Subversion Repositories Kolibri OS

Rev

Rev 3482 | Rev 4104 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2326 Serge 1
/*
2
 * Copyright © 2008 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Eric Anholt 
25
 *
26
 */
27
 
3031 serge 28
#include 
29
#include 
2326 Serge 30
#include "i915_drv.h"
2351 Serge 31
#include "i915_trace.h"
2326 Serge 32
#include "intel_drv.h"
3260 Serge 33
#include 
2330 Serge 34
#include 
2326 Serge 35
//#include 
3746 Serge 36
#include 
2326 Serge 37
#include 
38
 
2344 Serge 39
extern int x86_clflush_size;
2332 Serge 40
 
3263 Serge 41
#define PROT_READ       0x1             /* page can be read */
42
#define PROT_WRITE      0x2             /* page can be written */
43
#define MAP_SHARED      0x01            /* Share changes */
44
 
2344 Serge 45
#undef mb
46
#undef rmb
47
#undef wmb
48
#define mb() asm volatile("mfence")
49
#define rmb() asm volatile ("lfence")
50
#define wmb() asm volatile ("sfence")
51
 
3266 Serge 52
struct drm_i915_gem_object *get_fb_obj();
53
 
3263 Serge 54
unsigned long vm_mmap(struct file *file, unsigned long addr,
55
         unsigned long len, unsigned long prot,
56
         unsigned long flag, unsigned long offset);
57
 
2344 Serge 58
static inline void clflush(volatile void *__p)
59
{
60
    asm volatile("clflush %0" : "+m" (*(volatile char*)__p));
61
}
62
 
2332 Serge 63
#define MAX_ERRNO       4095
64
 
65
#define IS_ERR_VALUE(x) unlikely((x) >= (unsigned long)-MAX_ERRNO)
66
 
67
 
2326 Serge 68
#define I915_EXEC_CONSTANTS_MASK        (3<<6)
69
#define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
70
#define I915_EXEC_CONSTANTS_ABSOLUTE    (1<<6)
71
#define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
72
 
2332 Serge 73
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
74
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
75
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
76
						    unsigned alignment,
3031 serge 77
						    bool map_and_fenceable,
78
						    bool nonblocking);
2332 Serge 79
static int i915_gem_phys_pwrite(struct drm_device *dev,
80
				struct drm_i915_gem_object *obj,
81
				struct drm_i915_gem_pwrite *args,
82
				struct drm_file *file);
2326 Serge 83
 
3031 serge 84
static void i915_gem_write_fence(struct drm_device *dev, int reg,
85
				 struct drm_i915_gem_object *obj);
86
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
87
					 struct drm_i915_fence_reg *fence,
88
					 bool enable);
2332 Serge 89
 
3031 serge 90
static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
91
static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
92
static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
93
 
94
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
95
{
96
	if (obj->tiling_mode)
97
		i915_gem_release_mmap(obj);
98
 
99
	/* As we do not have an associated fence register, we will force
100
	 * a tiling change if we ever need to acquire one.
101
	 */
102
	obj->fence_dirty = false;
103
	obj->fence_reg = I915_FENCE_REG_NONE;
104
}
105
 
2332 Serge 106
/* some bookkeeping */
107
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
108
				  size_t size)
109
{
110
	dev_priv->mm.object_count++;
111
	dev_priv->mm.object_memory += size;
112
}
113
 
114
static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
115
				     size_t size)
116
{
117
	dev_priv->mm.object_count--;
118
	dev_priv->mm.object_memory -= size;
119
}
120
 
121
static int
3480 Serge 122
i915_gem_wait_for_error(struct i915_gpu_error *error)
2332 Serge 123
{
124
	int ret;
125
 
3480 Serge 126
#define EXIT_COND (!i915_reset_in_progress(error))
127
	if (EXIT_COND)
2332 Serge 128
		return 0;
3255 Serge 129
#if 0
3031 serge 130
	/*
131
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
132
	 * userspace. If it takes that long something really bad is going on and
133
	 * we should simply try to bail out and fail as gracefully as possible.
134
	 */
3480 Serge 135
	ret = wait_event_interruptible_timeout(error->reset_queue,
136
					       EXIT_COND,
137
					       10*HZ);
3031 serge 138
	if (ret == 0) {
139
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
140
		return -EIO;
141
	} else if (ret < 0) {
2332 Serge 142
		return ret;
3031 serge 143
	}
2332 Serge 144
 
3255 Serge 145
#endif
3480 Serge 146
#undef EXIT_COND
3255 Serge 147
 
2332 Serge 148
	return 0;
149
}
150
 
151
int i915_mutex_lock_interruptible(struct drm_device *dev)
152
{
3480 Serge 153
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 154
	int ret;
155
 
3480 Serge 156
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
2332 Serge 157
	if (ret)
158
		return ret;
159
 
3480 Serge 160
	ret = mutex_lock_interruptible(&dev->struct_mutex);
161
	if (ret)
162
		return ret;
2332 Serge 163
 
164
	WARN_ON(i915_verify_lists(dev));
165
	return 0;
166
}
167
 
168
static inline bool
169
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
170
{
3031 serge 171
	return obj->gtt_space && !obj->active;
2332 Serge 172
}
173
 
174
 
175
#if 0
176
 
177
int
178
i915_gem_init_ioctl(struct drm_device *dev, void *data,
179
		    struct drm_file *file)
180
{
3480 Serge 181
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 182
	struct drm_i915_gem_init *args = data;
183
 
3031 serge 184
	if (drm_core_check_feature(dev, DRIVER_MODESET))
185
		return -ENODEV;
186
 
2332 Serge 187
	if (args->gtt_start >= args->gtt_end ||
188
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
189
		return -EINVAL;
190
 
3031 serge 191
	/* GEM with user mode setting was never supported on ilk and later. */
192
	if (INTEL_INFO(dev)->gen >= 5)
193
		return -ENODEV;
194
 
2332 Serge 195
	mutex_lock(&dev->struct_mutex);
3480 Serge 196
	i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
197
				  args->gtt_end);
198
	dev_priv->gtt.mappable_end = args->gtt_end;
2332 Serge 199
	mutex_unlock(&dev->struct_mutex);
200
 
201
	return 0;
202
}
2351 Serge 203
#endif
2332 Serge 204
 
205
int
206
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
207
			    struct drm_file *file)
208
{
209
	struct drm_i915_private *dev_priv = dev->dev_private;
210
	struct drm_i915_gem_get_aperture *args = data;
211
	struct drm_i915_gem_object *obj;
212
	size_t pinned;
213
 
214
	pinned = 0;
215
	mutex_lock(&dev->struct_mutex);
3031 serge 216
	list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
217
		if (obj->pin_count)
2332 Serge 218
		pinned += obj->gtt_space->size;
219
	mutex_unlock(&dev->struct_mutex);
220
 
3480 Serge 221
	args->aper_size = dev_priv->gtt.total;
2342 Serge 222
	args->aper_available_size = args->aper_size - pinned;
2332 Serge 223
 
224
	return 0;
225
}
226
 
3480 Serge 227
void *i915_gem_object_alloc(struct drm_device *dev)
228
{
229
	struct drm_i915_private *dev_priv = dev->dev_private;
230
	return kmalloc(sizeof(struct drm_i915_gem_object), 0);
231
}
232
 
233
void i915_gem_object_free(struct drm_i915_gem_object *obj)
234
{
235
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
236
	kfree(obj);
237
}
238
 
3031 serge 239
static int
240
i915_gem_create(struct drm_file *file,
2332 Serge 241
		struct drm_device *dev,
242
		uint64_t size,
243
		uint32_t *handle_p)
244
{
245
	struct drm_i915_gem_object *obj;
246
	int ret;
247
	u32 handle;
248
 
249
	size = roundup(size, PAGE_SIZE);
2342 Serge 250
	if (size == 0)
251
		return -EINVAL;
2332 Serge 252
 
253
	/* Allocate the new object */
254
	obj = i915_gem_alloc_object(dev, size);
255
	if (obj == NULL)
256
		return -ENOMEM;
257
 
258
	ret = drm_gem_handle_create(file, &obj->base, &handle);
259
	if (ret) {
260
		drm_gem_object_release(&obj->base);
261
		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
262
		kfree(obj);
263
		return ret;
264
	}
265
 
266
	/* drop reference from allocate - handle holds it now */
267
	drm_gem_object_unreference(&obj->base);
2351 Serge 268
	trace_i915_gem_object_create(obj);
2332 Serge 269
 
270
	*handle_p = handle;
271
	return 0;
272
}
273
 
274
int
275
i915_gem_dumb_create(struct drm_file *file,
276
		     struct drm_device *dev,
277
		     struct drm_mode_create_dumb *args)
278
{
279
	/* have to work out size/pitch and return them */
280
	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
281
	args->size = args->pitch * args->height;
282
	return i915_gem_create(file, dev,
283
			       args->size, &args->handle);
284
}
285
 
286
int i915_gem_dumb_destroy(struct drm_file *file,
287
			  struct drm_device *dev,
288
			  uint32_t handle)
289
{
290
	return drm_gem_handle_delete(file, handle);
291
}
292
 
2326 Serge 293
/**
2332 Serge 294
 * Creates a new mm object and returns a handle to it.
295
 */
296
int
297
i915_gem_create_ioctl(struct drm_device *dev, void *data,
298
		      struct drm_file *file)
299
{
300
	struct drm_i915_gem_create *args = data;
3031 serge 301
 
2332 Serge 302
	return i915_gem_create(file, dev,
303
			       args->size, &args->handle);
304
}
305
 
306
 
3260 Serge 307
#if 0
2332 Serge 308
 
3031 serge 309
static inline int
310
__copy_to_user_swizzled(char __user *cpu_vaddr,
311
			const char *gpu_vaddr, int gpu_offset,
2332 Serge 312
		int length)
313
{
3031 serge 314
	int ret, cpu_offset = 0;
2332 Serge 315
 
3031 serge 316
	while (length > 0) {
317
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
318
		int this_length = min(cacheline_end - gpu_offset, length);
319
		int swizzled_gpu_offset = gpu_offset ^ 64;
2332 Serge 320
 
3031 serge 321
		ret = __copy_to_user(cpu_vaddr + cpu_offset,
322
				     gpu_vaddr + swizzled_gpu_offset,
323
				     this_length);
324
		if (ret)
325
			return ret + length;
2332 Serge 326
 
3031 serge 327
		cpu_offset += this_length;
328
		gpu_offset += this_length;
329
		length -= this_length;
330
	}
331
 
332
	return 0;
2332 Serge 333
}
334
 
3031 serge 335
static inline int
336
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
337
			  const char __user *cpu_vaddr,
338
			  int length)
2332 Serge 339
{
3031 serge 340
	int ret, cpu_offset = 0;
2332 Serge 341
 
342
	while (length > 0) {
343
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
344
		int this_length = min(cacheline_end - gpu_offset, length);
345
		int swizzled_gpu_offset = gpu_offset ^ 64;
346
 
3031 serge 347
		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
2332 Serge 348
			       cpu_vaddr + cpu_offset,
349
			       this_length);
3031 serge 350
		if (ret)
351
			return ret + length;
352
 
2332 Serge 353
		cpu_offset += this_length;
354
		gpu_offset += this_length;
355
		length -= this_length;
356
	}
357
 
3031 serge 358
	return 0;
2332 Serge 359
}
360
 
3031 serge 361
/* Per-page copy function for the shmem pread fastpath.
362
 * Flushes invalid cachelines before reading the target if
363
 * needs_clflush is set. */
2332 Serge 364
static int
3031 serge 365
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
366
		 char __user *user_data,
367
		 bool page_do_bit17_swizzling, bool needs_clflush)
368
{
369
		char *vaddr;
370
		int ret;
371
 
372
	if (unlikely(page_do_bit17_swizzling))
373
		return -EINVAL;
374
 
375
		vaddr = kmap_atomic(page);
376
	if (needs_clflush)
377
		drm_clflush_virt_range(vaddr + shmem_page_offset,
378
				       page_length);
379
		ret = __copy_to_user_inatomic(user_data,
380
				      vaddr + shmem_page_offset,
381
					      page_length);
382
		kunmap_atomic(vaddr);
383
 
384
	return ret ? -EFAULT : 0;
385
}
386
 
387
static void
388
shmem_clflush_swizzled_range(char *addr, unsigned long length,
389
			     bool swizzled)
390
{
391
	if (unlikely(swizzled)) {
392
		unsigned long start = (unsigned long) addr;
393
		unsigned long end = (unsigned long) addr + length;
394
 
395
		/* For swizzling simply ensure that we always flush both
396
		 * channels. Lame, but simple and it works. Swizzled
397
		 * pwrite/pread is far from a hotpath - current userspace
398
		 * doesn't use it at all. */
399
		start = round_down(start, 128);
400
		end = round_up(end, 128);
401
 
402
		drm_clflush_virt_range((void *)start, end - start);
403
	} else {
404
		drm_clflush_virt_range(addr, length);
405
	}
406
 
407
}
408
 
409
/* Only difference to the fast-path function is that this can handle bit17
410
 * and uses non-atomic copy and kmap functions. */
411
static int
412
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
413
		 char __user *user_data,
414
		 bool page_do_bit17_swizzling, bool needs_clflush)
415
{
416
	char *vaddr;
417
	int ret;
418
 
419
	vaddr = kmap(page);
420
	if (needs_clflush)
421
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
422
					     page_length,
423
					     page_do_bit17_swizzling);
424
 
425
	if (page_do_bit17_swizzling)
426
		ret = __copy_to_user_swizzled(user_data,
427
					      vaddr, shmem_page_offset,
428
					      page_length);
429
	else
430
		ret = __copy_to_user(user_data,
431
				     vaddr + shmem_page_offset,
432
				     page_length);
433
	kunmap(page);
434
 
435
	return ret ? - EFAULT : 0;
436
}
437
 
438
static int
439
i915_gem_shmem_pread(struct drm_device *dev,
2332 Serge 440
			  struct drm_i915_gem_object *obj,
441
			  struct drm_i915_gem_pread *args,
442
			  struct drm_file *file)
443
{
3031 serge 444
	char __user *user_data;
2332 Serge 445
	ssize_t remain;
446
	loff_t offset;
3031 serge 447
	int shmem_page_offset, page_length, ret = 0;
448
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
449
	int prefaulted = 0;
450
	int needs_clflush = 0;
3746 Serge 451
	struct sg_page_iter sg_iter;
2332 Serge 452
 
3746 Serge 453
	user_data = to_user_ptr(args->data_ptr);
2332 Serge 454
	remain = args->size;
455
 
3031 serge 456
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
457
 
458
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
459
		/* If we're not in the cpu read domain, set ourself into the gtt
460
		 * read domain and manually flush cachelines (if required). This
461
		 * optimizes for the case when the gpu will dirty the data
462
		 * anyway again before the next pread happens. */
463
		if (obj->cache_level == I915_CACHE_NONE)
464
			needs_clflush = 1;
465
		if (obj->gtt_space) {
466
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
467
			if (ret)
468
				return ret;
469
		}
470
	}
471
 
472
	ret = i915_gem_object_get_pages(obj);
473
	if (ret)
474
		return ret;
475
 
476
	i915_gem_object_pin_pages(obj);
477
 
2332 Serge 478
	offset = args->offset;
479
 
3746 Serge 480
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
481
			 offset >> PAGE_SHIFT) {
482
		struct page *page = sg_page_iter_page(&sg_iter);
2332 Serge 483
 
3031 serge 484
		if (remain <= 0)
485
			break;
486
 
2332 Serge 487
		/* Operation in this page
488
		 *
3031 serge 489
		 * shmem_page_offset = offset within page in shmem file
2332 Serge 490
		 * page_length = bytes to copy for this page
491
		 */
3031 serge 492
		shmem_page_offset = offset_in_page(offset);
2332 Serge 493
		page_length = remain;
3031 serge 494
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
495
			page_length = PAGE_SIZE - shmem_page_offset;
2332 Serge 496
 
3031 serge 497
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
498
			(page_to_phys(page) & (1 << 17)) != 0;
2332 Serge 499
 
3031 serge 500
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
501
				       user_data, page_do_bit17_swizzling,
502
				       needs_clflush);
503
		if (ret == 0)
504
			goto next_page;
2332 Serge 505
 
3031 serge 506
		mutex_unlock(&dev->struct_mutex);
507
 
508
		if (!prefaulted) {
509
			ret = fault_in_multipages_writeable(user_data, remain);
510
			/* Userspace is tricking us, but we've already clobbered
511
			 * its pages with the prefault and promised to write the
512
			 * data up to the first fault. Hence ignore any errors
513
			 * and just continue. */
514
			(void)ret;
515
			prefaulted = 1;
516
		}
517
 
