	 * remains, it must be due to another use by the display engine.
3405
	 */
3406
	return obj->pin_count - !!obj->user_pin_count;
3407
}
3408
 
2335 Serge 3409
/*
3410
 * Prepare buffer for display plane (scanout, cursors, etc).
3411
 * Can be called from an uninterruptible phase (modesetting) and allows
3412
 * any flushes to be pipelined (for pageflips).
3413
 */
3414
int
3415
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3416
				     u32 alignment,
3417
				     struct intel_ring_buffer *pipelined)
3418
{
3419
	u32 old_read_domains, old_write_domain;
3420
	int ret;
2332 Serge 3421
 
3031 serge 3422
	if (pipelined != obj->ring) {
3423
		ret = i915_gem_object_sync(obj, pipelined);
2335 Serge 3424
	if (ret)
3425
		return ret;
3426
	}
2332 Serge 3427
 
4104 Serge 3428
	/* Mark the pin_display early so that we account for the
3429
	 * display coherency whilst setting up the cache domains.
3430
	 */
3431
	obj->pin_display = true;
3432
 
2335 Serge 3433
	/* The display engine is not coherent with the LLC cache on gen6.  As
3434
	 * a result, we make sure that the pinning that is about to occur is
3435
	 * done with uncached PTEs. This is lowest common denominator for all
3436
	 * chipsets.
3437
	 *
3438
	 * However for gen6+, we could do better by using the GFDT bit instead
3439
	 * of uncaching, which would allow us to flush all the LLC-cached data
3440
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3441
	 */
4104 Serge 3442
	ret = i915_gem_object_set_cache_level(obj,
3443
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
2360 Serge 3444
	if (ret)
4104 Serge 3445
		goto err_unpin_display;
2332 Serge 3446
 
2335 Serge 3447
	/* As the user may map the buffer once pinned in the display plane
3448
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3449
	 * always use map_and_fenceable for all scanout buffers.
3450
	 */
4104 Serge 3451
	ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
2335 Serge 3452
	if (ret)
4104 Serge 3453
		goto err_unpin_display;
2332 Serge 3454
 
4104 Serge 3455
	i915_gem_object_flush_cpu_write_domain(obj, true);
2332 Serge 3456
 
2335 Serge 3457
	old_write_domain = obj->base.write_domain;
3458
	old_read_domains = obj->base.read_domains;
2332 Serge 3459
 
2335 Serge 3460
	/* It should now be out of any other write domains, and we can update
3461
	 * the domain values for our changes.
3462
	 */
3031 serge 3463
	obj->base.write_domain = 0;
2335 Serge 3464
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2332 Serge 3465
 
2351 Serge 3466
	trace_i915_gem_object_change_domain(obj,
3467
					    old_read_domains,
3468
					    old_write_domain);
2332 Serge 3469
 
2335 Serge 3470
	return 0;
4104 Serge 3471
 
3472
err_unpin_display:
3473
	obj->pin_display = is_pin_display(obj);
3474
	return ret;
2335 Serge 3475
}
2332 Serge 3476
 
4104 Serge 3477
void
3478
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3479
{
3480
	i915_gem_object_unpin(obj);
3481
	obj->pin_display = is_pin_display(obj);
3482
}
3483
 
2344 Serge 3484
int
3485
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3486
{
3487
	int ret;
2332 Serge 3488
 
2344 Serge 3489
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3490
		return 0;
2332 Serge 3491
 
3031 serge 3492
	ret = i915_gem_object_wait_rendering(obj, false);
3243 Serge 3493
    if (ret)
3494
        return ret;
2332 Serge 3495
 
2344 Serge 3496
	/* Ensure that we invalidate the GPU's caches and TLBs. */
3497
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3031 serge 3498
	return 0;
2344 Serge 3499
}
2332 Serge 3500
 
2344 Serge 3501
/**
3502
 * Moves a single object to the CPU read, and possibly write domain.
3503
 *
3504
 * This function returns when the move is complete, including waiting on
3505
 * flushes to occur.
3506
 */
3031 serge 3507
int
2344 Serge 3508
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3509
{
3510
	uint32_t old_write_domain, old_read_domains;
3511
	int ret;
2332 Serge 3512
 
2344 Serge 3513
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3514
		return 0;
2332 Serge 3515
 
3031 serge 3516
	ret = i915_gem_object_wait_rendering(obj, !write);
2344 Serge 3517
	if (ret)
3518
		return ret;
2332 Serge 3519
 
2344 Serge 3520
	i915_gem_object_flush_gtt_write_domain(obj);
2332 Serge 3521
 
2344 Serge 3522
	old_write_domain = obj->base.write_domain;
3523
	old_read_domains = obj->base.read_domains;
2332 Serge 3524
 
2344 Serge 3525
	/* Flush the CPU cache if it's still invalid. */
3526
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4104 Serge 3527
		i915_gem_clflush_object(obj, false);
2332 Serge 3528
 
2344 Serge 3529
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3530
	}
2332 Serge 3531
 
2344 Serge 3532
	/* It should now be out of any other write domains, and we can update
3533
	 * the domain values for our changes.
3534
	 */
3535
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2332 Serge 3536
 
2344 Serge 3537
	/* If we're writing through the CPU, then the GPU read domains will
3538
	 * need to be invalidated at next use.
3539
	 */
3540
	if (write) {
3541
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3542
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3543
	}
2332 Serge 3544
 
2351 Serge 3545
	trace_i915_gem_object_change_domain(obj,
3546
					    old_read_domains,
3547
					    old_write_domain);
2332 Serge 3548
 
2344 Serge 3549
	return 0;
3550
}
2332 Serge 3551
 
3031 serge 3552
/* Throttle our rendering by waiting until the ring has completed our requests
3553
 * emitted over 20 msec ago.
2344 Serge 3554
 *
3031 serge 3555
 * Note that if we were to use the current jiffies each time around the loop,
3556
 * we wouldn't escape the function with any frames outstanding if the time to
3557
 * render a frame was over 20ms.
3558
 *
3559
 * This should get us reasonable parallelism between CPU and GPU but also
3560
 * relatively low latency when blocking on a particular request to finish.
2344 Serge 3561
 */
3031 serge 3562
static int
3563
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
2344 Serge 3564
{
3031 serge 3565
	struct drm_i915_private *dev_priv = dev->dev_private;
3566
	struct drm_i915_file_private *file_priv = file->driver_priv;
3263 Serge 3567
	unsigned long recent_enough = GetTimerTicks() - msecs_to_jiffies(20);
3031 serge 3568
	struct drm_i915_gem_request *request;
3569
	struct intel_ring_buffer *ring = NULL;
3480 Serge 3570
	unsigned reset_counter;
3031 serge 3571
	u32 seqno = 0;
3572
	int ret;
2332 Serge 3573
 
3480 Serge 3574
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3575
	if (ret)
3576
		return ret;
2332 Serge 3577
 
3480 Serge 3578
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3579
	if (ret)
3580
		return ret;
3581
 
3031 serge 3582
	spin_lock(&file_priv->mm.lock);
3583
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3584
		if (time_after_eq(request->emitted_jiffies, recent_enough))
3585
			break;
2332 Serge 3586
 
3031 serge 3587
		ring = request->ring;
3588
		seqno = request->seqno;
3589
	}
3480 Serge 3590
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3031 serge 3591
	spin_unlock(&file_priv->mm.lock);
2332 Serge 3592
 
3031 serge 3593
	if (seqno == 0)
3594
		return 0;
2332 Serge 3595
 
3480 Serge 3596
	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3031 serge 3597
	if (ret == 0)
3598
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
2332 Serge 3599
 
3031 serge 3600
	return ret;
2352 Serge 3601
}
2332 Serge 3602
 
3603
int
3604
i915_gem_object_pin(struct drm_i915_gem_object *obj,
4104 Serge 3605
		    struct i915_address_space *vm,
2332 Serge 3606
		    uint32_t alignment,
3031 serge 3607
		    bool map_and_fenceable,
3608
		    bool nonblocking)
2332 Serge 3609
{
4104 Serge 3610
	struct i915_vma *vma;
2332 Serge 3611
	int ret;
3612
 
3031 serge 3613
	if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3614
		return -EBUSY;
2332 Serge 3615
 
4104 Serge 3616
	WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3617
 
3618
	vma = i915_gem_obj_to_vma(obj, vm);
3619
 
3620
	if (vma) {
3621
		if ((alignment &&
3622
		     vma->node.start & (alignment - 1)) ||
2332 Serge 3623
		    (map_and_fenceable && !obj->map_and_fenceable)) {
3624
			WARN(obj->pin_count,
3625
			     "bo is already pinned with incorrect alignment:"
4104 Serge 3626
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
2332 Serge 3627
			     " obj->map_and_fenceable=%d\n",
4104 Serge 3628
			     i915_gem_obj_offset(obj, vm), alignment,
2332 Serge 3629
			     map_and_fenceable,
3630
			     obj->map_and_fenceable);
4104 Serge 3631
			ret = i915_vma_unbind(vma);
2332 Serge 3632
			if (ret)
3633
				return ret;
3634
		}
3635
	}
3636
 
4104 Serge 3637
	if (!i915_gem_obj_bound(obj, vm)) {
3243 Serge 3638
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3639
 
4104 Serge 3640
		ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3031 serge 3641
						  map_and_fenceable,
3642
						  nonblocking);
2332 Serge 3643
		if (ret)
3644
			return ret;
3243 Serge 3645
 
3646
		if (!dev_priv->mm.aliasing_ppgtt)
3647
			i915_gem_gtt_bind_object(obj, obj->cache_level);
2332 Serge 3648
	}
3649
 
3031 serge 3650
	if (!obj->has_global_gtt_mapping && map_and_fenceable)
3651
		i915_gem_gtt_bind_object(obj, obj->cache_level);
3652
 
3653
	obj->pin_count++;
2332 Serge 3654
	obj->pin_mappable |= map_and_fenceable;
3655
 
3656
	return 0;
3657
}
3658
 
2344 Serge 3659
void
3660
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3661
{
3662
	BUG_ON(obj->pin_count == 0);
4104 Serge 3663
	BUG_ON(!i915_gem_obj_bound_any(obj));
2332 Serge 3664
 
3031 serge 3665
	if (--obj->pin_count == 0)
2344 Serge 3666
		obj->pin_mappable = false;
3667
}
2332 Serge 3668
 
3031 serge 3669
int
3670
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3671
		   struct drm_file *file)
3672
{
3673
	struct drm_i915_gem_pin *args = data;
3674
	struct drm_i915_gem_object *obj;
3675
	int ret;
2332 Serge 3676
 
3480 Serge 3677
     if(args->handle == -2)
3678
     {
3679
        printf("%s handle %d\n", __FUNCTION__, args->handle);
3680
        return 0;
3681
     }
3682
 
3031 serge 3683
	ret = i915_mutex_lock_interruptible(dev);
3684
	if (ret)
3685
		return ret;
2332 Serge 3686
 
3031 serge 3687
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3688
	if (&obj->base == NULL) {
3689
		ret = -ENOENT;
3690
		goto unlock;
3691
	}
2332 Serge 3692
 
3031 serge 3693
	if (obj->madv != I915_MADV_WILLNEED) {
3694
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3695
		ret = -EINVAL;
3696
		goto out;
3697
	}
2332 Serge 3698
 
3031 serge 3699
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
3700
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3701
			  args->handle);
3702
		ret = -EINVAL;
3703
		goto out;
3704
	}
2332 Serge 3705
 
3243 Serge 3706
	if (obj->user_pin_count == 0) {
4104 Serge 3707
		ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3031 serge 3708
		if (ret)
3709
			goto out;
3710
	}
2332 Serge 3711
 