518
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
519
				       user_data, page_do_bit17_swizzling,
520
				       needs_clflush);
521
 
522
		mutex_lock(&dev->struct_mutex);
523
 
524
next_page:
2332 Serge 525
		mark_page_accessed(page);
3031 serge 526
 
2332 Serge 527
		if (ret)
3031 serge 528
			goto out;
2332 Serge 529
 
530
		remain -= page_length;
531
		user_data += page_length;
532
		offset += page_length;
533
	}
534
 
3031 serge 535
out:
536
	i915_gem_object_unpin_pages(obj);
537
 
538
	return ret;
2332 Serge 539
}
540
 
541
/**
3031 serge 542
 * Reads data from the object referenced by handle.
543
 *
544
 * On error, the contents of *data are undefined.
2332 Serge 545
 */
3031 serge 546
int
547
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
548
		     struct drm_file *file)
549
{
550
	struct drm_i915_gem_pread *args = data;
551
	struct drm_i915_gem_object *obj;
552
	int ret = 0;
553
 
554
	if (args->size == 0)
555
		return 0;
556
 
557
	if (!access_ok(VERIFY_WRITE,
3746 Serge 558
		       to_user_ptr(args->data_ptr),
3031 serge 559
		       args->size))
560
		return -EFAULT;
561
 
562
	ret = i915_mutex_lock_interruptible(dev);
563
	if (ret)
564
		return ret;
565
 
566
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
567
	if (&obj->base == NULL) {
568
		ret = -ENOENT;
569
		goto unlock;
570
	}
571
 
572
	/* Bounds check source.  */
573
	if (args->offset > obj->base.size ||
574
	    args->size > obj->base.size - args->offset) {
575
		ret = -EINVAL;
576
		goto out;
577
	}
578
 
579
	/* prime objects have no backing filp to GEM pread/pwrite
580
	 * pages from.
581
	 */
582
	if (!obj->base.filp) {
583
		ret = -EINVAL;
584
		goto out;
585
	}
586
 
587
	trace_i915_gem_object_pread(obj, args->offset, args->size);
588
 
589
	ret = i915_gem_shmem_pread(dev, obj, args, file);
590
 
591
out:
592
	drm_gem_object_unreference(&obj->base);
593
unlock:
594
	mutex_unlock(&dev->struct_mutex);
595
	return ret;
596
}
597
 
598
/* This is the fast write path which cannot handle
599
 * page faults in the source data
600
 */
601
 
602
static inline int
603
fast_user_write(struct io_mapping *mapping,
604
		loff_t page_base, int page_offset,
605
		char __user *user_data,
606
		int length)
607
{
608
	void __iomem *vaddr_atomic;
609
	void *vaddr;
610
	unsigned long unwritten;
611
 
612
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
613
	/* We can use the cpu mem copy function because this is X86. */
614
	vaddr = (void __force*)vaddr_atomic + page_offset;
615
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
616
						      user_data, length);
617
	io_mapping_unmap_atomic(vaddr_atomic);
618
	return unwritten;
619
}
3260 Serge 620
#endif
3031 serge 621
 
3260 Serge 622
#define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
3031 serge 623
/**
624
 * This is the fast pwrite path, where we copy the data directly from the
625
 * user into the GTT, uncached.
626
 */
2332 Serge 627
static int
3031 serge 628
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
629
			 struct drm_i915_gem_object *obj,
630
			 struct drm_i915_gem_pwrite *args,
631
			 struct drm_file *file)
2332 Serge 632
{
3031 serge 633
	drm_i915_private_t *dev_priv = dev->dev_private;
2332 Serge 634
	ssize_t remain;
3031 serge 635
	loff_t offset, page_base;
636
	char __user *user_data;
637
	int page_offset, page_length, ret;
3260 Serge 638
    char *vaddr;
2332 Serge 639
 
3031 serge 640
	ret = i915_gem_object_pin(obj, 0, true, true);
641
	if (ret)
642
		goto out;
643
 
644
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
645
	if (ret)
646
		goto out_unpin;
647
 
648
	ret = i915_gem_object_put_fence(obj);
649
	if (ret)
650
		goto out_unpin;
651
 
3260 Serge 652
    vaddr = AllocKernelSpace(4096);
653
    if(vaddr == NULL)
654
    {
655
        ret = -ENOSPC;
656
        goto out_unpin;
657
    };
658
 
3031 serge 659
	user_data = (char __user *) (uintptr_t) args->data_ptr;
2332 Serge 660
	remain = args->size;
661
 
3031 serge 662
	offset = obj->gtt_offset + args->offset;
2332 Serge 663
 
3031 serge 664
	while (remain > 0) {
665
		/* Operation in this page
666
		 *
667
		 * page_base = page offset within aperture
668
		 * page_offset = offset within page
669
		 * page_length = bytes to copy for this page
670
		 */
671
		page_base = offset & PAGE_MASK;
672
		page_offset = offset_in_page(offset);
673
		page_length = remain;
674
		if ((page_offset + remain) > PAGE_SIZE)
675
			page_length = PAGE_SIZE - page_offset;
2332 Serge 676
 
3260 Serge 677
        MapPage(vaddr, page_base, PG_SW|PG_NOCACHE);
3031 serge 678
 
3260 Serge 679
        memcpy(vaddr+page_offset, user_data, page_length);
680
 
3031 serge 681
		remain -= page_length;
682
		user_data += page_length;
683
		offset += page_length;
2332 Serge 684
	}
685
 
3260 Serge 686
    FreeKernelSpace(vaddr);
687
 
3031 serge 688
out_unpin:
689
	i915_gem_object_unpin(obj);
690
out:
691
	return ret;
692
}
693
 
694
/* Per-page copy function for the shmem pwrite fastpath.
695
 * Flushes invalid cachelines before writing to the target if
696
 * needs_clflush_before is set and flushes out any written cachelines after
697
 * writing if needs_clflush is set. */
698
static int
699
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
700
		  char __user *user_data,
701
		  bool page_do_bit17_swizzling,
702
		  bool needs_clflush_before,
703
		  bool needs_clflush_after)
704
{
705
	char *vaddr;
3260 Serge 706
	int ret = 0;
3031 serge 707
 
708
	if (unlikely(page_do_bit17_swizzling))
709
		return -EINVAL;
710
 
3260 Serge 711
	vaddr = (char *)MapIoMem((addr_t)page, 4096, PG_SW);
3031 serge 712
	if (needs_clflush_before)
713
		drm_clflush_virt_range(vaddr + shmem_page_offset,
714
				       page_length);
3260 Serge 715
	memcpy(vaddr + shmem_page_offset,
3031 serge 716
						user_data,
717
						page_length);
718
	if (needs_clflush_after)
719
		drm_clflush_virt_range(vaddr + shmem_page_offset,
720
				       page_length);
3260 Serge 721
	FreeKernelSpace(vaddr);
3031 serge 722
 
723
	return ret ? -EFAULT : 0;
724
}
3260 Serge 725
#if 0
3031 serge 726
 
727
/* Only difference to the fast-path function is that this can handle bit17
728
 * and uses non-atomic copy and kmap functions. */
729
static int
730
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
731
		  char __user *user_data,
732
		  bool page_do_bit17_swizzling,
733
		  bool needs_clflush_before,
734
		  bool needs_clflush_after)
735
{
736
	char *vaddr;
737
	int ret;
738
 
739
	vaddr = kmap(page);
740
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
741
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
742
					     page_length,
743
					     page_do_bit17_swizzling);
744
	if (page_do_bit17_swizzling)
745
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
746
						user_data,
747
						page_length);
748
	else
749
		ret = __copy_from_user(vaddr + shmem_page_offset,
750
				       user_data,
751
				       page_length);
752
	if (needs_clflush_after)
753
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
754
					     page_length,
755
					     page_do_bit17_swizzling);
756
	kunmap(page);
757
 
758
	return ret ? -EFAULT : 0;
759
}
3260 Serge 760
#endif
3031 serge 761
 
3260 Serge 762
 
3031 serge 763
static int
764
i915_gem_shmem_pwrite(struct drm_device *dev,
765
		      struct drm_i915_gem_object *obj,
766
		      struct drm_i915_gem_pwrite *args,
767
		      struct drm_file *file)
768
{
769
	ssize_t remain;
770
	loff_t offset;
771
	char __user *user_data;
772
	int shmem_page_offset, page_length, ret = 0;
773
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
774
	int hit_slowpath = 0;
775
	int needs_clflush_after = 0;
776
	int needs_clflush_before = 0;
3746 Serge 777
	struct sg_page_iter sg_iter;
3031 serge 778
 
3746 Serge 779
	user_data = to_user_ptr(args->data_ptr);
3031 serge 780
	remain = args->size;
781
 
782
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
783
 
784
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
785
		/* If we're not in the cpu write domain, set ourself into the gtt
786
		 * write domain and manually flush cachelines (if required). This
787
		 * optimizes for the case when the gpu will use the data
788
		 * right away and we therefore have to clflush anyway. */
789
		if (obj->cache_level == I915_CACHE_NONE)
790
			needs_clflush_after = 1;
791
		if (obj->gtt_space) {
792
			ret = i915_gem_object_set_to_gtt_domain(obj, true);
793
			if (ret)
794
				return ret;
795
		}
796
	}
797
	/* Same trick applies for invalidate partially written cachelines before
798
	 * writing.  */
799
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
800
	    && obj->cache_level == I915_CACHE_NONE)
801
		needs_clflush_before = 1;
802
 
803
	ret = i915_gem_object_get_pages(obj);
2332 Serge 804
	if (ret)
3031 serge 805
		return ret;
2332 Serge 806
 
3031 serge 807
	i915_gem_object_pin_pages(obj);
2332 Serge 808
 
809
	offset = args->offset;
3031 serge 810
	obj->dirty = 1;
2332 Serge 811
 
3746 Serge 812
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
813
			 offset >> PAGE_SHIFT) {
814
		struct page *page = sg_page_iter_page(&sg_iter);
3031 serge 815
		int partial_cacheline_write;
2332 Serge 816
 
3031 serge 817
		if (remain <= 0)
818
			break;
819
 
2332 Serge 820
		/* Operation in this page
821
		 *
822
		 * shmem_page_offset = offset within page in shmem file
823
		 * page_length = bytes to copy for this page
824
		 */
825
		shmem_page_offset = offset_in_page(offset);
826
 
827
		page_length = remain;
828
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
829
			page_length = PAGE_SIZE - shmem_page_offset;
830
 
3031 serge 831
		/* If we don't overwrite a cacheline completely we need to be
832
		 * careful to have up-to-date data by first clflushing. Don't
833
		 * overcomplicate things and flush the entire patch. */
834
		partial_cacheline_write = needs_clflush_before &&
835
			((shmem_page_offset | page_length)
3260 Serge 836
				& (x86_clflush_size - 1));
2332 Serge 837
 
3031 serge 838
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
839
			(page_to_phys(page) & (1 << 17)) != 0;
2332 Serge 840
 
3031 serge 841
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
842
					user_data, page_do_bit17_swizzling,
843
					partial_cacheline_write,
844
					needs_clflush_after);
845
		if (ret == 0)
846
			goto next_page;
847
 
848
		hit_slowpath = 1;
849
		mutex_unlock(&dev->struct_mutex);
3260 Serge 850
		dbgprintf("%s need shmem_pwrite_slow\n",__FUNCTION__);
3031 serge 851
 
3260 Serge 852
//		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
853
//					user_data, page_do_bit17_swizzling,
854
//					partial_cacheline_write,
855
//					needs_clflush_after);
856
 
3031 serge 857
		mutex_lock(&dev->struct_mutex);
858
 
859
next_page:
2332 Serge 860
 
3031 serge 861
		if (ret)
862
			goto out;
863
 
2332 Serge 864
		remain -= page_length;
3031 serge 865
		user_data += page_length;
2332 Serge 866
		offset += page_length;
867
	}
868
 
869
out:
3031 serge 870
	i915_gem_object_unpin_pages(obj);
871
 
872
	if (hit_slowpath) {
3480 Serge 873
		/*
874
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
875
		 * cachelines in-line while writing and the object moved
876
		 * out of the cpu write domain while we've dropped the lock.
877
		 */
878
		if (!needs_clflush_after &&
879
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
3031 serge 880
			i915_gem_clflush_object(obj);
3243 Serge 881
			i915_gem_chipset_flush(dev);
3031 serge 882
		}
2332 Serge 883
	}
884
 
3031 serge 885
	if (needs_clflush_after)
3243 Serge 886
		i915_gem_chipset_flush(dev);
3031 serge 887
 
2332 Serge 888
	return ret;
889
}
3031 serge 890
 
891
/**
892
 * Writes data to the object referenced by handle.
893
 *
894
 * On error, the contents of the buffer that were to be modified are undefined.
895
 */
896
int
897
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
898
		      struct drm_file *file)
899
{
900
	struct drm_i915_gem_pwrite *args = data;
901
	struct drm_i915_gem_object *obj;
902
	int ret;
903
 
3480 Serge 904
     if(args->handle == -2)
905
     {
906
        printf("%s handle %d\n", __FUNCTION__, args->handle);
907
        return 0;
908
     }
909
 
3031 serge 910
	if (args->size == 0)
911
		return 0;
912
 
913
	ret = i915_mutex_lock_interruptible(dev);
914
	if (ret)
915
		return ret;
916
 
917
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
918
	if (&obj->base == NULL) {
919
		ret = -ENOENT;
920
		goto unlock;
921
	}
922
 
923
	/* Bounds check destination. */
924
	if (args->offset > obj->base.size ||
925
	    args->size > obj->base.size - args->offset) {
926
		ret = -EINVAL;
927
		goto out;
928
	}
929
 
930
	/* prime objects have no backing filp to GEM pread/pwrite
931
	 * pages from.
932
	 */
933
	if (!obj->base.filp) {
934
		ret = -EINVAL;
935
		goto out;
936
	}
937
 
938
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
939
 
940
	ret = -EFAULT;
941
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
942
	 * it would end up going through the fenced access, and we'll get
943
	 * different detiling behavior between reading and writing.
944
	 * pread/pwrite currently are reading and writing from the CPU
945
	 * perspective, requiring manual detiling by the client.
946
	 */
3260 Serge 947
//   if (obj->phys_obj) {
948
//       ret = i915_gem_phys_pwrite(dev, obj, args, file);
949
//       goto out;
950
//   }
3031 serge 951
 
952
	if (obj->cache_level == I915_CACHE_NONE &&
953
	    obj->tiling_mode == I915_TILING_NONE &&
954
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
955
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
956
		/* Note that the gtt paths might fail with non-page-backed user
957
		 * pointers (e.g. gtt mappings when moving data between
958
		 * textures). Fallback to the shmem path in that case. */
959
	}
960
 
961
	if (ret == -EFAULT || ret == -ENOSPC)
3260 Serge 962
       ret = i915_gem_shmem_pwrite(dev, obj, args, file);
3031 serge 963
 
964
out:
965
	drm_gem_object_unreference(&obj->base);
966
unlock:
967
	mutex_unlock(&dev->struct_mutex);
968
	return ret;
969
}
970
 
971
int
3480 Serge 972
i915_gem_check_wedge(struct i915_gpu_error *error,
3031 serge 973
		     bool interruptible)
974
{
3480 Serge 975
	if (i915_reset_in_progress(error)) {
3031 serge 976
		/* Non-interruptible callers can't handle -EAGAIN, hence return
977
		 * -EIO unconditionally for these. */
978
		if (!interruptible)
979
			return -EIO;
2332 Serge 980
 
3480 Serge 981
		/* Recovery complete, but the reset failed ... */
982
		if (i915_terminally_wedged(error))
3031 serge 983
			return -EIO;
2332 Serge 984
 
3031 serge 985
		return -EAGAIN;
986
	}
2332 Serge 987
 
3031 serge 988
	return 0;
989
}
2332 Serge 990
 
3031 serge 991
/*
992
 * Compare seqno against outstanding lazy request. Emit a request if they are
993
 * equal.
994
 */
995
static int
996
i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
997
{
998
	int ret;
2332 Serge 999
 
3031 serge 1000
	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
2332 Serge 1001
 
3031 serge 1002
	ret = 0;
1003
	if (seqno == ring->outstanding_lazy_request)
1004
		ret = i915_add_request(ring, NULL, NULL);
2332 Serge 1005
 