3243 Serge 3712
	obj->user_pin_count++;
3713
	obj->pin_filp = file;
3714
 
4104 Serge 3715
	args->offset = i915_gem_obj_ggtt_offset(obj);
3031 serge 3716
out:
3717
	drm_gem_object_unreference(&obj->base);
3718
unlock:
3719
	mutex_unlock(&dev->struct_mutex);
3720
	return ret;
3721
}
2332 Serge 3722
 
3255 Serge 3723
#if 0
3724
 
3031 serge 3725
int
3726
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3727
		     struct drm_file *file)
3728
{
3729
	struct drm_i915_gem_pin *args = data;
3730
	struct drm_i915_gem_object *obj;
3731
	int ret;
2332 Serge 3732
 
3031 serge 3733
	ret = i915_mutex_lock_interruptible(dev);
3734
	if (ret)
3735
		return ret;
2332 Serge 3736
 
3031 serge 3737
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3738
	if (&obj->base == NULL) {
3739
		ret = -ENOENT;
3740
		goto unlock;
3741
	}
2332 Serge 3742
 
3031 serge 3743
	if (obj->pin_filp != file) {
3744
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3745
			  args->handle);
3746
		ret = -EINVAL;
3747
		goto out;
3748
	}
3749
	obj->user_pin_count--;
3750
	if (obj->user_pin_count == 0) {
3751
		obj->pin_filp = NULL;
3752
		i915_gem_object_unpin(obj);
3753
	}
2332 Serge 3754
 
3031 serge 3755
out:
3756
	drm_gem_object_unreference(&obj->base);
3757
unlock:
3758
	mutex_unlock(&dev->struct_mutex);
3759
	return ret;
3760
}
2332 Serge 3761
 
3260 Serge 3762
#endif
3763
 
3031 serge 3764
int
3765
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3766
		    struct drm_file *file)
3767
{
3768
	struct drm_i915_gem_busy *args = data;
3769
	struct drm_i915_gem_object *obj;
3770
	int ret;
2332 Serge 3771
 
3031 serge 3772
	ret = i915_mutex_lock_interruptible(dev);
3773
	if (ret)
3774
		return ret;
2332 Serge 3775
 
3480 Serge 3776
    if(args->handle == -2)
3777
    {
3778
        obj = get_fb_obj();
3779
        drm_gem_object_reference(&obj->base);
3780
    }
3781
    else
4104 Serge 3782
        obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3031 serge 3783
	if (&obj->base == NULL) {
3784
		ret = -ENOENT;
3785
		goto unlock;
3786
	}
2332 Serge 3787
 
3031 serge 3788
	/* Count all active objects as busy, even if they are currently not used
3789
	 * by the gpu. Users of this interface expect objects to eventually
3790
	 * become non-busy without any further actions, therefore emit any
3791
	 * necessary flushes here.
3792
	 */
3793
	ret = i915_gem_object_flush_active(obj);
2332 Serge 3794
 
3031 serge 3795
	args->busy = obj->active;
3796
	if (obj->ring) {
3797
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
3798
		args->busy |= intel_ring_flag(obj->ring) << 16;
3799
	}
2332 Serge 3800
 
3031 serge 3801
	drm_gem_object_unreference(&obj->base);
3802
unlock:
3803
	mutex_unlock(&dev->struct_mutex);
3804
	return ret;
3805
}
2332 Serge 3806
 
3031 serge 3807
int
3808
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3809
			struct drm_file *file_priv)
3810
{
3811
	return i915_gem_ring_throttle(dev, file_priv);
3812
}
2332 Serge 3813
 
3263 Serge 3814
#if 0
3815
 
3031 serge 3816
int
3817
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3818
		       struct drm_file *file_priv)
3819
{
3820
	struct drm_i915_gem_madvise *args = data;
3821
	struct drm_i915_gem_object *obj;
3822
	int ret;
2332 Serge 3823
 
3031 serge 3824
	switch (args->madv) {
3825
	case I915_MADV_DONTNEED:
3826
	case I915_MADV_WILLNEED:
3827
	    break;
3828
	default:
3829
	    return -EINVAL;
3830
	}
2332 Serge 3831
 
3031 serge 3832
	ret = i915_mutex_lock_interruptible(dev);
3833
	if (ret)
3834
		return ret;
2332 Serge 3835
 
3031 serge 3836
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3837
	if (&obj->base == NULL) {
3838
		ret = -ENOENT;
3839
		goto unlock;
3840
	}
2332 Serge 3841
 
3031 serge 3842
	if (obj->pin_count) {
3843
		ret = -EINVAL;
3844
		goto out;
3845
	}
2332 Serge 3846
 
3031 serge 3847
	if (obj->madv != __I915_MADV_PURGED)
3848
		obj->madv = args->madv;
2332 Serge 3849
 
3031 serge 3850
	/* if the object is no longer attached, discard its backing storage */
3851
	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3852
		i915_gem_object_truncate(obj);
2332 Serge 3853
 
3031 serge 3854
	args->retained = obj->madv != __I915_MADV_PURGED;
2332 Serge 3855
 
3031 serge 3856
out:
3857
	drm_gem_object_unreference(&obj->base);
3858
unlock:
3859
	mutex_unlock(&dev->struct_mutex);
3860
	return ret;
3861
}
3862
#endif
2332 Serge 3863
 
3031 serge 3864
void i915_gem_object_init(struct drm_i915_gem_object *obj,
3865
			  const struct drm_i915_gem_object_ops *ops)
3866
{
4104 Serge 3867
	INIT_LIST_HEAD(&obj->global_list);
3031 serge 3868
	INIT_LIST_HEAD(&obj->ring_list);
3869
	INIT_LIST_HEAD(&obj->exec_list);
4104 Serge 3870
	INIT_LIST_HEAD(&obj->obj_exec_link);
3871
	INIT_LIST_HEAD(&obj->vma_list);
2332 Serge 3872
 
3031 serge 3873
	obj->ops = ops;
3874
 
3875
	obj->fence_reg = I915_FENCE_REG_NONE;
3876
	obj->madv = I915_MADV_WILLNEED;
3877
	/* Avoid an unnecessary call to unbind on the first bind. */
3878
	obj->map_and_fenceable = true;
3879
 
3880
	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3881
}
3882
 
3883
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3884
	.get_pages = i915_gem_object_get_pages_gtt,
3885
	.put_pages = i915_gem_object_put_pages_gtt,
3886
};
3887
 
2332 Serge 3888
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3889
						  size_t size)
3890
{
3891
	struct drm_i915_gem_object *obj;
3031 serge 3892
	struct address_space *mapping;
3480 Serge 3893
	gfp_t mask;
2340 Serge 3894
 
3746 Serge 3895
	obj = i915_gem_object_alloc(dev);
2332 Serge 3896
	if (obj == NULL)
3746 Serge 3897
    {
3898
        FAIL();
2332 Serge 3899
		return NULL;
3746 Serge 3900
    };
2332 Serge 3901
 
3902
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4104 Serge 3903
		i915_gem_object_free(obj);
2332 Serge 3904
		return NULL;
3905
	}
3906
 
3907
 
3031 serge 3908
	i915_gem_object_init(obj, &i915_gem_object_ops);
2332 Serge 3909
 
3910
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3911
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3912
 
3031 serge 3913
	if (HAS_LLC(dev)) {
3914
		/* On some devices, we can have the GPU use the LLC (the CPU
2332 Serge 3915
		 * cache) for about a 10% performance improvement
3916
		 * compared to uncached.  Graphics requests other than
3917
		 * display scanout are coherent with the CPU in
3918
		 * accessing this cache.  This means in this mode we
3919
		 * don't need to clflush on the CPU side, and on the
3920
		 * GPU side we only need to flush internal caches to
3921
		 * get data visible to the CPU.
3922
		 *
3923
		 * However, we maintain the display planes as UC, and so
3924
		 * need to rebind when first used as such.
3925
		 */
3926
		obj->cache_level = I915_CACHE_LLC;
3927
	} else
3928
		obj->cache_level = I915_CACHE_NONE;
3929
 
3930
	return obj;
3931
}
3932
 
2344 Serge 3933
int i915_gem_init_object(struct drm_gem_object *obj)
3934
{
3935
	BUG();
2332 Serge 3936
 
2344 Serge 3937
	return 0;
3938
}
2332 Serge 3939
 
3031 serge 3940
void i915_gem_free_object(struct drm_gem_object *gem_obj)
2344 Serge 3941
{
3031 serge 3942
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
2344 Serge 3943
	struct drm_device *dev = obj->base.dev;
3944
	drm_i915_private_t *dev_priv = dev->dev_private;
4104 Serge 3945
	struct i915_vma *vma, *next;
2332 Serge 3946
 
3031 serge 3947
	trace_i915_gem_object_destroy(obj);
3948
 
3949
 
3950
	obj->pin_count = 0;
4104 Serge 3951
	/* NB: 0 or 1 elements */
3952
	WARN_ON(!list_empty(&obj->vma_list) &&
3953
		!list_is_singular(&obj->vma_list));
3954
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3955
		int ret = i915_vma_unbind(vma);
3956
		if (WARN_ON(ret == -ERESTARTSYS)) {
3031 serge 3957
		bool was_interruptible;
3958
 
3959
		was_interruptible = dev_priv->mm.interruptible;
3960
		dev_priv->mm.interruptible = false;
3961
 
4104 Serge 3962
			WARN_ON(i915_vma_unbind(vma));
3031 serge 3963
 
3964
		dev_priv->mm.interruptible = was_interruptible;
2344 Serge 3965
	}
4104 Serge 3966
	}
2332 Serge 3967
 
4104 Serge 3968
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
3969
	 * before progressing. */
3970
	if (obj->stolen)
3971
		i915_gem_object_unpin_pages(obj);
3972
 
3973
	if (WARN_ON(obj->pages_pin_count))
3031 serge 3974
	obj->pages_pin_count = 0;
3975
	i915_gem_object_put_pages(obj);
3976
//   i915_gem_object_free_mmap_offset(obj);
4104 Serge 3977
	i915_gem_object_release_stolen(obj);
2332 Serge 3978
 
3243 Serge 3979
	BUG_ON(obj->pages);
2332 Serge 3980
 
3031 serge 3981
 
3290 Serge 3982
    if(obj->base.filp != NULL)
3983
    {
3298 Serge 3984
//        printf("filp %p\n", obj->base.filp);
3290 Serge 3985
        shmem_file_delete(obj->base.filp);
3986
    }
3987
 
2344 Serge 3988
	drm_gem_object_release(&obj->base);
3989
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
2332 Serge 3990
 
2344 Serge 3991
	kfree(obj->bit_17);
4104 Serge 3992
	i915_gem_object_free(obj);
2344 Serge 3993
}
2332 Serge 3994
 
4104 Serge 3995
struct i915_vma *i915_gem_vma_create(struct drm_i915_gem_object *obj,
3996
				     struct i915_address_space *vm)
3997
{
3998
	struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
3999
	if (vma == NULL)
4000
		return ERR_PTR(-ENOMEM);
4001
 
4002
	INIT_LIST_HEAD(&vma->vma_link);
4003
	INIT_LIST_HEAD(&vma->mm_list);
4004
	INIT_LIST_HEAD(&vma->exec_list);
4005
	vma->vm = vm;
4006
	vma->obj = obj;
4007
 
4008
	/* Keep GGTT vmas first to make debug easier */
4009
	if (i915_is_ggtt(vm))
4010
		list_add(&vma->vma_link, &obj->vma_list);
4011
	else
4012
		list_add_tail(&vma->vma_link, &obj->vma_list);
4013
 