3031 serge 1006
	return ret;
1007
}
2332 Serge 1008
 
3031 serge 1009
/**
1010
 * __wait_seqno - wait until execution of seqno has finished
1011
 * @ring: the ring expected to report seqno
1012
 * @seqno: duh!
3480 Serge 1013
 * @reset_counter: reset sequence associated with the given seqno
3031 serge 1014
 * @interruptible: do an interruptible wait (normally yes)
1015
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1016
 *
3480 Serge 1017
 * Note: It is of utmost importance that the passed in seqno and reset_counter
1018
 * values have been read by the caller in an smp safe manner. Where read-side
1019
 * locks are involved, it is sufficient to read the reset_counter before
1020
 * unlocking the lock that protects the seqno. For lockless tricks, the
1021
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1022
 * inserted.
1023
 *
3031 serge 1024
 * Returns 0 if the seqno was found within the alloted time. Else returns the
1025
 * errno with remaining time filled in timeout argument.
1026
 */
1027
static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
3480 Serge 1028
			unsigned reset_counter,
3031 serge 1029
			bool interruptible, struct timespec *timeout)
1030
{
1031
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1032
	struct timespec before, now, wait_time={1,0};
1033
	unsigned long timeout_jiffies;
1034
	long end;
1035
	bool wait_forever = true;
1036
	int ret;
2332 Serge 1037
 
3031 serge 1038
	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1039
		return 0;
2332 Serge 1040
 
3031 serge 1041
	trace_i915_gem_request_wait_begin(ring, seqno);
2332 Serge 1042
 
3031 serge 1043
	if (timeout != NULL) {
1044
		wait_time = *timeout;
1045
		wait_forever = false;
1046
	}
2332 Serge 1047
 
3266 Serge 1048
	timeout_jiffies = timespec_to_jiffies(&wait_time);
2332 Serge 1049
 
3031 serge 1050
	if (WARN_ON(!ring->irq_get(ring)))
1051
		return -ENODEV;
2332 Serge 1052
 
3031 serge 1053
    /* Record current time in case interrupted by signal, or wedged * */
1054
	getrawmonotonic(&before);
2332 Serge 1055
 
3031 serge 1056
#define EXIT_COND \
1057
	(i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
3480 Serge 1058
	 i915_reset_in_progress(&dev_priv->gpu_error) || \
1059
	 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3031 serge 1060
	do {
3266 Serge 1061
		if (interruptible)
1062
			end = wait_event_interruptible_timeout(ring->irq_queue,
1063
							       EXIT_COND,
1064
							       timeout_jiffies);
1065
		else
3031 serge 1066
			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1067
						 timeout_jiffies);
2332 Serge 1068
 
3480 Serge 1069
		/* We need to check whether any gpu reset happened in between
1070
		 * the caller grabbing the seqno and now ... */
1071
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1072
			end = -EAGAIN;
1073
 
1074
		/* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1075
		 * gone. */
1076
		ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
3031 serge 1077
		if (ret)
1078
			end = ret;
1079
	} while (end == 0 && wait_forever);
2332 Serge 1080
 
3031 serge 1081
	getrawmonotonic(&now);
2332 Serge 1082
 
3031 serge 1083
	ring->irq_put(ring);
1084
	trace_i915_gem_request_wait_end(ring, seqno);
1085
#undef EXIT_COND
2332 Serge 1086
 
3031 serge 1087
	if (timeout) {
1088
//       struct timespec sleep_time = timespec_sub(now, before);
1089
//       *timeout = timespec_sub(*timeout, sleep_time);
1090
	}
2332 Serge 1091
 
3031 serge 1092
	switch (end) {
1093
	case -EIO:
1094
	case -EAGAIN: /* Wedged */
1095
	case -ERESTARTSYS: /* Signal */
1096
		return (int)end;
1097
	case 0: /* Timeout */
1098
		return -ETIME;
1099
	default: /* Completed */
1100
		WARN_ON(end < 0); /* We're not aware of other errors */
1101
		return 0;
1102
	}
1103
}
2332 Serge 1104
 
3031 serge 1105
/**
1106
 * Waits for a sequence number to be signaled, and cleans up the
1107
 * request and object lists appropriately for that event.
1108
 */
1109
int
1110
i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1111
{
1112
	struct drm_device *dev = ring->dev;
1113
	struct drm_i915_private *dev_priv = dev->dev_private;
1114
	bool interruptible = dev_priv->mm.interruptible;
1115
	int ret;
2332 Serge 1116
 
3031 serge 1117
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1118
	BUG_ON(seqno == 0);
2332 Serge 1119
 
3480 Serge 1120
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
3031 serge 1121
	if (ret)
1122
		return ret;
2332 Serge 1123
 
3031 serge 1124
	ret = i915_gem_check_olr(ring, seqno);
1125
	if (ret)
1126
		return ret;
2332 Serge 1127
 
3480 Serge 1128
	return __wait_seqno(ring, seqno,
1129
			    atomic_read(&dev_priv->gpu_error.reset_counter),
1130
			    interruptible, NULL);
3031 serge 1131
}
2332 Serge 1132
 
3031 serge 1133
/**
1134
 * Ensures that all rendering to the object has completed and the object is
1135
 * safe to unbind from the GTT or access from the CPU.
1136
 */
1137
static __must_check int
1138
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1139
			       bool readonly)
1140
{
1141
	struct intel_ring_buffer *ring = obj->ring;
1142
	u32 seqno;
1143
	int ret;
2332 Serge 1144
 
3031 serge 1145
	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1146
	if (seqno == 0)
1147
		return 0;
2332 Serge 1148
 
3031 serge 1149
	ret = i915_wait_seqno(ring, seqno);
1150
       if (ret)
1151
           return ret;
2332 Serge 1152
 
3031 serge 1153
	i915_gem_retire_requests_ring(ring);
2332 Serge 1154
 
3031 serge 1155
	/* Manually manage the write flush as we may have not yet
1156
	 * retired the buffer.
1157
	 */
1158
	if (obj->last_write_seqno &&
1159
	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
1160
		obj->last_write_seqno = 0;
1161
		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1162
	}
2332 Serge 1163
 
3031 serge 1164
	return 0;
1165
}
2332 Serge 1166
 
3260 Serge 1167
/* A nonblocking variant of the above wait. This is a highly dangerous routine
1168
 * as the object state may change during this call.
1169
 */
1170
static __must_check int
1171
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1172
					    bool readonly)
1173
{
1174
	struct drm_device *dev = obj->base.dev;
1175
	struct drm_i915_private *dev_priv = dev->dev_private;
1176
	struct intel_ring_buffer *ring = obj->ring;
3480 Serge 1177
	unsigned reset_counter;
3260 Serge 1178
	u32 seqno;
1179
	int ret;
2332 Serge 1180
 
3260 Serge 1181
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1182
	BUG_ON(!dev_priv->mm.interruptible);
2332 Serge 1183
 
3260 Serge 1184
	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1185
	if (seqno == 0)
1186
		return 0;
2332 Serge 1187
 
3480 Serge 1188
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3260 Serge 1189
	if (ret)
1190
		return ret;
2332 Serge 1191
 
3260 Serge 1192
	ret = i915_gem_check_olr(ring, seqno);
1193
	if (ret)
1194
		return ret;
2332 Serge 1195
 
3480 Serge 1196
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3260 Serge 1197
	mutex_unlock(&dev->struct_mutex);
3480 Serge 1198
	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3260 Serge 1199
	mutex_lock(&dev->struct_mutex);
2332 Serge 1200
 
3260 Serge 1201
	i915_gem_retire_requests_ring(ring);
2332 Serge 1202
 
3260 Serge 1203
	/* Manually manage the write flush as we may have not yet
1204
	 * retired the buffer.
1205
	 */
1206
	if (obj->last_write_seqno &&
1207
	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
1208
		obj->last_write_seqno = 0;
1209
		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1210
	}
2332 Serge 1211
 
3260 Serge 1212
	return ret;
1213
}
2332 Serge 1214
 
3260 Serge 1215
/**
1216
 * Called when user space prepares to use an object with the CPU, either
1217
 * through the mmap ioctl's mapping or a GTT mapping.
1218
 */
1219
int
1220
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1221
			  struct drm_file *file)
1222
{
1223
	struct drm_i915_gem_set_domain *args = data;
1224
	struct drm_i915_gem_object *obj;
1225
	uint32_t read_domains = args->read_domains;
1226
	uint32_t write_domain = args->write_domain;
1227
	int ret;
2332 Serge 1228
 
3480 Serge 1229
 
1230
     if(args->handle == -2)
1231
     {
1232
        printf("%s handle %d\n", __FUNCTION__, args->handle);
1233
        return 0;
1234
     }
1235
 
3260 Serge 1236
	/* Only handle setting domains to types used by the CPU. */
1237
	if (write_domain & I915_GEM_GPU_DOMAINS)
1238
		return -EINVAL;
2332 Serge 1239
 
3260 Serge 1240
	if (read_domains & I915_GEM_GPU_DOMAINS)
1241
		return -EINVAL;
2332 Serge 1242
 
3260 Serge 1243
	/* Having something in the write domain implies it's in the read
1244
	 * domain, and only that read domain.  Enforce that in the request.
1245
	 */
1246
	if (write_domain != 0 && read_domains != write_domain)
1247
		return -EINVAL;
2332 Serge 1248
 
3260 Serge 1249
	ret = i915_mutex_lock_interruptible(dev);
1250
	if (ret)
1251
		return ret;
2332 Serge 1252
 
3260 Serge 1253
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1254
	if (&obj->base == NULL) {
1255
		ret = -ENOENT;
1256
		goto unlock;
1257
	}
2332 Serge 1258
 
3260 Serge 1259
	/* Try to flush the object off the GPU without holding the lock.
1260
	 * We will repeat the flush holding the lock in the normal manner
1261
	 * to catch cases where we are gazumped.
1262
	 */
1263
	ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1264
	if (ret)
1265
		goto unref;
2332 Serge 1266
 
3260 Serge 1267
	if (read_domains & I915_GEM_DOMAIN_GTT) {
1268
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
2332 Serge 1269
 
3260 Serge 1270
		/* Silently promote "you're not bound, there was nothing to do"
1271
		 * to success, since the client was just asking us to
1272
		 * make sure everything was done.
1273
		 */
1274
		if (ret == -EINVAL)
1275
			ret = 0;
1276
	} else {
1277
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1278
	}
2332 Serge 1279
 
3260 Serge 1280
unref:
1281
	drm_gem_object_unreference(&obj->base);
1282
unlock:
1283
	mutex_unlock(&dev->struct_mutex);
1284
	return ret;
1285
}
2332 Serge 1286
 
1287
 
1288
 
1289
 
1290
 
1291
 
3260 Serge 1292
/**
1293
 * Maps the contents of an object, returning the address it is mapped
1294
 * into.
1295
 *
1296
 * While the mapping holds a reference on the contents of the object, it doesn't
1297
 * imply a ref on the object itself.
1298
 */
1299
int
1300
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1301
		    struct drm_file *file)
1302
{
1303
	struct drm_i915_gem_mmap *args = data;
1304
	struct drm_gem_object *obj;
1305
	unsigned long addr = 0;
2332 Serge 1306
 
3480 Serge 1307
     if(args->handle == -2)
1308
     {
1309
        printf("%s handle %d\n", __FUNCTION__, args->handle);
1310
        return 0;
1311
     }
1312
 
3260 Serge 1313
	obj = drm_gem_object_lookup(dev, file, args->handle);
1314
	if (obj == NULL)
1315
		return -ENOENT;
1316
 
3298 Serge 1317
    //dbgprintf("%s offset %lld size %lld\n",
1318
//                __FUNCTION__, args->offset, args->size);
3260 Serge 1319
	/* prime objects have no backing filp to GEM mmap
1320
	 * pages from.
1321
	 */
1322
	if (!obj->filp) {
1323
		drm_gem_object_unreference_unlocked(obj);
1324
		return -EINVAL;
1325
	}
2332 Serge 1326
 
3263 Serge 1327
    addr = vm_mmap(obj->filp, 0, args->size,
1328
              PROT_READ | PROT_WRITE, MAP_SHARED,
1329
              args->offset);
3260 Serge 1330
	drm_gem_object_unreference_unlocked(obj);
3263 Serge 1331
    if (IS_ERR((void *)addr))
1332
        return addr;
2332 Serge 1333
 
3260 Serge 1334
	args->addr_ptr = (uint64_t) addr;
2332 Serge 1335
 
3263 Serge 1336
    return 0;
3260 Serge 1337
}
2332 Serge 1338
 
1339
 
1340
 
1341
 
1342
 
1343
 
1344
 
1345
 
3031 serge 1346
 
1347
 
1348
 
1349
 
1350
 
1351
/**
1352
 * i915_gem_release_mmap - remove physical page mappings
1353
 * @obj: obj in question
1354
 *
1355
 * Preserve the reservation of the mmapping with the DRM core code, but
1356
 * relinquish ownership of the pages back to the system.
1357
 *
1358
 * It is vital that we remove the page mapping if we have mapped a tiled
1359
 * object through the GTT and then lose the fence register due to
1360
 * resource pressure. Similarly if the object has been moved out of the
1361
 * aperture, than pages mapped into userspace must be revoked. Removing the
1362
 * mapping will then trigger a page fault on the next user access, allowing
1363
 * fixup by i915_gem_fault().
1364
 */
1365
void
1366
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1367
{
1368
	if (!obj->fault_mappable)
1369
		return;
1370
 
1371
	if (obj->base.dev->dev_mapping)
1372
//		unmap_mapping_range(obj->base.dev->dev_mapping,
1373
//				    (loff_t)obj->base.map_list.hash.key<
1374
//				    obj->base.size, 1);
1375
 
1376
	obj->fault_mappable = false;
1377
}
1378
 
3480 Serge 1379
uint32_t
2332 Serge 1380
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1381
{
1382
	uint32_t gtt_size;
1383
 
1384
	if (INTEL_INFO(dev)->gen >= 4 ||
1385
	    tiling_mode == I915_TILING_NONE)
1386
		return size;
1387
 
1388
	/* Previous chips need a power-of-two fence region when tiling */
1389
	if (INTEL_INFO(dev)->gen == 3)
1390
		gtt_size = 1024*1024;
1391
	else
1392
		gtt_size = 512*1024;
1393
 
1394
	while (gtt_size < size)
1395
		gtt_size <<= 1;
1396
 
1397
	return gtt_size;
1398
}
1399
 
1400
/**
1401
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1402
 * @obj: object to check
1403
 *
1404
 * Return the required GTT alignment for an object, taking into account
1405
 * potential fence register mapping.
1406
 */
3480 Serge 1407
uint32_t
1408
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1409
			   int tiling_mode, bool fenced)
2332 Serge 1410
{
1411
	/*
1412
	 * Minimum alignment is 4k (GTT page size), but might be greater
1413
	 * if a fence register is needed for the object.
1414
	 */
3480 Serge 1415
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2332 Serge 1416
	    tiling_mode == I915_TILING_NONE)
1417
		return 4096;
1418
 
1419
	/*
1420
	 * Previous chips need to be aligned to the size of the smallest
1421
	 * fence register that can contain the object.
1422
	 */
1423
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1424
}
1425
 
1426
/**
1427
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1428
 *					 unfenced object
1429
 * @dev: the device
1430
 * @size: size of the object
1431
 * @tiling_mode: tiling mode of the object
1432
 *
1433
 * Return the required GTT alignment for an object, only taking into account
1434
 * unfenced tiled surface requirements.
1435
 */
1436
uint32_t
1437
i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1438
				    uint32_t size,
1439
				    int tiling_mode)
1440
{
1441
	/*
1442
	 * Minimum alignment is 4k (GTT page size) for sane hw.
1443
	 */
1444
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1445
	    tiling_mode == I915_TILING_NONE)
1446
		return 4096;
1447
 
1448
	/* Previous hardware however needs to be aligned to a power-of-two
1449
	 * tile height. The simplest method for determining this is to reuse
1450
	 * the power-of-tile object size.
1451
	 */
1452
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1453
}
1454
 
3480 Serge 1455
int
1456
i915_gem_mmap_gtt(struct drm_file *file,
1457
          struct drm_device *dev,
1458
          uint32_t handle,
1459
          uint64_t *offset)
1460
{
1461
    struct drm_i915_private *dev_priv = dev->dev_private;
1462
    struct drm_i915_gem_object *obj;
1463
    unsigned long pfn;
1464
    char *mem, *ptr;
1465
    int ret;
1466
 
1467
    ret = i915_mutex_lock_interruptible(dev);
1468
    if (ret)
1469
        return ret;
1470
 
1471
    obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1472
    if (&obj->base == NULL) {
1473
        ret = -ENOENT;
1474
        goto unlock;
1475
    }
1476
 
1477
    if (obj->base.size > dev_priv->gtt.mappable_end) {
1478
        ret = -E2BIG;
1479
        goto out;
1480
    }
1481
 