4014
	return vma;
4015
}
4016
 
4017
void i915_gem_vma_destroy(struct i915_vma *vma)
4018
{
4019
	WARN_ON(vma->node.allocated);
4020
	list_del(&vma->vma_link);
4021
	kfree(vma);
4022
}
4023
 
3031 serge 4024
#if 0
4025
int
4026
i915_gem_idle(struct drm_device *dev)
2344 Serge 4027
{
3031 serge 4028
	drm_i915_private_t *dev_priv = dev->dev_private;
4029
	int ret;
2332 Serge 4030
 
4104 Serge 4031
	if (dev_priv->ums.mm_suspended) {
3031 serge 4032
		mutex_unlock(&dev->struct_mutex);
4033
		return 0;
4034
	}
2332 Serge 4035
 
3031 serge 4036
	ret = i915_gpu_idle(dev);
4037
	if (ret) {
4038
		mutex_unlock(&dev->struct_mutex);
4039
		return ret;
4040
	}
4041
	i915_gem_retire_requests(dev);
4042
 
3480 Serge 4043
	/* Under UMS, be paranoid and evict. */
4044
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4045
		i915_gem_evict_everything(dev);
4046
 
4047
	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
3031 serge 4048
 
4049
	i915_kernel_lost_context(dev);
4050
	i915_gem_cleanup_ringbuffer(dev);
4051
 
4052
	/* Cancel the retire work handler, which should be idle now. */
3263 Serge 4053
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3031 serge 4054
 
4055
	return 0;
2344 Serge 4056
}
3031 serge 4057
#endif
2332 Serge 4058
 
3031 serge 4059
void i915_gem_l3_remap(struct drm_device *dev)
4060
{
4061
	drm_i915_private_t *dev_priv = dev->dev_private;
4062
	u32 misccpctl;
4063
	int i;
2332 Serge 4064
 
3480 Serge 4065
	if (!HAS_L3_GPU_CACHE(dev))
3031 serge 4066
		return;
2332 Serge 4067
 
3243 Serge 4068
	if (!dev_priv->l3_parity.remap_info)
3031 serge 4069
		return;
2332 Serge 4070
 
3031 serge 4071
	misccpctl = I915_READ(GEN7_MISCCPCTL);
4072
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4073
	POSTING_READ(GEN7_MISCCPCTL);
2332 Serge 4074
 
3031 serge 4075
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4076
		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3243 Serge 4077
		if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3031 serge 4078
			DRM_DEBUG("0x%x was already programmed to %x\n",
4079
				  GEN7_L3LOG_BASE + i, remap);
3243 Serge 4080
		if (remap && !dev_priv->l3_parity.remap_info[i/4])
3031 serge 4081
			DRM_DEBUG_DRIVER("Clearing remapped register\n");
3243 Serge 4082
		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3031 serge 4083
	}
2332 Serge 4084
 
3031 serge 4085
	/* Make sure all the writes land before disabling dop clock gating */
4086
	POSTING_READ(GEN7_L3LOG_BASE);
2332 Serge 4087
 
3031 serge 4088
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4089
}
2332 Serge 4090
 
3031 serge 4091
void i915_gem_init_swizzling(struct drm_device *dev)
4092
{
4093
	drm_i915_private_t *dev_priv = dev->dev_private;
2332 Serge 4094
 
3031 serge 4095
	if (INTEL_INFO(dev)->gen < 5 ||
4096
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4097
		return;
2332 Serge 4098
 
3031 serge 4099
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4100
				 DISP_TILE_SURFACE_SWIZZLING);
2332 Serge 4101
 
3031 serge 4102
	if (IS_GEN5(dev))
4103
		return;
2344 Serge 4104
 
3031 serge 4105
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4106
	if (IS_GEN6(dev))
4107
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3480 Serge 4108
	else if (IS_GEN7(dev))
4109
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3031 serge 4110
	else
3480 Serge 4111
		BUG();
3031 serge 4112
}
4113
 
4114
static bool
4115
intel_enable_blt(struct drm_device *dev)
4116
{
4117
	if (!HAS_BLT(dev))
4118
		return false;
4119
 
4120
	/* The blitter was dysfunctional on early prototypes */
4121
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4122
		DRM_INFO("BLT not supported on this pre-production hardware;"
4123
			 " graphics performance will be degraded.\n");
4124
		return false;
4125
	}
4126
 
4127
	return true;
4128
}
4129
 
3480 Serge 4130
static int i915_gem_init_rings(struct drm_device *dev)
2332 Serge 4131
{
3480 Serge 4132
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 4133
	int ret;
2351 Serge 4134
 
2332 Serge 4135
	ret = intel_init_render_ring_buffer(dev);
4136
	if (ret)
4137
		return ret;
4138
 
4139
    if (HAS_BSD(dev)) {
4140
		ret = intel_init_bsd_ring_buffer(dev);
4141
		if (ret)
4142
			goto cleanup_render_ring;
4143
	}
4144
 
3031 serge 4145
	if (intel_enable_blt(dev)) {
2332 Serge 4146
		ret = intel_init_blt_ring_buffer(dev);
4147
		if (ret)
4148
			goto cleanup_bsd_ring;
4149
	}
4150
 
4104 Serge 4151
	if (HAS_VEBOX(dev)) {
4152
		ret = intel_init_vebox_ring_buffer(dev);
4153
		if (ret)
4154
			goto cleanup_blt_ring;
4155
	}
4156
 
4157
 
3480 Serge 4158
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4159
	if (ret)
4104 Serge 4160
		goto cleanup_vebox_ring;
2351 Serge 4161
 
2332 Serge 4162
	return 0;
4163
 
4104 Serge 4164
cleanup_vebox_ring:
4165
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
3480 Serge 4166
cleanup_blt_ring:
4167
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
2332 Serge 4168
cleanup_bsd_ring:
4169
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4170
cleanup_render_ring:
4171
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3480 Serge 4172
 
2332 Serge 4173
	return ret;
4174
}
4175
 
3480 Serge 4176
int
4177
i915_gem_init_hw(struct drm_device *dev)
3031 serge 4178
{
3480 Serge 4179
	drm_i915_private_t *dev_priv = dev->dev_private;
4180
	int ret;
3031 serge 4181
 