1482
    if (obj->madv != I915_MADV_WILLNEED) {
1483
        DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1484
        ret = -EINVAL;
1485
        goto out;
1486
    }
1487
    /* Now bind it into the GTT if needed */
1488
    ret = i915_gem_object_pin(obj, 0, true, false);
1489
    if (ret)
1490
        goto out;
1491
 
1492
    ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1493
    if (ret)
1494
        goto unpin;
1495
 
1496
    ret = i915_gem_object_get_fence(obj);
1497
    if (ret)
1498
        goto unpin;
1499
 
1500
    obj->fault_mappable = true;
1501
 
1502
    pfn = dev_priv->gtt.mappable_base + obj->gtt_offset;
1503
 
1504
    /* Finally, remap it using the new GTT offset */
1505
 
1506
    mem = UserAlloc(obj->base.size);
1507
    if(unlikely(mem == NULL))
1508
    {
1509
        ret = -ENOMEM;
1510
        goto unpin;
1511
    }
1512
 
1513
    for(ptr = mem; ptr < mem + obj->base.size; ptr+= 4096, pfn+= 4096)
1514
        MapPage(ptr, pfn, PG_SHARED|PG_UW);
1515
 
1516
unpin:
1517
    i915_gem_object_unpin(obj);
1518
 
1519
 
1520
    *offset = (u64)mem;
1521
 
1522
out:
1523
    drm_gem_object_unreference(&obj->base);
1524
unlock:
1525
    mutex_unlock(&dev->struct_mutex);
1526
    return ret;
1527
}
1528
 
1529
/**
1530
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1531
 * @dev: DRM device
1532
 * @data: GTT mapping ioctl data
1533
 * @file: GEM object info
1534
 *
1535
 * Simply returns the fake offset to userspace so it can mmap it.
1536
 * The mmap call will end up in drm_gem_mmap(), which will set things
1537
 * up so we can get faults in the handler above.
1538
 *
1539
 * The fault handler will take care of binding the object into the GTT
1540
 * (since it may have been evicted to make room for something), allocating
1541
 * a fence register, and mapping the appropriate aperture address into
1542
 * userspace.
1543
 */
1544
int
1545
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1546
            struct drm_file *file)
1547
{
1548
    struct drm_i915_gem_mmap_gtt *args = data;
1549
 
1550
    return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1551
}
1552
 
3031 serge 1553
/* Immediately discard the backing storage */
1554
static void
1555
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1556
{
1557
//	struct inode *inode;
2332 Serge 1558
 
3031 serge 1559
//	i915_gem_object_free_mmap_offset(obj);
2332 Serge 1560
 
3263 Serge 1561
	if (obj->base.filp == NULL)
1562
		return;
2332 Serge 1563
 
3031 serge 1564
	/* Our goal here is to return as much of the memory as
1565
	 * is possible back to the system as we are called from OOM.
1566
	 * To do this we must instruct the shmfs to drop all of its
1567
	 * backing pages, *now*.
1568
	 */
1569
//	inode = obj->base.filp->f_path.dentry->d_inode;
1570
//	shmem_truncate_range(inode, 0, (loff_t)-1);
2332 Serge 1571
 
3031 serge 1572
	obj->madv = __I915_MADV_PURGED;
1573
}
2332 Serge 1574
 
3031 serge 1575
static inline int
1576
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1577
{
1578
	return obj->madv == I915_MADV_DONTNEED;
1579
}
2332 Serge 1580
 
3031 serge 1581
static void
1582
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1583
{
3746 Serge 1584
	struct sg_page_iter sg_iter;
1585
	int ret;
2332 Serge 1586
 
3031 serge 1587
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2332 Serge 1588
 
3031 serge 1589
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
1590
	if (ret) {
1591
		/* In the event of a disaster, abandon all caches and
1592
		 * hope for the best.
1593
		 */
1594
		WARN_ON(ret != -EIO);
1595
		i915_gem_clflush_object(obj);
1596
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1597
	}
2332 Serge 1598
 
3031 serge 1599
	if (obj->madv == I915_MADV_DONTNEED)
1600
		obj->dirty = 0;
2332 Serge 1601
 
3746 Serge 1602
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1603
		struct page *page = sg_page_iter_page(&sg_iter);
2332 Serge 1604
 
3290 Serge 1605
        page_cache_release(page);
3243 Serge 1606
	}
1607
    //DRM_DEBUG_KMS("%s release %d pages\n", __FUNCTION__, page_count);
3290 Serge 1608
 
3031 serge 1609
	obj->dirty = 0;
3243 Serge 1610
 
1611
	sg_free_table(obj->pages);
1612
	kfree(obj->pages);
3031 serge 1613
}
2332 Serge 1614
 
3480 Serge 1615
int
3031 serge 1616
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1617
{
1618
	const struct drm_i915_gem_object_ops *ops = obj->ops;
2332 Serge 1619
 
3243 Serge 1620
	if (obj->pages == NULL)
3031 serge 1621
		return 0;
2332 Serge 1622
 
3031 serge 1623
	BUG_ON(obj->gtt_space);
1624
 
1625
	if (obj->pages_pin_count)
1626
		return -EBUSY;
1627
 
3243 Serge 1628
	/* ->put_pages might need to allocate memory for the bit17 swizzle
1629
	 * array, hence protect them from being reaped by removing them from gtt
1630
	 * lists early. */
1631
	list_del(&obj->gtt_list);
1632
 
3031 serge 1633
	ops->put_pages(obj);
3243 Serge 1634
	obj->pages = NULL;
3031 serge 1635
 
1636
	if (i915_gem_object_is_purgeable(obj))
1637
		i915_gem_object_truncate(obj);
1638
 
1639
	return 0;
1640
}
1641
 
1642
 
1643
 
1644
 
1645
 
1646
 
1647
 
1648
 
2332 Serge 1649
static int
3031 serge 1650
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2332 Serge 1651
{
3260 Serge 1652
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3243 Serge 1653
    int page_count, i;
1654
	struct sg_table *st;
1655
	struct scatterlist *sg;
3746 Serge 1656
	struct sg_page_iter sg_iter;
3243 Serge 1657
	struct page *page;
3746 Serge 1658
	unsigned long last_pfn = 0;	/* suppress gcc warning */
3243 Serge 1659
	gfp_t gfp;
2332 Serge 1660
 
3243 Serge 1661
	/* Assert that the object is not currently in any GPU domain. As it
1662
	 * wasn't in the GTT, there shouldn't be any way it could have been in
1663
	 * a GPU cache
2332 Serge 1664
	 */
3243 Serge 1665
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1666
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1667
 
1668
	st = kmalloc(sizeof(*st), GFP_KERNEL);
1669
	if (st == NULL)
1670
		return -ENOMEM;
1671
 
2332 Serge 1672
	page_count = obj->base.size / PAGE_SIZE;
3243 Serge 1673
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1674
		sg_free_table(st);
1675
		kfree(st);
3746 Serge 1676
        FAIL();
2332 Serge 1677
		return -ENOMEM;
3243 Serge 1678
	}
2332 Serge 1679
 
3243 Serge 1680
	/* Get the list of pages out of our struct file.  They'll be pinned
1681
	 * at this point until we release them.
1682
	 *
1683
	 * Fail silently without starting the shrinker
1684
	 */
3746 Serge 1685
	sg = st->sgl;
1686
	st->nents = 0;
1687
	for (i = 0; i < page_count; i++) {
3260 Serge 1688
		page = shmem_read_mapping_page_gfp(obj->base.filp, i, gfp);
1689
		if (IS_ERR(page)) {
1690
            dbgprintf("%s invalid page %p\n", __FUNCTION__, page);
2332 Serge 1691
			goto err_pages;
1692
 
3260 Serge 1693
		}
3746 Serge 1694
 
1695
		if (!i || page_to_pfn(page) != last_pfn + 1) {
1696
			if (i)
1697
				sg = sg_next(sg);
1698
			st->nents++;
3243 Serge 1699
		sg_set_page(sg, page, PAGE_SIZE, 0);
3746 Serge 1700
		} else {
1701
			sg->length += PAGE_SIZE;
1702
		}
1703
		last_pfn = page_to_pfn(page);
3243 Serge 1704
	}
3031 serge 1705
 
3746 Serge 1706
		sg_mark_end(sg);
3243 Serge 1707
	obj->pages = st;
3031 serge 1708
 
2332 Serge 1709
	return 0;
1710
 
1711
err_pages:
3746 Serge 1712
	sg_mark_end(sg);
1713
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1714
		page_cache_release(sg_page_iter_page(&sg_iter));
3243 Serge 1715
	sg_free_table(st);
1716
	kfree(st);
3746 Serge 1717
    FAIL();
3243 Serge 1718
	return PTR_ERR(page);
2332 Serge 1719
}
1720
 
3031 serge 1721
/* Ensure that the associated pages are gathered from the backing storage
1722
 * and pinned into our object. i915_gem_object_get_pages() may be called
1723
 * multiple times before they are released by a single call to
1724
 * i915_gem_object_put_pages() - once the pages are no longer referenced
1725
 * either as a result of memory pressure (reaping pages under the shrinker)
1726
 * or as the object is itself released.
1727
 */
1728
int
1729
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2332 Serge 1730
{
3031 serge 1731
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1732
	const struct drm_i915_gem_object_ops *ops = obj->ops;
1733
	int ret;
2332 Serge 1734
 
3243 Serge 1735
	if (obj->pages)
3031 serge 1736
		return 0;
2332 Serge 1737
 
3031 serge 1738
	BUG_ON(obj->pages_pin_count);
2332 Serge 1739
 
3031 serge 1740
	ret = ops->get_pages(obj);
1741
	if (ret)
1742
		return ret;
2344 Serge 1743
 
3031 serge 1744
	list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
3243 Serge 1745
    return 0;
2332 Serge 1746
}
1747
 
1748
void
1749
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
3243 Serge 1750
			       struct intel_ring_buffer *ring)
2332 Serge 1751
{
1752
	struct drm_device *dev = obj->base.dev;
1753
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 1754
	u32 seqno = intel_ring_get_seqno(ring);
2332 Serge 1755
 
1756
	BUG_ON(ring == NULL);
1757
	obj->ring = ring;
1758
 
1759
	/* Add a reference if we're newly entering the active list. */
1760
	if (!obj->active) {
2344 Serge 1761
		drm_gem_object_reference(&obj->base);
2332 Serge 1762
		obj->active = 1;
1763
	}
1764
 
1765
	/* Move from whatever list we were on to the tail of execution. */
1766
	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1767
	list_move_tail(&obj->ring_list, &ring->active_list);
1768
 
3031 serge 1769
	obj->last_read_seqno = seqno;
1770
 
2332 Serge 1771
	if (obj->fenced_gpu_access) {
3031 serge 1772
		obj->last_fenced_seqno = seqno;
1773
 
1774
		/* Bump MRU to take account of the delayed flush */
1775
		if (obj->fence_reg != I915_FENCE_REG_NONE) {
2332 Serge 1776
		struct drm_i915_fence_reg *reg;
1777
 
1778
		reg = &dev_priv->fence_regs[obj->fence_reg];
3031 serge 1779
			list_move_tail(®->lru_list,
1780
				       &dev_priv->mm.fence_list);
1781
		}
2332 Serge 1782
	}
1783
}
1784
 
2344 Serge 1785
static void
3031 serge 1786
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2344 Serge 1787
{
1788
	struct drm_device *dev = obj->base.dev;
3031 serge 1789
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 1790
 
3031 serge 1791
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2344 Serge 1792
	BUG_ON(!obj->active);
2332 Serge 1793
 
2352 Serge 1794
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2344 Serge 1795
 
3031 serge 1796
	list_del_init(&obj->ring_list);
2352 Serge 1797
	obj->ring = NULL;
2344 Serge 1798
 
3031 serge 1799
	obj->last_read_seqno = 0;
1800
	obj->last_write_seqno = 0;
1801
	obj->base.write_domain = 0;
1802
 
1803
	obj->last_fenced_seqno = 0;
2352 Serge 1804
	obj->fenced_gpu_access = false;
2344 Serge 1805
 
2352 Serge 1806
	obj->active = 0;
1807
	drm_gem_object_unreference(&obj->base);
1808
 
1809
	WARN_ON(i915_verify_lists(dev));
1810
}
1811
 
3243 Serge 1812
static int
3480 Serge 1813
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2344 Serge 1814
{
3243 Serge 1815
	struct drm_i915_private *dev_priv = dev->dev_private;
1816
	struct intel_ring_buffer *ring;
1817
	int ret, i, j;
2344 Serge 1818
 
3480 Serge 1819
	/* Carefully retire all requests without writing to the rings */
3243 Serge 1820
	for_each_ring(ring, dev_priv, i) {
3480 Serge 1821
		ret = intel_ring_idle(ring);
3243 Serge 1822
	if (ret)
1823
		return ret;
3480 Serge 1824
	}
1825
	i915_gem_retire_requests(dev);
3243 Serge 1826
 
3480 Serge 1827
	/* Finally reset hw state */
3243 Serge 1828
	for_each_ring(ring, dev_priv, i) {
3480 Serge 1829
		intel_ring_init_seqno(ring, seqno);
1830
 
3243 Serge 1831
		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1832
			ring->sync_seqno[j] = 0;
1833
	}
1834
 
1835
	return 0;
2344 Serge 1836
}
1837
 
3480 Serge 1838
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1839
{
1840
	struct drm_i915_private *dev_priv = dev->dev_private;
1841
	int ret;
1842
 
1843
	if (seqno == 0)
1844
		return -EINVAL;
1845
 
1846
	/* HWS page needs to be set less than what we
1847
	 * will inject to ring
1848
	 */
1849
	ret = i915_gem_init_seqno(dev, seqno - 1);
1850
	if (ret)
1851
		return ret;
1852
 
1853
	/* Carefully set the last_seqno value so that wrap
1854
	 * detection still works
1855
	 */
1856
	dev_priv->next_seqno = seqno;
1857
	dev_priv->last_seqno = seqno - 1;
1858
	if (dev_priv->last_seqno == 0)
1859
		dev_priv->last_seqno--;
1860
 
1861
	return 0;
1862
}
1863
 
3243 Serge 1864
int
1865
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2344 Serge 1866
{
3243 Serge 1867
	struct drm_i915_private *dev_priv = dev->dev_private;
2344 Serge 1868
 
3243 Serge 1869
	/* reserve 0 for non-seqno */
1870
	if (dev_priv->next_seqno == 0) {
3480 Serge 1871
		int ret = i915_gem_init_seqno(dev, 0);
3243 Serge 1872
		if (ret)
1873
			return ret;
1874
 
1875
		dev_priv->next_seqno = 1;
1876
	}
1877
 
3480 Serge 1878
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
3243 Serge 1879
	return 0;
2332 Serge 1880
}
1881
 
2352 Serge 1882
int
1883
i915_add_request(struct intel_ring_buffer *ring,
1884
		 struct drm_file *file,
3031 serge 1885
		 u32 *out_seqno)
2352 Serge 1886
{
1887
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
3031 serge 1888
	struct drm_i915_gem_request *request;
1889
	u32 request_ring_position;
2352 Serge 1890
	int was_empty;
1891
	int ret;
2332 Serge 1892
 
3031 serge 1893
	/*
1894
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
1895
	 * after having emitted the batchbuffer command. Hence we need to fix
1896
	 * things up similar to emitting the lazy request. The difference here
1897
	 * is that the flush _must_ happen before the next request, no matter
1898
	 * what.
1899
	 */
1900
	ret = intel_ring_flush_all_caches(ring);
1901
	if (ret)
1902
		return ret;
2332 Serge 1903
 
3031 serge 1904
	request = kmalloc(sizeof(*request), GFP_KERNEL);
1905
	if (request == NULL)
1906
		return -ENOMEM;
1907
 
1908
 
1909
	/* Record the position of the start of the request so that
1910
	 * should we detect the updated seqno part-way through the
1911
	 * GPU processing the request, we never over-estimate the
1912
	 * position of the head.
1913
	 */
1914
	request_ring_position = intel_ring_get_tail(ring);
1915
 
3243 Serge 1916
	ret = ring->add_request(ring);
3031 serge 1917
	if (ret) {
1918
		kfree(request);
2352 Serge 1919
	    return ret;
3031 serge 1920
	}
2332 Serge 1921
 
3243 Serge 1922
	request->seqno = intel_ring_get_seqno(ring);
2352 Serge 1923
	request->ring = ring;
3031 serge 1924
	request->tail = request_ring_position;
1925
    request->emitted_jiffies = GetTimerTicks();
2352 Serge 1926
	was_empty = list_empty(&ring->request_list);
1927
	list_add_tail(&request->list, &ring->request_list);
3031 serge 1928
	request->file_priv = NULL;
2332 Serge 1929
 
3263 Serge 1930
	if (file) {
1931
		struct drm_i915_file_private *file_priv = file->driver_priv;
2332 Serge 1932
 
3263 Serge 1933
		spin_lock(&file_priv->mm.lock);
1934
		request->file_priv = file_priv;
1935
		list_add_tail(&request->client_list,
1936
			      &file_priv->mm.request_list);
1937
		spin_unlock(&file_priv->mm.lock);
1938
	}
1939
 
1940
	trace_i915_gem_request_add(ring, request->seqno);
3031 serge 1941
	ring->outstanding_lazy_request = 0;
2332 Serge 1942
 
2360 Serge 1943
	if (!dev_priv->mm.suspended) {
1944
		if (i915_enable_hangcheck) {
2352 Serge 1945
//			mod_timer(&dev_priv->hangcheck_timer,
1946
//				  jiffies +
1947
//				  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
2360 Serge 1948
		}
3031 serge 1949
		if (was_empty) {
2360 Serge 1950
           queue_delayed_work(dev_priv->wq,
3482 Serge 1951
					   &dev_priv->mm.retire_work,
1952
					   round_jiffies_up_relative(HZ));
3031 serge 1953
			intel_mark_busy(dev_priv->dev);
1954
		}
2360 Serge 1955
	}
3031 serge 1956
 
1957
	if (out_seqno)
3243 Serge 1958
		*out_seqno = request->seqno;
2352 Serge 1959
	return 0;
1960
}
2332 Serge 1961
 
3263 Serge 1962
static inline void
1963
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1964
{
1965
	struct drm_i915_file_private *file_priv = request->file_priv;
2332 Serge 1966
 
3263 Serge 1967
	if (!file_priv)
1968
		return;
2332 Serge 1969
 
3263 Serge 1970
	spin_lock(&file_priv->mm.lock);
1971
	if (request->file_priv) {
1972
		list_del(&request->client_list);
1973
		request->file_priv = NULL;
1974
	}
1975
	spin_unlock(&file_priv->mm.lock);
1976
}
2332 Serge 1977
 
3031 serge 1978
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1979
				      struct intel_ring_buffer *ring)
1980
{
1981
	while (!list_empty(&ring->request_list)) {
1982
		struct drm_i915_gem_request *request;
2332 Serge 1983
 
3031 serge 1984
		request = list_first_entry(&ring->request_list,
1985
					   struct drm_i915_gem_request,
1986
					   list);
2332 Serge 1987
 
3031 serge 1988
		list_del(&request->list);
3263 Serge 1989
		i915_gem_request_remove_from_client(request);
3031 serge 1990
		kfree(request);
1991
	}
2332 Serge 1992
 
3031 serge 1993
	while (!list_empty(&ring->active_list)) {
1994
		struct drm_i915_gem_object *obj;
2332 Serge 1995
 
3031 serge 1996
		obj = list_first_entry(&ring->active_list,
1997
				       struct drm_i915_gem_object,
1998
				       ring_list);
2332 Serge 1999
 
3031 serge 2000
		i915_gem_object_move_to_inactive(obj);
2001
	}
2002
}
2332 Serge 2003
 
3746 Serge 2004
void i915_gem_restore_fences(struct drm_device *dev)
3031 serge 2005
{
2006
	struct drm_i915_private *dev_priv = dev->dev_private;
2007
	int i;
2332 Serge 2008
 
3031 serge 2009
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2010
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
3746 Serge 2011
		i915_gem_write_fence(dev, i, reg->obj);
3031 serge 2012
	}
2013
}
2360 Serge 2014
 
3031 serge 2015
void i915_gem_reset(struct drm_device *dev)
2016
{
2017
	struct drm_i915_private *dev_priv = dev->dev_private;
2018
	struct drm_i915_gem_object *obj;
2019
	struct intel_ring_buffer *ring;
2020
	int i;
2360 Serge 2021
 
3031 serge 2022
	for_each_ring(ring, dev_priv, i)
2023
		i915_gem_reset_ring_lists(dev_priv, ring);
2360 Serge 2024
 
3031 serge 2025
	/* Move everything out of the GPU domains to ensure we do any
2026
	 * necessary invalidation upon reuse.
2027
	 */
2028
	list_for_each_entry(obj,
2029
			    &dev_priv->mm.inactive_list,
2030
			    mm_list)
2031
	{
2032
		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2033
	}
2360 Serge 2034
 
3746 Serge 2035
	i915_gem_restore_fences(dev);
3031 serge 2036
}
2360 Serge 2037
 
2352 Serge 2038
/**
2039
 * This function clears the request list as sequence numbers are passed.
2040
 */
3031 serge 2041
void
2352 Serge 2042
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2043
{
2044
	uint32_t seqno;
2332 Serge 2045
 
2352 Serge 2046
	if (list_empty(&ring->request_list))
2047
		return;
2332 Serge 2048
 
2352 Serge 2049
	WARN_ON(i915_verify_lists(ring->dev));
2332 Serge 2050
 
3031 serge 2051
	seqno = ring->get_seqno(ring, true);
2332 Serge 2052
 
2352 Serge 2053
	while (!list_empty(&ring->request_list)) {
2054
		struct drm_i915_gem_request *request;
2332 Serge 2055
 
2352 Serge 2056
		request = list_first_entry(&ring->request_list,
2057
					   struct drm_i915_gem_request,
2058
					   list);
2332 Serge 2059
 
2352 Serge 2060
		if (!i915_seqno_passed(seqno, request->seqno))
2061
			break;
2332 Serge 2062
 
2352 Serge 2063
		trace_i915_gem_request_retire(ring, request->seqno);
3031 serge 2064
		/* We know the GPU must have read the request to have
2065
		 * sent us the seqno + interrupt, so use the position
2066
		 * of tail of the request to update the last known position
2067
		 * of the GPU head.
2068
		 */
2069
		ring->last_retired_head = request->tail;
2332 Serge 2070
 
2352 Serge 2071
		list_del(&request->list);
3263 Serge 2072
		i915_gem_request_remove_from_client(request);
2352 Serge 2073
		kfree(request);
2074
	}
2332 Serge 2075
 
2352 Serge 2076
	/* Move any buffers on the active list that are no longer referenced
2077
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
2078
	 */
2079
	while (!list_empty(&ring->active_list)) {
2080
		struct drm_i915_gem_object *obj;
2332 Serge 2081
 
2352 Serge 2082
		obj = list_first_entry(&ring->active_list,
2083
				      struct drm_i915_gem_object,
2084
				      ring_list);
2332 Serge 2085
 
3031 serge 2086
		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2352 Serge 2087
			break;
2332 Serge 2088
 
2352 Serge 2089
			i915_gem_object_move_to_inactive(obj);
2090
	}
2332 Serge 2091
 
2352 Serge 2092
	if (unlikely(ring->trace_irq_seqno &&
2093
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2094
		ring->irq_put(ring);
2095
		ring->trace_irq_seqno = 0;
2096
	}
2332 Serge 2097
 
2352 Serge 2098
	WARN_ON(i915_verify_lists(ring->dev));
2099
}
2332 Serge 2100
 
2352 Serge 2101
void
2102
i915_gem_retire_requests(struct drm_device *dev)
2103
{
2104
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 2105
	struct intel_ring_buffer *ring;
2352 Serge 2106
	int i;
2332 Serge 2107
 
3031 serge 2108
	for_each_ring(ring, dev_priv, i)
2109
		i915_gem_retire_requests_ring(ring);
2352 Serge 2110
}
2111
 
2360 Serge 2112
static void
2113
i915_gem_retire_work_handler(struct work_struct *work)
2114
{
2115
	drm_i915_private_t *dev_priv;
2116
	struct drm_device *dev;
3031 serge 2117
	struct intel_ring_buffer *ring;
2360 Serge 2118
	bool idle;
2119
	int i;
2352 Serge 2120
 
2360 Serge 2121
	dev_priv = container_of(work, drm_i915_private_t,
2122
				mm.retire_work.work);
2123
	dev = dev_priv->dev;
2352 Serge 2124
 
2360 Serge 2125
	/* Come back later if the device is busy... */
2126
	if (!mutex_trylock(&dev->struct_mutex)) {
3482 Serge 2127
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2128
				   round_jiffies_up_relative(HZ));
3243 Serge 2129
        return;
2360 Serge 2130
	}
2352 Serge 2131
 
2360 Serge 2132
	i915_gem_retire_requests(dev);
2352 Serge 2133
 
2360 Serge 2134
	/* Send a periodic flush down the ring so we don't hold onto GEM
2135
	 * objects indefinitely.
2136
	 */
2137
	idle = true;
3031 serge 2138
	for_each_ring(ring, dev_priv, i) {
2139
		if (ring->gpu_caches_dirty)
2140
			i915_add_request(ring, NULL, NULL);
2352 Serge 2141
 
2360 Serge 2142
		idle &= list_empty(&ring->request_list);
2143
	}
2352 Serge 2144
 
2360 Serge 2145
   if (!dev_priv->mm.suspended && !idle)
3482 Serge 2146
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2147
				   round_jiffies_up_relative(HZ));
3031 serge 2148
	if (idle)
2149
		intel_mark_idle(dev);
2360 Serge 2150
 
2151
	mutex_unlock(&dev->struct_mutex);
2152
}
2153
 
2344 Serge 2154
/**
3031 serge 2155
 * Ensures that an object will eventually get non-busy by flushing any required
2156
 * write domains, emitting any outstanding lazy request and retiring and
2157
 * completed requests.
2352 Serge 2158
 */
3031 serge 2159
static int
2160
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2352 Serge 2161
{
3031 serge 2162
	int ret;
2352 Serge 2163
 
3031 serge 2164
	if (obj->active) {
2165
		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2166
		if (ret)
2167
			return ret;
2352 Serge 2168
 
3031 serge 2169
		i915_gem_retire_requests_ring(obj->ring);
2170
	}
2352 Serge 2171
 
3031 serge 2172
	return 0;
2173
}
2352 Serge 2174
 
3243 Serge 2175
/**
2176
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2177
 * @DRM_IOCTL_ARGS: standard ioctl arguments
2178
 *
2179
 * Returns 0 if successful, else an error is returned with the remaining time in
2180
 * the timeout parameter.
2181
 *  -ETIME: object is still busy after timeout
2182
 *  -ERESTARTSYS: signal interrupted the wait
2183
 *  -ENONENT: object doesn't exist
2184
 * Also possible, but rare:
2185
 *  -EAGAIN: GPU wedged
2186
 *  -ENOMEM: damn
2187
 *  -ENODEV: Internal IRQ fail
2188
 *  -E?: The add request failed
2189
 *
2190
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2191
 * non-zero timeout parameter the wait ioctl will wait for the given number of
2192
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2193
 * without holding struct_mutex the object may become re-busied before this
2194
 * function completes. A similar but shorter * race condition exists in the busy
2195
 * ioctl
2196
 */
2352 Serge 2197
 
2198
 
2199
 
2200
 
2201
 
2202
 
2203
 
2204
 
2205
 
3243 Serge 2206
 
2207
 
2208
 
2352 Serge 2209
/**
3031 serge 2210
 * i915_gem_object_sync - sync an object to a ring.
2211
 *
2212
 * @obj: object which may be in use on another ring.
2213
 * @to: ring we wish to use the object on. May be NULL.
2214
 *
2215
 * This code is meant to abstract object synchronization with the GPU.
2216
 * Calling with NULL implies synchronizing the object with the CPU
2217
 * rather than a particular GPU ring.
2218
 *
2219
 * Returns 0 if successful, else propagates up the lower layer error.
2344 Serge 2220
 */
2221
int
3031 serge 2222
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2223
		     struct intel_ring_buffer *to)
2344 Serge 2224
{
3031 serge 2225
	struct intel_ring_buffer *from = obj->ring;
2226
	u32 seqno;
2227
	int ret, idx;
2332 Serge 2228
 
3031 serge 2229
	if (from == NULL || to == from)
2230
		return 0;
2332 Serge 2231
 
3031 serge 2232
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2233
		return i915_gem_object_wait_rendering(obj, false);
2332 Serge 2234
 
3031 serge 2235
	idx = intel_ring_sync_index(from, to);
2236
 
2237
	seqno = obj->last_read_seqno;
2238
	if (seqno <= from->sync_seqno[idx])
2239
		return 0;
2240
 
2241
	ret = i915_gem_check_olr(obj->ring, seqno);
2242
	if (ret)
2243
		return ret;
2244
 
2245
	ret = to->sync_to(to, from, seqno);
2246
	if (!ret)
3243 Serge 2247
		/* We use last_read_seqno because sync_to()
2248
		 * might have just caused seqno wrap under
2249
		 * the radar.
2250
		 */
2251
		from->sync_seqno[idx] = obj->last_read_seqno;
3031 serge 2252
 
2253
	return ret;
2344 Serge 2254
}
2332 Serge 2255
 
2344 Serge 2256
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2257
{
2258
	u32 old_write_domain, old_read_domains;
2332 Serge 2259
 
2344 Serge 2260
	/* Force a pagefault for domain tracking on next user access */
2261
//	i915_gem_release_mmap(obj);
2332 Serge 2262
 
2344 Serge 2263
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2264
		return;
2332 Serge 2265
 
3480 Serge 2266
	/* Wait for any direct GTT access to complete */
2267
	mb();
2268
 
2344 Serge 2269
	old_read_domains = obj->base.read_domains;
2270
	old_write_domain = obj->base.write_domain;
2351 Serge 2271
 
2344 Serge 2272
	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2273
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2332 Serge 2274
 
2351 Serge 2275
	trace_i915_gem_object_change_domain(obj,
2276
					    old_read_domains,
2277
					    old_write_domain);
2344 Serge 2278
}
2332 Serge 2279
 
2344 Serge 2280
/**
2281
 * Unbinds an object from the GTT aperture.
2282
 */
2283
int
2284
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2285
{
3031 serge 2286
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3480 Serge 2287
	int ret;
2332 Serge 2288
 
3263 Serge 2289
    if(obj == get_fb_obj())
2290
        return 0;
2291
 
2344 Serge 2292
	if (obj->gtt_space == NULL)
2293
		return 0;
2332 Serge 2294
 
3031 serge 2295
	if (obj->pin_count)
2296
		return -EBUSY;
2332 Serge 2297
 
3243 Serge 2298
	BUG_ON(obj->pages == NULL);
3031 serge 2299
 
2344 Serge 2300
	ret = i915_gem_object_finish_gpu(obj);
3031 serge 2301
	if (ret)
2344 Serge 2302
		return ret;
2303
	/* Continue on if we fail due to EIO, the GPU is hung so we
2304
	 * should be safe and we need to cleanup or else we might
2305
	 * cause memory corruption through use-after-free.
2306
	 */
2332 Serge 2307
 
2344 Serge 2308
	i915_gem_object_finish_gtt(obj);
2332 Serge 2309
 
2344 Serge 2310
	/* release the fence reg _after_ flushing */
2311
	ret = i915_gem_object_put_fence(obj);
3031 serge 2312
	if (ret)
2344 Serge 2313
		return ret;
2332 Serge 2314
 
2351 Serge 2315
	trace_i915_gem_object_unbind(obj);
2332 Serge 2316
 
3031 serge 2317
	if (obj->has_global_gtt_mapping)
3243 Serge 2318
        i915_gem_gtt_unbind_object(obj);
3031 serge 2319
	if (obj->has_aliasing_ppgtt_mapping) {
2320
		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2321
		obj->has_aliasing_ppgtt_mapping = 0;
2322
	}
2323
	i915_gem_gtt_finish_object(obj);
2332 Serge 2324
 
3031 serge 2325
	list_del(&obj->mm_list);
2326
	list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2344 Serge 2327
	/* Avoid an unnecessary call to unbind on rebind. */
2328
	obj->map_and_fenceable = true;
2332 Serge 2329
 
2344 Serge 2330
	drm_mm_put_block(obj->gtt_space);
2331
	obj->gtt_space = NULL;
2332
	obj->gtt_offset = 0;
2332 Serge 2333
 
2344 Serge 2334
	return 0;
2335
}
2332 Serge 2336
 
3031 serge 2337
int i915_gpu_idle(struct drm_device *dev)
2344 Serge 2338
{
2339
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 2340
	struct intel_ring_buffer *ring;
2344 Serge 2341
	int ret, i;
2332 Serge 2342
 
2344 Serge 2343
	/* Flush everything onto the inactive list. */
3031 serge 2344
	for_each_ring(ring, dev_priv, i) {
2345
		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2344 Serge 2346
		if (ret)
2347
			return ret;
3031 serge 2348
 
3243 Serge 2349
		ret = intel_ring_idle(ring);
3031 serge 2350
		if (ret)
2351
			return ret;
2344 Serge 2352
	}
2332 Serge 2353
 