3480 Serge 4182
	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4183
		return -EIO;
3031 serge 4184
 
4104 Serge 4185
	if (dev_priv->ellc_size)
4186
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
3480 Serge 4187
 
3746 Serge 4188
	if (HAS_PCH_NOP(dev)) {
4189
		u32 temp = I915_READ(GEN7_MSG_CTL);
4190
		temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4191
		I915_WRITE(GEN7_MSG_CTL, temp);
4192
	}
4193
 
3480 Serge 4194
	i915_gem_l3_remap(dev);
4195
 
4196
	i915_gem_init_swizzling(dev);
4197
 
4198
	ret = i915_gem_init_rings(dev);
4199
	if (ret)
4200
		return ret;
4201
 
4202
	/*
4203
	 * XXX: There was some w/a described somewhere suggesting loading
4204
	 * contexts before PPGTT.
4205
	 */
4206
	i915_gem_context_init(dev);
3746 Serge 4207
	if (dev_priv->mm.aliasing_ppgtt) {
4208
		ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4209
		if (ret) {
4210
			i915_gem_cleanup_aliasing_ppgtt(dev);
4211
			DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4212
		}
4213
	}
3480 Serge 4214
 
4215
	return 0;
3031 serge 4216
}
4217
 
4218
#define LFB_SIZE 0xC00000
4219
 
4220
int i915_gem_init(struct drm_device *dev)
4221
{
4222
	struct drm_i915_private *dev_priv = dev->dev_private;
4223
	int ret;
4224
 
4225
	mutex_lock(&dev->struct_mutex);
3746 Serge 4226
 
4227
	if (IS_VALLEYVIEW(dev)) {
4228
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4229
		I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4230
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4231
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4232
	}
4233
 
3480 Serge 4234
	i915_gem_init_global_gtt(dev);
3746 Serge 4235
 
3031 serge 4236
	ret = i915_gem_init_hw(dev);
4237
	mutex_unlock(&dev->struct_mutex);
4238
	if (ret) {
4239
		i915_gem_cleanup_aliasing_ppgtt(dev);
4240
		return ret;
4241
	}
4242
 
3746 Serge 4243
 
3031 serge 4244
    return 0;
4245
}
4246
 
2332 Serge 4247
void
4248
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4249
{
4250
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 4251
	struct intel_ring_buffer *ring;
2332 Serge 4252
	int i;
4253
 
3031 serge 4254
	for_each_ring(ring, dev_priv, i)
4255
		intel_cleanup_ring_buffer(ring);
2332 Serge 4256
}
4257
 
3031 serge 4258
#if 0
4259
 
2332 Serge 4260
int
4261
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4262
		       struct drm_file *file_priv)
4263
{
4104 Serge 4264
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 4265
	int ret;
2332 Serge 4266
 
4267
	if (drm_core_check_feature(dev, DRIVER_MODESET))
4268
		return 0;
4269
 
3480 Serge 4270
	if (i915_reset_in_progress(&dev_priv->gpu_error)) {
2332 Serge 4271
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3480 Serge 4272
		atomic_set(&dev_priv->gpu_error.reset_counter, 0);
2332 Serge 4273
	}
4274
 
4275
	mutex_lock(&dev->struct_mutex);
4104 Serge 4276
	dev_priv->ums.mm_suspended = 0;
2332 Serge 4277
 
3031 serge 4278
	ret = i915_gem_init_hw(dev);
2332 Serge 4279
	if (ret != 0) {
4280
		mutex_unlock(&dev->struct_mutex);
4281
		return ret;
4282
	}
4283
 
4104 Serge 4284
	BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
2332 Serge 4285
	mutex_unlock(&dev->struct_mutex);
4286
 
4287
	ret = drm_irq_install(dev);
4288
	if (ret)
4289
		goto cleanup_ringbuffer;
4290
 
4291
	return 0;
4292
 
4293
cleanup_ringbuffer:
4294
	mutex_lock(&dev->struct_mutex);
4295
	i915_gem_cleanup_ringbuffer(dev);
4104 Serge 4296
	dev_priv->ums.mm_suspended = 1;
2332 Serge 4297
	mutex_unlock(&dev->struct_mutex);
4298
 
4299
	return ret;
4300
}
4301
 
4302
int
4303
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4304
		       struct drm_file *file_priv)
4305
{
4104 Serge 4306
	struct drm_i915_private *dev_priv = dev->dev_private;
4307
	int ret;
4308
 
2332 Serge 4309
	if (drm_core_check_feature(dev, DRIVER_MODESET))
4310
		return 0;
4311
 
4312
	drm_irq_uninstall(dev);
4104 Serge 4313
 
4314
	mutex_lock(&dev->struct_mutex);
4315
	ret =  i915_gem_idle(dev);
4316
 
4317
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
4318
	 * We need to replace this with a semaphore, or something.
4319
	 * And not confound ums.mm_suspended!
4320
	 */
4321
	if (ret != 0)
4322
		dev_priv->ums.mm_suspended = 1;
4323
	mutex_unlock(&dev->struct_mutex);
4324
 
4325
	return ret;
2332 Serge 4326
}
4327
 
4328
void
4329
i915_gem_lastclose(struct drm_device *dev)
4330
{
4331
	int ret;
4332
 
4333
	if (drm_core_check_feature(dev, DRIVER_MODESET))
4334
		return;
4335
 
4104 Serge 4336
	mutex_lock(&dev->struct_mutex);
2332 Serge 4337
	ret = i915_gem_idle(dev);
4338
	if (ret)
4339
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4104 Serge 4340
	mutex_unlock(&dev->struct_mutex);
2332 Serge 4341
}
4342
#endif
4343
 