2344 Serge 2354
	return 0;
2355
}
2332 Serge 2356
 
3480 Serge 2357
static void i965_write_fence_reg(struct drm_device *dev, int reg,
3031 serge 2358
					struct drm_i915_gem_object *obj)
2359
{
2360
	drm_i915_private_t *dev_priv = dev->dev_private;
3480 Serge 2361
	int fence_reg;
2362
	int fence_pitch_shift;
3031 serge 2363
	uint64_t val;
2332 Serge 2364
 
3480 Serge 2365
	if (INTEL_INFO(dev)->gen >= 6) {
2366
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
2367
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2368
	} else {
2369
		fence_reg = FENCE_REG_965_0;
2370
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2371
	}
2332 Serge 2372
 
3031 serge 2373
	if (obj) {
2374
		u32 size = obj->gtt_space->size;
2332 Serge 2375
 
3031 serge 2376
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
2377
				 0xfffff000) << 32;
2378
		val |= obj->gtt_offset & 0xfffff000;
3480 Serge 2379
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3031 serge 2380
		if (obj->tiling_mode == I915_TILING_Y)
2381
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2382
		val |= I965_FENCE_REG_VALID;
2383
	} else
2384
		val = 0;
2332 Serge 2385
 
3480 Serge 2386
	fence_reg += reg * 8;
2387
	I915_WRITE64(fence_reg, val);
2388
	POSTING_READ(fence_reg);
3031 serge 2389
}
2332 Serge 2390
 
3031 serge 2391
static void i915_write_fence_reg(struct drm_device *dev, int reg,
2392
				 struct drm_i915_gem_object *obj)
2393
{
2394
	drm_i915_private_t *dev_priv = dev->dev_private;
2395
	u32 val;
2332 Serge 2396
 
3031 serge 2397
	if (obj) {
2398
		u32 size = obj->gtt_space->size;
2399
		int pitch_val;
2400
		int tile_width;
2332 Serge 2401
 
3031 serge 2402
		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2403
		     (size & -size) != size ||
2404
		     (obj->gtt_offset & (size - 1)),
2405
		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2406
		     obj->gtt_offset, obj->map_and_fenceable, size);
2332 Serge 2407
 
3031 serge 2408
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2409
			tile_width = 128;
2410
		else
2411
			tile_width = 512;
2332 Serge 2412
 
3031 serge 2413
		/* Note: pitch better be a power of two tile widths */
2414
		pitch_val = obj->stride / tile_width;
2415
		pitch_val = ffs(pitch_val) - 1;
2332 Serge 2416
 
3031 serge 2417
		val = obj->gtt_offset;
2418
		if (obj->tiling_mode == I915_TILING_Y)
2419
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2420
		val |= I915_FENCE_SIZE_BITS(size);
2421
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2422
		val |= I830_FENCE_REG_VALID;
2423
	} else
2424
		val = 0;
2332 Serge 2425
 
3031 serge 2426
	if (reg < 8)
2427
		reg = FENCE_REG_830_0 + reg * 4;
2428
	else
2429
		reg = FENCE_REG_945_8 + (reg - 8) * 4;
2332 Serge 2430
 
3031 serge 2431
	I915_WRITE(reg, val);
2432
	POSTING_READ(reg);
2433
}
2332 Serge 2434
 
3031 serge 2435
static void i830_write_fence_reg(struct drm_device *dev, int reg,
2436
				struct drm_i915_gem_object *obj)
2437
{
2438
	drm_i915_private_t *dev_priv = dev->dev_private;
2439
	uint32_t val;
2344 Serge 2440
 
3031 serge 2441
	if (obj) {
2442
		u32 size = obj->gtt_space->size;
2443
		uint32_t pitch_val;
2344 Serge 2444
 
3031 serge 2445
		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2446
		     (size & -size) != size ||
2447
		     (obj->gtt_offset & (size - 1)),
2448
		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2449
		     obj->gtt_offset, size);
2344 Serge 2450
 
3031 serge 2451
		pitch_val = obj->stride / 128;
2452
		pitch_val = ffs(pitch_val) - 1;
2344 Serge 2453
 
3031 serge 2454
		val = obj->gtt_offset;
2455
		if (obj->tiling_mode == I915_TILING_Y)
2456
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2457
		val |= I830_FENCE_SIZE_BITS(size);
2458
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2459
		val |= I830_FENCE_REG_VALID;
2460
	} else
2461
		val = 0;
2462
 
2463
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2464
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
2465
}
2466
 
3480 Serge 2467
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2468
{
2469
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2470
}
2471
 
3031 serge 2472
static void i915_gem_write_fence(struct drm_device *dev, int reg,
2473
				 struct drm_i915_gem_object *obj)
2332 Serge 2474
{
3480 Serge 2475
	struct drm_i915_private *dev_priv = dev->dev_private;
2476
 
2477
	/* Ensure that all CPU reads are completed before installing a fence
2478
	 * and all writes before removing the fence.
2479
	 */
2480
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2481
		mb();
2482
 
3031 serge 2483
	switch (INTEL_INFO(dev)->gen) {
2484
	case 7:
3480 Serge 2485
	case 6:
3031 serge 2486
	case 5:
2487
	case 4: i965_write_fence_reg(dev, reg, obj); break;
2488
	case 3: i915_write_fence_reg(dev, reg, obj); break;
2489
	case 2: i830_write_fence_reg(dev, reg, obj); break;
3480 Serge 2490
	default: BUG();
3031 serge 2491
	}
3480 Serge 2492
 
2493
	/* And similarly be paranoid that no direct access to this region
2494
	 * is reordered to before the fence is installed.
2495
	 */
2496
	if (i915_gem_object_needs_mb(obj))
2497
		mb();
2344 Serge 2498
}
2499
 
3031 serge 2500
static inline int fence_number(struct drm_i915_private *dev_priv,
2501
			       struct drm_i915_fence_reg *fence)
2344 Serge 2502
{
3031 serge 2503
	return fence - dev_priv->fence_regs;
2504
}
2332 Serge 2505
 
3746 Serge 2506
static void i915_gem_write_fence__ipi(void *data)
2507
{
2508
    asm volatile("wbinvd");
2509
 
2510
}
2511
 
3031 serge 2512
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2513
					 struct drm_i915_fence_reg *fence,
2514
					 bool enable)
2515
{
3746 Serge 2516
	struct drm_device *dev = obj->base.dev;
2517
	struct drm_i915_private *dev_priv = dev->dev_private;
2518
	int fence_reg = fence_number(dev_priv, fence);
2332 Serge 2519
 
3746 Serge 2520
	/* In order to fully serialize access to the fenced region and
2521
	 * the update to the fence register we need to take extreme
2522
	 * measures on SNB+. In theory, the write to the fence register
2523
	 * flushes all memory transactions before, and coupled with the
2524
	 * mb() placed around the register write we serialise all memory
2525
	 * operations with respect to the changes in the tiler. Yet, on
2526
	 * SNB+ we need to take a step further and emit an explicit wbinvd()
2527
	 * on each processor in order to manually flush all memory
2528
	 * transactions before updating the fence register.
2529
	 */
2530
	if (HAS_LLC(obj->base.dev))
2531
		on_each_cpu(i915_gem_write_fence__ipi, NULL, 1);
2532
	i915_gem_write_fence(dev, fence_reg, enable ? obj : NULL);
3031 serge 2533
 
2534
	if (enable) {
3746 Serge 2535
		obj->fence_reg = fence_reg;
3031 serge 2536
		fence->obj = obj;
2537
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2538
	} else {
2539
		obj->fence_reg = I915_FENCE_REG_NONE;
2540
		fence->obj = NULL;
2541
		list_del_init(&fence->lru_list);
2344 Serge 2542
	}
3031 serge 2543
}
2344 Serge 2544
 
3031 serge 2545
static int
3480 Serge 2546
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3031 serge 2547
{
2548
	if (obj->last_fenced_seqno) {
2549
		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2352 Serge 2550
			if (ret)
2551
				return ret;
2344 Serge 2552
 
2553
		obj->last_fenced_seqno = 0;
2554
	}
2555
 
3031 serge 2556
	obj->fenced_gpu_access = false;
2332 Serge 2557
	return 0;
2558
}
2559
 
2560
int
2344 Serge 2561
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2332 Serge 2562
{
3031 serge 2563
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3746 Serge 2564
	struct drm_i915_fence_reg *fence;
2332 Serge 2565
	int ret;
2566
 
3480 Serge 2567
	ret = i915_gem_object_wait_fence(obj);
2332 Serge 2568
	if (ret)
2569
		return ret;
2570
 
3031 serge 2571
	if (obj->fence_reg == I915_FENCE_REG_NONE)
2572
		return 0;
2332 Serge 2573
 
3746 Serge 2574
	fence = &dev_priv->fence_regs[obj->fence_reg];
2575
 
3031 serge 2576
	i915_gem_object_fence_lost(obj);
3746 Serge 2577
	i915_gem_object_update_fence(obj, fence, false);
2344 Serge 2578
 
2332 Serge 2579
	return 0;
2580
}
2581
 
3031 serge 2582
static struct drm_i915_fence_reg *
2583
i915_find_fence_reg(struct drm_device *dev)
2584
{
2585
	struct drm_i915_private *dev_priv = dev->dev_private;
2586
	struct drm_i915_fence_reg *reg, *avail;
2587
	int i;
2332 Serge 2588
 
3031 serge 2589
	/* First try to find a free reg */
2590
	avail = NULL;
2591
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2592
		reg = &dev_priv->fence_regs[i];
2593
		if (!reg->obj)
2594
			return reg;
2332 Serge 2595
 
3031 serge 2596
		if (!reg->pin_count)
2597
			avail = reg;
2598
	}
2332 Serge 2599
 
3031 serge 2600
	if (avail == NULL)
2601
		return NULL;
2332 Serge 2602
 
3031 serge 2603
	/* None available, try to steal one or wait for a user to finish */
2604
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2605
		if (reg->pin_count)
2606
			continue;
2332 Serge 2607
 
3031 serge 2608
		return reg;
2609
	}
2332 Serge 2610
 
3031 serge 2611
	return NULL;
2612
}
2332 Serge 2613
 
3031 serge 2614
/**
2615
 * i915_gem_object_get_fence - set up fencing for an object
2616
 * @obj: object to map through a fence reg
2617
 *
2618
 * When mapping objects through the GTT, userspace wants to be able to write
2619
 * to them without having to worry about swizzling if the object is tiled.
2620
 * This function walks the fence regs looking for a free one for @obj,
2621
 * stealing one if it can't find any.
2622
 *
2623
 * It then sets up the reg based on the object's properties: address, pitch
2624
 * and tiling format.
2625
 *
2626
 * For an untiled surface, this removes any existing fence.
2627
 */
2628
int
2629
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2630
{
2631
	struct drm_device *dev = obj->base.dev;
2632
	struct drm_i915_private *dev_priv = dev->dev_private;
2633
	bool enable = obj->tiling_mode != I915_TILING_NONE;
2634
	struct drm_i915_fence_reg *reg;
2635
	int ret;
2332 Serge 2636
 
3031 serge 2637
	/* Have we updated the tiling parameters upon the object and so
2638
	 * will need to serialise the write to the associated fence register?
2639
	 */
2640
	if (obj->fence_dirty) {
3480 Serge 2641
		ret = i915_gem_object_wait_fence(obj);
3031 serge 2642
		if (ret)
2643
			return ret;
2644
	}
2332 Serge 2645
 
3031 serge 2646
	/* Just update our place in the LRU if our fence is getting reused. */
2647
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2648
		reg = &dev_priv->fence_regs[obj->fence_reg];
2649
		if (!obj->fence_dirty) {
2650
			list_move_tail(®->lru_list,
2651
				       &dev_priv->mm.fence_list);
2652
			return 0;
2653
		}
2654
	} else if (enable) {
2655
		reg = i915_find_fence_reg(dev);
2656
		if (reg == NULL)
2657
			return -EDEADLK;
2332 Serge 2658
 
3031 serge 2659
		if (reg->obj) {
2660
			struct drm_i915_gem_object *old = reg->obj;
2332 Serge 2661
 
3480 Serge 2662
			ret = i915_gem_object_wait_fence(old);
3031 serge 2663
			if (ret)
2664
				return ret;
2332 Serge 2665
 
3031 serge 2666
			i915_gem_object_fence_lost(old);
2667
		}
2668
	} else
2669
		return 0;
2332 Serge 2670
 
3031 serge 2671
	i915_gem_object_update_fence(obj, reg, enable);
2672
	obj->fence_dirty = false;
2332 Serge 2673
 
3031 serge 2674
	return 0;
2675
}
2332 Serge 2676
 
3031 serge 2677
static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2678
				     struct drm_mm_node *gtt_space,
2679
				     unsigned long cache_level)
2680
{
2681
	struct drm_mm_node *other;
2332 Serge 2682
 
3031 serge 2683
	/* On non-LLC machines we have to be careful when putting differing
2684
	 * types of snoopable memory together to avoid the prefetcher
3480 Serge 2685
	 * crossing memory domains and dying.
3031 serge 2686
	 */
2687
	if (HAS_LLC(dev))
2688
		return true;
2332 Serge 2689
 
3031 serge 2690
	if (gtt_space == NULL)
2691
		return true;
2332 Serge 2692
 
3031 serge 2693
	if (list_empty(>t_space->node_list))
2694
		return true;
2332 Serge 2695
 
3031 serge 2696
	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2697
	if (other->allocated && !other->hole_follows && other->color != cache_level)
2698
		return false;
2344 Serge 2699
 
3031 serge 2700
	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2701
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2702
		return false;
2344 Serge 2703
 
3031 serge 2704
	return true;
2705
}
2344 Serge 2706
 
3031 serge 2707
static void i915_gem_verify_gtt(struct drm_device *dev)
2708
{
2709
#if WATCH_GTT
2710
	struct drm_i915_private *dev_priv = dev->dev_private;
2711
	struct drm_i915_gem_object *obj;
2712
	int err = 0;
2344 Serge 2713
 
3031 serge 2714
	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2715
		if (obj->gtt_space == NULL) {
2716
			printk(KERN_ERR "object found on GTT list with no space reserved\n");
2717
			err++;
2718
			continue;
2719
		}
2344 Serge 2720
 
3031 serge 2721
		if (obj->cache_level != obj->gtt_space->color) {
2722
			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2723
			       obj->gtt_space->start,
2724
			       obj->gtt_space->start + obj->gtt_space->size,
2725
			       obj->cache_level,
2726
			       obj->gtt_space->color);
2727
			err++;
2728
			continue;
2729
		}
2344 Serge 2730
 
3031 serge 2731
		if (!i915_gem_valid_gtt_space(dev,
2732
					      obj->gtt_space,
2733
					      obj->cache_level)) {
2734
			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2735
			       obj->gtt_space->start,
2736
			       obj->gtt_space->start + obj->gtt_space->size,
2737
			       obj->cache_level);
2738
			err++;
2739
			continue;
2740
		}
2741
	}
2344 Serge 2742
 
3031 serge 2743
	WARN_ON(err);
2744
#endif
2326 Serge 2745
}
2746
 
2332 Serge 2747
/**
2748
 * Finds free space in the GTT aperture and binds the object there.
2749
 */
2750
static int
2751
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2752
			    unsigned alignment,
3031 serge 2753
			    bool map_and_fenceable,
2754
			    bool nonblocking)
2332 Serge 2755
{
2756
	struct drm_device *dev = obj->base.dev;
2757
	drm_i915_private_t *dev_priv = dev->dev_private;
3243 Serge 2758
	struct drm_mm_node *node;
2332 Serge 2759
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2760
	bool mappable, fenceable;
2761
	int ret;
2326 Serge 2762
 
2332 Serge 2763
	fence_size = i915_gem_get_gtt_size(dev,
2764
					   obj->base.size,
2765
					   obj->tiling_mode);
2766
	fence_alignment = i915_gem_get_gtt_alignment(dev,
2767
						     obj->base.size,
3480 Serge 2768
						     obj->tiling_mode, true);
2332 Serge 2769
	unfenced_alignment =
3480 Serge 2770
		i915_gem_get_gtt_alignment(dev,
2332 Serge 2771
						    obj->base.size,
3480 Serge 2772
						    obj->tiling_mode, false);
2332 Serge 2773
 
2774
	if (alignment == 0)
2775
		alignment = map_and_fenceable ? fence_alignment :
2776
						unfenced_alignment;
2777
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2778
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2779
		return -EINVAL;
2780
	}
2781
 
2782
	size = map_and_fenceable ? fence_size : obj->base.size;
2783
 
2784
	/* If the object is bigger than the entire aperture, reject it early
2785
	 * before evicting everything in a vain attempt to find space.
2786
	 */
2787
	if (obj->base.size >
3480 Serge 2788
	    (map_and_fenceable ? dev_priv->gtt.mappable_end : dev_priv->gtt.total)) {
2332 Serge 2789
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
3746 Serge 2790
        FAIL();
2332 Serge 2791
		return -E2BIG;
2792
	}
2793
 
3031 serge 2794
	ret = i915_gem_object_get_pages(obj);
2795
	if (ret)
2796
		return ret;
2797
 
3243 Serge 2798
	i915_gem_object_pin_pages(obj);
2799
 
2800
	node = kzalloc(sizeof(*node), GFP_KERNEL);
2801
	if (node == NULL) {
2802
		i915_gem_object_unpin_pages(obj);
2803
		return -ENOMEM;
2804
	}
2805
 
2332 Serge 2806
 search_free:
2807
	if (map_and_fenceable)
3243 Serge 2808
		ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
3031 serge 2809
							  size, alignment, obj->cache_level,
3480 Serge 2810
							  0, dev_priv->gtt.mappable_end);
2332 Serge 2811
	else
3243 Serge 2812
		ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
2813
						 size, alignment, obj->cache_level);
2814
	if (ret) {
2332 Serge 2815
 
3243 Serge 2816
		i915_gem_object_unpin_pages(obj);
2817
		kfree(node);
2332 Serge 2818
			return ret;
2819
	}
3243 Serge 2820
	if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
2821
		i915_gem_object_unpin_pages(obj);
2822
		drm_mm_put_block(node);
3031 serge 2823
		return -EINVAL;
2824
	}
2332 Serge 2825
 
3031 serge 2826
	ret = i915_gem_gtt_prepare_object(obj);
2332 Serge 2827
	if (ret) {
3243 Serge 2828
		i915_gem_object_unpin_pages(obj);
2829
		drm_mm_put_block(node);
2332 Serge 2830
			return ret;
2831
	}
2832
 
3031 serge 2833
	list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2332 Serge 2834
	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2835
 
3243 Serge 2836
	obj->gtt_space = node;
2837
	obj->gtt_offset = node->start;
2332 Serge 2838
 
2839
	fenceable =
3243 Serge 2840
		node->size == fence_size &&
2841
		(node->start & (fence_alignment - 1)) == 0;
2332 Serge 2842
 
2843
	mappable =
3480 Serge 2844
		obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end;
2332 Serge 2845
 
2846
	obj->map_and_fenceable = mappable && fenceable;
2847
 
3243 Serge 2848
	i915_gem_object_unpin_pages(obj);
2351 Serge 2849
	trace_i915_gem_object_bind(obj, map_and_fenceable);
3031 serge 2850
	i915_gem_verify_gtt(dev);
2332 Serge 2851
	return 0;
2852
}
2853
 
2854
void
2855
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2856
{
2857
	/* If we don't have a page list set up, then we're not pinned
2858
	 * to GPU, and we can ignore the cache flush because it'll happen
2859
	 * again at bind time.
2860
	 */
3243 Serge 2861
	if (obj->pages == NULL)
2332 Serge 2862
		return;
2863
 
3480 Serge 2864
	/*
2865
	 * Stolen memory is always coherent with the GPU as it is explicitly
2866
	 * marked as wc by the system, or the system is cache-coherent.
2867
	 */
2868
	if (obj->stolen)
2869
		return;
2870
 
2332 Serge 2871
	/* If the GPU is snooping the contents of the CPU cache,
2872
	 * we do not need to manually clear the CPU cache lines.  However,
2873
	 * the caches are only snooped when the render cache is
2874
	 * flushed/invalidated.  As we always have to emit invalidations
2875
	 * and flushes when moving into and out of the RENDER domain, correct
2876
	 * snooping behaviour occurs naturally as the result of our domain
2877
	 * tracking.
2878
	 */
2879
	if (obj->cache_level != I915_CACHE_NONE)
2880
		return;
3243 Serge 2881
#if 0
2344 Serge 2882
     if(obj->mapped != NULL)
2883
     {
2884
        uint8_t *page_virtual;
2885
        unsigned int i;
2332 Serge 2886
 
2344 Serge 2887
        page_virtual = obj->mapped;
2888
        asm volatile("mfence");
2889
        for (i = 0; i < obj->base.size; i += x86_clflush_size)
2890
            clflush(page_virtual + i);
2891
        asm volatile("mfence");
2892
     }
2893
     else
2894
     {
2895
        uint8_t *page_virtual;
2896
        unsigned int i;
2897
        page_virtual = AllocKernelSpace(obj->base.size);
2898
        if(page_virtual != NULL)
2899
        {
3031 serge 2900
            dma_addr_t *src, *dst;
2344 Serge 2901
            u32 count;
2902
 
2903
#define page_tabs  0xFDC00000      /* really dirty hack */
2904
 
3031 serge 2905
            src =  obj->pages.page;
2906
            dst =  &((dma_addr_t*)page_tabs)[(u32_t)page_virtual >> 12];
2344 Serge 2907
            count = obj->base.size/4096;
2908
 
2909
            while(count--)
2910
            {
2911
                *dst++ = (0xFFFFF000 & *src++) | 0x001 ;
2912
            };
2913
 
2914
            asm volatile("mfence");
2915
            for (i = 0; i < obj->base.size; i += x86_clflush_size)
2916
                clflush(page_virtual + i);
2917
            asm volatile("mfence");
2918
            FreeKernelSpace(page_virtual);
2919
        }
2920
        else
2921
        {
2922
            asm volatile (
2923
            "mfence         \n"
2924
            "wbinvd         \n"                 /* this is really ugly  */
2925
            "mfence");
2926
        }
2927
     }
3243 Serge 2928
#endif
2929
 
2332 Serge 2930
}
2931
 
2344 Serge 2932
/** Flushes the GTT write domain for the object if it's dirty. */
2933
static void
2934
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2935
{
2936
	uint32_t old_write_domain;
2332 Serge 2937
 
2344 Serge 2938
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2939
		return;
2332 Serge 2940
 
2344 Serge 2941
	/* No actual flushing is required for the GTT write domain.  Writes
2942
	 * to it immediately go to main memory as far as we know, so there's
2943
	 * no chipset flush.  It also doesn't land in render cache.
2944
	 *
2945
	 * However, we do have to enforce the order so that all writes through
2946
	 * the GTT land before any writes to the device, such as updates to
2947
	 * the GATT itself.
2948
	 */
2949
	wmb();
2332 Serge 2950
 
2344 Serge 2951
	old_write_domain = obj->base.write_domain;
2952
	obj->base.write_domain = 0;
2332 Serge 2953
 
2351 Serge 2954
	trace_i915_gem_object_change_domain(obj,
2955
					    obj->base.read_domains,
2956
					    old_write_domain);
2344 Serge 2957
}
2332 Serge 2958
 
2959
/** Flushes the CPU write domain for the object if it's dirty. */
2326 Serge 2960
static void
2332 Serge 2961
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2962
{
2963
	uint32_t old_write_domain;
2964
 
2965
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2966
		return;
2967
 
2968
	i915_gem_clflush_object(obj);
3243 Serge 2969
	i915_gem_chipset_flush(obj->base.dev);
2332 Serge 2970
	old_write_domain = obj->base.write_domain;
2971
	obj->base.write_domain = 0;
2972
 
2351 Serge 2973
	trace_i915_gem_object_change_domain(obj,
2974
					    obj->base.read_domains,
2975
					    old_write_domain);
2332 Serge 2976
}
2977
 
2978
/**
2979
 * Moves a single object to the GTT read, and possibly write domain.
2980
 *
2981
 * This function returns when the move is complete, including waiting on
2982
 * flushes to occur.
2983
 */
2984
int
2985
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2986
{
3031 serge 2987
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2332 Serge 2988
	uint32_t old_write_domain, old_read_domains;
2989
	int ret;
2990
 
2991
	/* Not valid to be called on unbound objects. */
2992
	if (obj->gtt_space == NULL)
2993
		return -EINVAL;
2994
 
2995
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2996
		return 0;
2997
 
3031 serge 2998
	ret = i915_gem_object_wait_rendering(obj, !write);
2332 Serge 2999
		if (ret)
3000
			return ret;
3001
 
3002
	i915_gem_object_flush_cpu_write_domain(obj);
3003
 
3480 Serge 3004
	/* Serialise direct access to this object with the barriers for
3005
	 * coherent writes from the GPU, by effectively invalidating the
3006
	 * GTT domain upon first access.
3007
	 */
3008
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3009
		mb();
3010
 
2332 Serge 3011
	old_write_domain = obj->base.write_domain;
3012
	old_read_domains = obj->base.read_domains;
3013
 
3014
	/* It should now be out of any other write domains, and we can update
3015
	 * the domain values for our changes.
3016
	 */
3017
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3018
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3019
	if (write) {
3020
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3021
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3022
		obj->dirty = 1;
3023
	}
3024
 
2351 Serge 3025
	trace_i915_gem_object_change_domain(obj,
3026
					    old_read_domains,
3027
					    old_write_domain);
3028
 
3031 serge 3029
	/* And bump the LRU for this access */
3030
	if (i915_gem_object_is_inactive(obj))
3031
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3032
 
2332 Serge 3033
	return 0;
3034
}
3035
 
2335 Serge 3036
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3037
				    enum i915_cache_level cache_level)
3038
{
3031 serge 3039
	struct drm_device *dev = obj->base.dev;
3040
	drm_i915_private_t *dev_priv = dev->dev_private;
2335 Serge 3041
	int ret;
2332 Serge 3042
 
2335 Serge 3043
	if (obj->cache_level == cache_level)
3044
		return 0;
2332 Serge 3045
 
2335 Serge 3046
	if (obj->pin_count) {
3047
		DRM_DEBUG("can not change the cache level of pinned objects\n");
3048
		return -EBUSY;
3049
	}
2332 Serge 3050
 
3031 serge 3051
	if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3052
		ret = i915_gem_object_unbind(obj);
3053
		if (ret)
3054
			return ret;
3055
	}
3056
 
2335 Serge 3057
	if (obj->gtt_space) {
3058
		ret = i915_gem_object_finish_gpu(obj);
3059
		if (ret)
3060
			return ret;
2332 Serge 3061
 
2335 Serge 3062
		i915_gem_object_finish_gtt(obj);
2332 Serge 3063
 
2335 Serge 3064
		/* Before SandyBridge, you could not use tiling or fence
3065
		 * registers with snooped memory, so relinquish any fences
3066
		 * currently pointing to our region in the aperture.
3067
		 */
3031 serge 3068
		if (INTEL_INFO(dev)->gen < 6) {
2335 Serge 3069
			ret = i915_gem_object_put_fence(obj);
3070
			if (ret)
3071
				return ret;
3072
		}
2332 Serge 3073
 
3031 serge 3074
		if (obj->has_global_gtt_mapping)
3075
			i915_gem_gtt_bind_object(obj, cache_level);
3076
		if (obj->has_aliasing_ppgtt_mapping)
3077
			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3078
					       obj, cache_level);
3079
 
3080
		obj->gtt_space->color = cache_level;
2335 Serge 3081
	}
2332 Serge 3082
 
2335 Serge 3083
	if (cache_level == I915_CACHE_NONE) {
3084
		u32 old_read_domains, old_write_domain;
2332 Serge 3085
 
2335 Serge 3086
		/* If we're coming from LLC cached, then we haven't
3087
		 * actually been tracking whether the data is in the
3088
		 * CPU cache or not, since we only allow one bit set
3089
		 * in obj->write_domain and have been skipping the clflushes.
3090
		 * Just set it to the CPU cache for now.
3091
		 */
3092
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3093
		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2332 Serge 3094
 
2335 Serge 3095
		old_read_domains = obj->base.read_domains;
3096
		old_write_domain = obj->base.write_domain;
2332 Serge 3097
 
2335 Serge 3098
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3099
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2332 Serge 3100
 
2351 Serge 3101
		trace_i915_gem_object_change_domain(obj,
3102
						    old_read_domains,
3103
						    old_write_domain);
2344 Serge 3104
    }
2332 Serge 3105
 
2335 Serge 3106
	obj->cache_level = cache_level;
3031 serge 3107
	i915_gem_verify_gtt(dev);
2335 Serge 3108
	return 0;
3109
}
2332 Serge 3110
 
3260 Serge 3111
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3112
			       struct drm_file *file)
3113
{
3114
	struct drm_i915_gem_caching *args = data;
3115
	struct drm_i915_gem_object *obj;
3116
	int ret;
3117
 
3480 Serge 3118
     if(args->handle == -2)
3119
     {
3120
        printf("%s handle %d\n", __FUNCTION__, args->handle);
3121
        return 0;
3122
     }
3123
 
3260 Serge 3124
	ret = i915_mutex_lock_interruptible(dev);
3125
	if (ret)
3126
		return ret;
3127
 
3128
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3129
	if (&obj->base == NULL) {
3130
		ret = -ENOENT;
3131
		goto unlock;
3132
	}
3133
 
3134
	args->caching = obj->cache_level != I915_CACHE_NONE;
3135
 
3136
	drm_gem_object_unreference(&obj->base);
3137
unlock:
3138
	mutex_unlock(&dev->struct_mutex);
3139
	return ret;
3140
}
3141
 
3142
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3143
			       struct drm_file *file)
3144
{
3145
	struct drm_i915_gem_caching *args = data;
3146
	struct drm_i915_gem_object *obj;
3147
	enum i915_cache_level level;
3148
	int ret;
3149
 
3480 Serge 3150
     if(args->handle == -2)
3151
     {
3152
        printf("%s handle %d\n", __FUNCTION__, args->handle);
3153
        return 0;
3154
     }
3155
 
3260 Serge 3156
	switch (args->caching) {
3157
	case I915_CACHING_NONE:
3158
		level = I915_CACHE_NONE;
3159
		break;
3160
	case I915_CACHING_CACHED:
3161
		level = I915_CACHE_LLC;
3162
		break;
3163
	default:
3164
		return -EINVAL;
3165
	}
3166
 
3167
	ret = i915_mutex_lock_interruptible(dev);
3168
	if (ret)
3169
		return ret;
3170
 
3171
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3172
	if (&obj->base == NULL) {
3173
		ret = -ENOENT;
3174
		goto unlock;
3175
	}
3176
 
3177
	ret = i915_gem_object_set_cache_level(obj, level);
3178
 
3179
	drm_gem_object_unreference(&obj->base);
3180
unlock:
3181
	mutex_unlock(&dev->struct_mutex);
3182
	return ret;
3183
}
3184
 
2335 Serge 3185
/*
3186
 * Prepare buffer for display plane (scanout, cursors, etc).
3187
 * Can be called from an uninterruptible phase (modesetting) and allows
3188
 * any flushes to be pipelined (for pageflips).
3189
 */
3190
int
3191
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3192
				     u32 alignment,
3193
				     struct intel_ring_buffer *pipelined)
3194
{
3195
	u32 old_read_domains, old_write_domain;
3196
	int ret;
2332 Serge 3197
 
3031 serge 3198
	if (pipelined != obj->ring) {
3199
		ret = i915_gem_object_sync(obj, pipelined);
2335 Serge 3200
	if (ret)
3201
		return ret;
3202
	}
2332 Serge 3203
 
2335 Serge 3204
	/* The display engine is not coherent with the LLC cache on gen6.  As
3205
	 * a result, we make sure that the pinning that is about to occur is
3206
	 * done with uncached PTEs. This is lowest common denominator for all
3207
	 * chipsets.
3208
	 *
3209
	 * However for gen6+, we could do better by using the GFDT bit instead
3210
	 * of uncaching, which would allow us to flush all the LLC-cached data
3211
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3212
	 */
2360 Serge 3213
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3214
	if (ret)
3215
		return ret;
2332 Serge 3216
 
2335 Serge 3217
	/* As the user may map the buffer once pinned in the display plane
3218
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3219
	 * always use map_and_fenceable for all scanout buffers.
3220
	 */
3031 serge 3221
	ret = i915_gem_object_pin(obj, alignment, true, false);
2335 Serge 3222
	if (ret)
3223
		return ret;
2332 Serge 3224
 
2335 Serge 3225
	i915_gem_object_flush_cpu_write_domain(obj);
2332 Serge 3226
 
2335 Serge 3227
	old_write_domain = obj->base.write_domain;
3228
	old_read_domains = obj->base.read_domains;
2332 Serge 3229
 
2335 Serge 3230
	/* It should now be out of any other write domains, and we can update
3231
	 * the domain values for our changes.
3232
	 */
3031 serge 3233
	obj->base.write_domain = 0;
2335 Serge 3234
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2332 Serge 3235
 