4344
static void
2326 Serge 4345
init_ring_lists(struct intel_ring_buffer *ring)
4346
{
4347
    INIT_LIST_HEAD(&ring->active_list);
4348
    INIT_LIST_HEAD(&ring->request_list);
4349
}
4350
 
4104 Serge 4351
static void i915_init_vm(struct drm_i915_private *dev_priv,
4352
			 struct i915_address_space *vm)
4353
{
4354
	vm->dev = dev_priv->dev;
4355
	INIT_LIST_HEAD(&vm->active_list);
4356
	INIT_LIST_HEAD(&vm->inactive_list);
4357
	INIT_LIST_HEAD(&vm->global_link);
4358
	list_add(&vm->global_link, &dev_priv->vm_list);
4359
}
4360
 
2326 Serge 4361
void
4362
i915_gem_load(struct drm_device *dev)
4363
{
3480 Serge 4364
	drm_i915_private_t *dev_priv = dev->dev_private;
2326 Serge 4365
    int i;
4366
 
4104 Serge 4367
	INIT_LIST_HEAD(&dev_priv->vm_list);
4368
	i915_init_vm(dev_priv, &dev_priv->gtt.base);
4369
 
3031 serge 4370
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4371
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
2326 Serge 4372
    INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4373
    for (i = 0; i < I915_NUM_RINGS; i++)
4374
        init_ring_lists(&dev_priv->ring[i]);
2342 Serge 4375
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
2326 Serge 4376
        INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
2360 Serge 4377
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4378
			  i915_gem_retire_work_handler);
3480 Serge 4379
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
2326 Serge 4380
 
4381
    /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4382
    if (IS_GEN3(dev)) {
3031 serge 4383
		I915_WRITE(MI_ARB_STATE,
4384
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
2326 Serge 4385
    }
4386
 
4387
    dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4388
 
3746 Serge 4389
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4390
		dev_priv->num_fence_regs = 32;
4391
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
2326 Serge 4392
        dev_priv->num_fence_regs = 16;
4393
    else
4394
        dev_priv->num_fence_regs = 8;
4395
 
4396
    /* Initialize fence registers to zero */
3746 Serge 4397
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4398
	i915_gem_restore_fences(dev);
2326 Serge 4399
 
4400
    i915_gem_detect_bit_6_swizzle(dev);
4401
 
4402
    dev_priv->mm.interruptible = true;
4403
 
4404
}
4405
 
4104 Serge 4406
#if 0
4407
/*
4408
 * Create a physically contiguous memory object for this object
4409
 * e.g. for cursor + overlay regs
4410
 */
4411
static int i915_gem_init_phys_object(struct drm_device *dev,
4412
				     int id, int size, int align)
4413
{
4414
	drm_i915_private_t *dev_priv = dev->dev_private;
4415
	struct drm_i915_gem_phys_object *phys_obj;
4416
	int ret;
2326 Serge 4417
 
4104 Serge 4418
	if (dev_priv->mm.phys_objs[id - 1] || !size)
4419
		return 0;
4420
 
4421
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4422
	if (!phys_obj)
4423
		return -ENOMEM;
4424
 
4425
	phys_obj->id = id;
4426
 
4427
	phys_obj->handle = drm_pci_alloc(dev, size, align);
4428
	if (!phys_obj->handle) {
4429
		ret = -ENOMEM;
4430
		goto kfree_obj;
4431
	}
4432
#ifdef CONFIG_X86
4433
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4434
#endif
4435
 
4436
	dev_priv->mm.phys_objs[id - 1] = phys_obj;
4437
 
4438
	return 0;
4439
kfree_obj:
4440
	kfree(phys_obj);
4441
	return ret;
4442
}
4443
 
4444
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4445
{
4446
	drm_i915_private_t *dev_priv = dev->dev_private;
4447
	struct drm_i915_gem_phys_object *phys_obj;
4448
 
4449
	if (!dev_priv->mm.phys_objs[id - 1])
4450
		return;
4451
 
4452
	phys_obj = dev_priv->mm.phys_objs[id - 1];
4453
	if (phys_obj->cur_obj) {
4454
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4455
	}
4456
 
4457
#ifdef CONFIG_X86
4458
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4459
#endif
4460
	drm_pci_free(dev, phys_obj->handle);
4461
	kfree(phys_obj);
4462
	dev_priv->mm.phys_objs[id - 1] = NULL;
4463
}
4464
 
4465
void i915_gem_free_all_phys_object(struct drm_device *dev)
4466
{
4467
	int i;
4468
 
4469
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4470
		i915_gem_free_phys_object(dev, i);
4471
}
4472
 
4473
void i915_gem_detach_phys_object(struct drm_device *dev,
4474
				 struct drm_i915_gem_object *obj)
4475
{
4476
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4477
	char *vaddr;
4478
	int i;
4479
	int page_count;
4480
 
4481
	if (!obj->phys_obj)
4482
		return;
4483
	vaddr = obj->phys_obj->handle->vaddr;
4484
 
4485
	page_count = obj->base.size / PAGE_SIZE;
4486
	for (i = 0; i < page_count; i++) {
4487
		struct page *page = shmem_read_mapping_page(mapping, i);
4488
		if (!IS_ERR(page)) {
4489
			char *dst = kmap_atomic(page);
4490
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4491
			kunmap_atomic(dst);
4492
 
4493
			drm_clflush_pages(&page, 1);
4494
 
4495
			set_page_dirty(page);
4496
			mark_page_accessed(page);
4497
			page_cache_release(page);
4498
		}
4499
	}
4500
	i915_gem_chipset_flush(dev);
4501
 
4502
	obj->phys_obj->cur_obj = NULL;
4503
	obj->phys_obj = NULL;
4504
}
4505
 
4506
int
4507
i915_gem_attach_phys_object(struct drm_device *dev,
4508
			    struct drm_i915_gem_object *obj,
4509
			    int id,
4510
			    int align)
4511
{
4512
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4513
	drm_i915_private_t *dev_priv = dev->dev_private;
4514
	int ret = 0;
4515
	int page_count;
4516
	int i;
4517
 
4518
	if (id > I915_MAX_PHYS_OBJECT)
4519
		return -EINVAL;
4520
 
4521
	if (obj->phys_obj) {
4522
		if (obj->phys_obj->id == id)
4523
			return 0;
4524
		i915_gem_detach_phys_object(dev, obj);
4525
	}
4526
 
4527
	/* create a new object */
4528
	if (!dev_priv->mm.phys_objs[id - 1]) {
4529
		ret = i915_gem_init_phys_object(dev, id,
4530
						obj->base.size, align);
4531
		if (ret) {
4532
			DRM_ERROR("failed to init phys object %d size: %zu\n",
4533
				  id, obj->base.size);
4534
			return ret;
4535
		}
4536
	}
4537
 
4538
	/* bind to the object */
4539
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4540
	obj->phys_obj->cur_obj = obj;
4541
 
4542
	page_count = obj->base.size / PAGE_SIZE;
4543
 
4544
	for (i = 0; i < page_count; i++) {
4545
		struct page *page;
4546
		char *dst, *src;
4547
 
4548
		page = shmem_read_mapping_page(mapping, i);
4549
		if (IS_ERR(page))
4550
			return PTR_ERR(page);
4551
 
4552
		src = kmap_atomic(page);
4553
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4554
		memcpy(dst, src, PAGE_SIZE);
4555
		kunmap_atomic(src);
4556
 
4557
		mark_page_accessed(page);
4558
		page_cache_release(page);
4559
	}
4560
 
4561
	return 0;
4562
}
4563
 
4564
static int
4565
i915_gem_phys_pwrite(struct drm_device *dev,
4566
		     struct drm_i915_gem_object *obj,
4567
		     struct drm_i915_gem_pwrite *args,
4568
		     struct drm_file *file_priv)
4569
{
4570
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4571
	char __user *user_data = to_user_ptr(args->data_ptr);
4572
 
4573
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4574
		unsigned long unwritten;
4575
 
4576
		/* The physical object once assigned is fixed for the lifetime
4577
		 * of the obj, so we can safely drop the lock and continue
4578
		 * to access vaddr.
4579
		 */
4580
		mutex_unlock(&dev->struct_mutex);
4581
		unwritten = copy_from_user(vaddr, user_data, args->size);
4582
		mutex_lock(&dev->struct_mutex);
4583
		if (unwritten)
4584
			return -EFAULT;
4585
	}
4586
 
4587
	i915_gem_chipset_flush(dev);
4588
	return 0;
4589
}
4590
 
4591
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4592
{
4593
	struct drm_i915_file_private *file_priv = file->driver_priv;
4594
 
4595
	/* Clean up our request list when the client is going away, so that
4596
	 * later retire_requests won't dereference our soon-to-be-gone
4597
	 * file_priv.
4598
	 */
4599
	spin_lock(&file_priv->mm.lock);
4600
	while (!list_empty(&file_priv->mm.request_list)) {
4601
		struct drm_i915_gem_request *request;
4602
 
4603
		request = list_first_entry(&file_priv->mm.request_list,
4604
					   struct drm_i915_gem_request,
4605
					   client_list);
4606
		list_del(&request->client_list);
4607
		request->file_priv = NULL;
4608
	}
4609
	spin_unlock(&file_priv->mm.lock);
4610
}
4611
#endif
4612
 
4613
static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4614
{
4615
	if (!mutex_is_locked(mutex))
4616
		return false;
4617
 
4618
#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4619
	return mutex->owner == task;
4620
#else
4621
	/* Since UP may be pre-empted, we cannot assume that we own the lock */
4622
	return false;
4623
#endif
4624
}
4625
 
4626
/* All the new VM stuff */
4627
unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4628
				  struct i915_address_space *vm)
4629
{
4630
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4631
	struct i915_vma *vma;
4632
 
4633
	if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4634
		vm = &dev_priv->gtt.base;
4635
 
4636
	BUG_ON(list_empty(&o->vma_list));
4637
	list_for_each_entry(vma, &o->vma_list, vma_link) {
4638
		if (vma->vm == vm)
4639
			return vma->node.start;
4640
 
4641
	}
4642
    return 0; //-1;
4643
}
4644
 
4645
bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4646
			struct i915_address_space *vm)
4647
{
4648
	struct i915_vma *vma;
4649
 
4650
	list_for_each_entry(vma, &o->vma_list, vma_link)
4651
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4652
			return true;
4653
 
4654
	return false;
4655
}
4656
 
4657
bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4658
{
4659
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4660
	struct i915_address_space *vm;
4661
 
4662
	list_for_each_entry(vm, &dev_priv->vm_list, global_link)
4663
		if (i915_gem_obj_bound(o, vm))
4664
			return true;
4665
 
4666
	return false;
4667
}
4668
 
4669
unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4670
				struct i915_address_space *vm)
4671
{
4672
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4673
	struct i915_vma *vma;
4674
 
4675
	if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4676
		vm = &dev_priv->gtt.base;
4677
 
4678
	BUG_ON(list_empty(&o->vma_list));
4679
 
4680
	list_for_each_entry(vma, &o->vma_list, vma_link)
4681
		if (vma->vm == vm)
4682
			return vma->node.size;
4683
 
4684
	return 0;
4685
}
4686
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4687
				     struct i915_address_space *vm)
4688
{
4689
	struct i915_vma *vma;
4690
	list_for_each_entry(vma, &obj->vma_list, vma_link)
4691
		if (vma->vm == vm)
4692
			return vma;
4693
 
4694
	return NULL;
4695
}
4696
 
4697
struct i915_vma *
4698
i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4699
				  struct i915_address_space *vm)
4700
{
4701
	struct i915_vma *vma;
4702
 
4703
	vma = i915_gem_obj_to_vma(obj, vm);
4704
	if (!vma)
4705
		vma = i915_gem_vma_create(obj, vm);
4706
 
4707
	return vma;
4708
}