2351 Serge 3236
	trace_i915_gem_object_change_domain(obj,
3237
					    old_read_domains,
3238
					    old_write_domain);
2332 Serge 3239
 
2335 Serge 3240
	return 0;
3241
}
2332 Serge 3242
 
2344 Serge 3243
int
3244
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3245
{
3246
	int ret;
2332 Serge 3247
 
2344 Serge 3248
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3249
		return 0;
2332 Serge 3250
 
3031 serge 3251
	ret = i915_gem_object_wait_rendering(obj, false);
3243 Serge 3252
    if (ret)
3253
        return ret;
2332 Serge 3254
 
2344 Serge 3255
	/* Ensure that we invalidate the GPU's caches and TLBs. */
3256
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3031 serge 3257
	return 0;
2344 Serge 3258
}
2332 Serge 3259
 
2344 Serge 3260
/**
3261
 * Moves a single object to the CPU read, and possibly write domain.
3262
 *
3263
 * This function returns when the move is complete, including waiting on
3264
 * flushes to occur.
3265
 */
3031 serge 3266
int
2344 Serge 3267
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3268
{
3269
	uint32_t old_write_domain, old_read_domains;
3270
	int ret;
2332 Serge 3271
 
2344 Serge 3272
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3273
		return 0;
2332 Serge 3274
 
3031 serge 3275
	ret = i915_gem_object_wait_rendering(obj, !write);
2344 Serge 3276
	if (ret)
3277
		return ret;
2332 Serge 3278
 
2344 Serge 3279
	i915_gem_object_flush_gtt_write_domain(obj);
2332 Serge 3280
 
2344 Serge 3281
	old_write_domain = obj->base.write_domain;
3282
	old_read_domains = obj->base.read_domains;
2332 Serge 3283
 
2344 Serge 3284
	/* Flush the CPU cache if it's still invalid. */
3285
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3286
		i915_gem_clflush_object(obj);
2332 Serge 3287
 
2344 Serge 3288
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3289
	}
2332 Serge 3290
 
2344 Serge 3291
	/* It should now be out of any other write domains, and we can update
3292
	 * the domain values for our changes.
3293
	 */
3294
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2332 Serge 3295
 
2344 Serge 3296
	/* If we're writing through the CPU, then the GPU read domains will
3297
	 * need to be invalidated at next use.
3298
	 */
3299
	if (write) {
3300
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3301
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3302
	}
2332 Serge 3303
 
2351 Serge 3304
	trace_i915_gem_object_change_domain(obj,
3305
					    old_read_domains,
3306
					    old_write_domain);
2332 Serge 3307
 
2344 Serge 3308
	return 0;
3309
}
2332 Serge 3310
 
3031 serge 3311
/* Throttle our rendering by waiting until the ring has completed our requests
3312
 * emitted over 20 msec ago.
2344 Serge 3313
 *
3031 serge 3314
 * Note that if we were to use the current jiffies each time around the loop,
3315
 * we wouldn't escape the function with any frames outstanding if the time to
3316
 * render a frame was over 20ms.
3317
 *
3318
 * This should get us reasonable parallelism between CPU and GPU but also
3319
 * relatively low latency when blocking on a particular request to finish.
2344 Serge 3320
 */
3031 serge 3321
static int
3322
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
2344 Serge 3323
{
3031 serge 3324
	struct drm_i915_private *dev_priv = dev->dev_private;
3325
	struct drm_i915_file_private *file_priv = file->driver_priv;
3263 Serge 3326
	unsigned long recent_enough = GetTimerTicks() - msecs_to_jiffies(20);
3031 serge 3327
	struct drm_i915_gem_request *request;
3328
	struct intel_ring_buffer *ring = NULL;
3480 Serge 3329
	unsigned reset_counter;
3031 serge 3330
	u32 seqno = 0;
3331
	int ret;
2332 Serge 3332
 
3480 Serge 3333
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3334
	if (ret)
3335
		return ret;
2332 Serge 3336
 
3480 Serge 3337
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3338
	if (ret)
3339
		return ret;
3340
 
3031 serge 3341
	spin_lock(&file_priv->mm.lock);
3342
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3343
		if (time_after_eq(request->emitted_jiffies, recent_enough))
3344
			break;
2332 Serge 3345
 
3031 serge 3346
		ring = request->ring;
3347
		seqno = request->seqno;
3348
	}
3480 Serge 3349
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3031 serge 3350
	spin_unlock(&file_priv->mm.lock);
2332 Serge 3351
 
3031 serge 3352
	if (seqno == 0)
3353
		return 0;
2332 Serge 3354
 
3480 Serge 3355
	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3031 serge 3356
	if (ret == 0)
3357
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
2332 Serge 3358
 
3031 serge 3359
	return ret;
2352 Serge 3360
}
2332 Serge 3361
 
3362
int
3363
i915_gem_object_pin(struct drm_i915_gem_object *obj,
3364
		    uint32_t alignment,
3031 serge 3365
		    bool map_and_fenceable,
3366
		    bool nonblocking)
2332 Serge 3367
{
3368
	int ret;
3369
 
3031 serge 3370
	if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3371
		return -EBUSY;
2332 Serge 3372
 
3373
	if (obj->gtt_space != NULL) {
3374
		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3375
		    (map_and_fenceable && !obj->map_and_fenceable)) {
3376
			WARN(obj->pin_count,
3377
			     "bo is already pinned with incorrect alignment:"
3378
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3379
			     " obj->map_and_fenceable=%d\n",
3380
			     obj->gtt_offset, alignment,
3381
			     map_and_fenceable,
3382
			     obj->map_and_fenceable);
3383
			ret = i915_gem_object_unbind(obj);
3384
			if (ret)
3385
				return ret;
3386
		}
3387
	}
3388
 
3389
	if (obj->gtt_space == NULL) {
3243 Serge 3390
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3391
 
2332 Serge 3392
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3031 serge 3393
						  map_and_fenceable,
3394
						  nonblocking);
2332 Serge 3395
		if (ret)
3396
			return ret;
3243 Serge 3397
 
3398
		if (!dev_priv->mm.aliasing_ppgtt)
3399
			i915_gem_gtt_bind_object(obj, obj->cache_level);
2332 Serge 3400
	}
3401
 
3031 serge 3402
	if (!obj->has_global_gtt_mapping && map_and_fenceable)
3403
		i915_gem_gtt_bind_object(obj, obj->cache_level);
3404
 
3405
	obj->pin_count++;
2332 Serge 3406
	obj->pin_mappable |= map_and_fenceable;
3407
 
3408
	return 0;
3409
}
3410
 
2344 Serge 3411
void
3412
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3413
{
3414
	BUG_ON(obj->pin_count == 0);
3415
	BUG_ON(obj->gtt_space == NULL);
2332 Serge 3416
 
3031 serge 3417
	if (--obj->pin_count == 0)
2344 Serge 3418
		obj->pin_mappable = false;
3419
}
2332 Serge 3420
 
3031 serge 3421
int
3422
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3423
		   struct drm_file *file)
3424
{
3425
	struct drm_i915_gem_pin *args = data;
3426
	struct drm_i915_gem_object *obj;
3427
	int ret;
2332 Serge 3428
 
3480 Serge 3429
     if(args->handle == -2)
3430
     {
3431
        printf("%s handle %d\n", __FUNCTION__, args->handle);
3432
        return 0;
3433
     }
3434
 
3031 serge 3435
	ret = i915_mutex_lock_interruptible(dev);
3436
	if (ret)
3437
		return ret;
2332 Serge 3438
 
3031 serge 3439
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3440
	if (&obj->base == NULL) {
3441
		ret = -ENOENT;
3442
		goto unlock;
3443
	}
2332 Serge 3444
 
3031 serge 3445
	if (obj->madv != I915_MADV_WILLNEED) {
3446
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3447
		ret = -EINVAL;
3448
		goto out;
3449
	}
2332 Serge 3450
 
3031 serge 3451
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
3452
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3453
			  args->handle);
3454
		ret = -EINVAL;
3455
		goto out;
3456
	}
2332 Serge 3457
 
3243 Serge 3458
	if (obj->user_pin_count == 0) {
3031 serge 3459
		ret = i915_gem_object_pin(obj, args->alignment, true, false);
3460
		if (ret)
3461
			goto out;
3462
	}
2332 Serge 3463
 
3243 Serge 3464
	obj->user_pin_count++;
3465
	obj->pin_filp = file;
3466
 
3031 serge 3467
	/* XXX - flush the CPU caches for pinned objects
3468
	 * as the X server doesn't manage domains yet
3469
	 */
3470
	i915_gem_object_flush_cpu_write_domain(obj);
3471
	args->offset = obj->gtt_offset;
3472
out:
3473
	drm_gem_object_unreference(&obj->base);
3474
unlock:
3475
	mutex_unlock(&dev->struct_mutex);
3476
	return ret;
3477
}
2332 Serge 3478
 
3255 Serge 3479
#if 0
3480
 
3031 serge 3481
int
3482
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3483
		     struct drm_file *file)
3484
{
3485
	struct drm_i915_gem_pin *args = data;
3486
	struct drm_i915_gem_object *obj;
3487
	int ret;
2332 Serge 3488
 
3031 serge 3489
	ret = i915_mutex_lock_interruptible(dev);
3490
	if (ret)
3491
		return ret;
2332 Serge 3492
 
3031 serge 3493
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3494
	if (&obj->base == NULL) {
3495
		ret = -ENOENT;
3496
		goto unlock;
3497
	}
2332 Serge 3498
 
3031 serge 3499
	if (obj->pin_filp != file) {
3500
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3501
			  args->handle);
3502
		ret = -EINVAL;
3503
		goto out;
3504
	}
3505
	obj->user_pin_count--;
3506
	if (obj->user_pin_count == 0) {
3507
		obj->pin_filp = NULL;
3508
		i915_gem_object_unpin(obj);
3509
	}
2332 Serge 3510
 
3031 serge 3511
out:
3512
	drm_gem_object_unreference(&obj->base);
3513
unlock:
3514
	mutex_unlock(&dev->struct_mutex);
3515
	return ret;
3516
}
2332 Serge 3517
 
3260 Serge 3518
#endif
3519
 
3031 serge 3520
int
3521
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3522
		    struct drm_file *file)
3523
{
3524
	struct drm_i915_gem_busy *args = data;
3525
	struct drm_i915_gem_object *obj;
3526
	int ret;
2332 Serge 3527
 
3031 serge 3528
	ret = i915_mutex_lock_interruptible(dev);
3529
	if (ret)
3530
		return ret;
2332 Serge 3531
 
3480 Serge 3532
    if(args->handle == -2)
3533
    {
3534
        obj = get_fb_obj();
3535
        drm_gem_object_reference(&obj->base);
3536
    }
3537
    else
3031 serge 3538
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3539
	if (&obj->base == NULL) {
3540
		ret = -ENOENT;
3541
		goto unlock;
3542
	}
2332 Serge 3543
 
3031 serge 3544
	/* Count all active objects as busy, even if they are currently not used
3545
	 * by the gpu. Users of this interface expect objects to eventually
3546
	 * become non-busy without any further actions, therefore emit any
3547
	 * necessary flushes here.
3548
	 */
3549
	ret = i915_gem_object_flush_active(obj);
2332 Serge 3550
 
3031 serge 3551
	args->busy = obj->active;
3552
	if (obj->ring) {
3553
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
3554
		args->busy |= intel_ring_flag(obj->ring) << 16;
3555
	}
2332 Serge 3556
 
3031 serge 3557
	drm_gem_object_unreference(&obj->base);
3558
unlock:
3559
	mutex_unlock(&dev->struct_mutex);
3560
	return ret;
3561
}
2332 Serge 3562
 
3031 serge 3563
int
3564
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3565
			struct drm_file *file_priv)
3566
{
3567
	return i915_gem_ring_throttle(dev, file_priv);
3568
}
2332 Serge 3569
 
3263 Serge 3570
#if 0
3571
 
3031 serge 3572
int
3573
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3574
		       struct drm_file *file_priv)
3575
{
3576
	struct drm_i915_gem_madvise *args = data;
3577
	struct drm_i915_gem_object *obj;
3578
	int ret;
2332 Serge 3579
 
3031 serge 3580
	switch (args->madv) {
3581
	case I915_MADV_DONTNEED:
3582
	case I915_MADV_WILLNEED:
3583
	    break;
3584
	default:
3585
	    return -EINVAL;
3586
	}
2332 Serge 3587
 
3031 serge 3588
	ret = i915_mutex_lock_interruptible(dev);
3589
	if (ret)
3590
		return ret;
2332 Serge 3591
 
3031 serge 3592
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3593
	if (&obj->base == NULL) {
3594
		ret = -ENOENT;
3595
		goto unlock;
3596
	}
2332 Serge 3597
 
3031 serge 3598
	if (obj->pin_count) {
3599
		ret = -EINVAL;
3600
		goto out;
3601
	}
2332 Serge 3602
 
3031 serge 3603
	if (obj->madv != __I915_MADV_PURGED)
3604
		obj->madv = args->madv;
2332 Serge 3605
 
3031 serge 3606
	/* if the object is no longer attached, discard its backing storage */
3607
	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3608
		i915_gem_object_truncate(obj);
2332 Serge 3609
 
3031 serge 3610
	args->retained = obj->madv != __I915_MADV_PURGED;
2332 Serge 3611
 
3031 serge 3612
out:
3613
	drm_gem_object_unreference(&obj->base);
3614
unlock:
3615
	mutex_unlock(&dev->struct_mutex);
3616
	return ret;
3617
}
3618
#endif
2332 Serge 3619
 
3031 serge 3620
void i915_gem_object_init(struct drm_i915_gem_object *obj,
3621
			  const struct drm_i915_gem_object_ops *ops)
3622
{
3623
	INIT_LIST_HEAD(&obj->mm_list);
3624
	INIT_LIST_HEAD(&obj->gtt_list);
3625
	INIT_LIST_HEAD(&obj->ring_list);
3626
	INIT_LIST_HEAD(&obj->exec_list);
2332 Serge 3627
 
3031 serge 3628
	obj->ops = ops;
3629
 
3630
	obj->fence_reg = I915_FENCE_REG_NONE;
3631
	obj->madv = I915_MADV_WILLNEED;
3632
	/* Avoid an unnecessary call to unbind on the first bind. */
3633
	obj->map_and_fenceable = true;
3634
 
3635
	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3636
}
3637
 
3638
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3639
	.get_pages = i915_gem_object_get_pages_gtt,
3640
	.put_pages = i915_gem_object_put_pages_gtt,
3641
};
3642
 
2332 Serge 3643
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3644
						  size_t size)
3645
{
3646
	struct drm_i915_gem_object *obj;
3031 serge 3647
	struct address_space *mapping;
3480 Serge 3648
	gfp_t mask;
2340 Serge 3649
 
3746 Serge 3650
	obj = i915_gem_object_alloc(dev);
3651
 
2332 Serge 3652
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3653
	if (obj == NULL)
3746 Serge 3654
    {
3655
        FAIL();
2332 Serge 3656
		return NULL;
3746 Serge 3657
    };
2332 Serge 3658
 
3659
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3660
		kfree(obj);
3746 Serge 3661
        FAIL();
2332 Serge 3662
		return NULL;
3663
	}
3664
 
3665
 
3031 serge 3666
	i915_gem_object_init(obj, &i915_gem_object_ops);
2332 Serge 3667
 
3668
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3669
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3670
 
3031 serge 3671
	if (HAS_LLC(dev)) {
3672
		/* On some devices, we can have the GPU use the LLC (the CPU
2332 Serge 3673
		 * cache) for about a 10% performance improvement
3674
		 * compared to uncached.  Graphics requests other than
3675
		 * display scanout are coherent with the CPU in
3676
		 * accessing this cache.  This means in this mode we
3677
		 * don't need to clflush on the CPU side, and on the
3678
		 * GPU side we only need to flush internal caches to
3679
		 * get data visible to the CPU.
3680
		 *
3681
		 * However, we maintain the display planes as UC, and so
3682
		 * need to rebind when first used as such.
3683
		 */
3684
		obj->cache_level = I915_CACHE_LLC;
3685
	} else
3686
		obj->cache_level = I915_CACHE_NONE;
3687
 
3688
	return obj;
3689
}
3690
 
2344 Serge 3691
int i915_gem_init_object(struct drm_gem_object *obj)
3692
{
3693
	BUG();
2332 Serge 3694
 
2344 Serge 3695
	return 0;
3696
}
2332 Serge 3697
 
3031 serge 3698
void i915_gem_free_object(struct drm_gem_object *gem_obj)
2344 Serge 3699
{
3031 serge 3700
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
2344 Serge 3701
	struct drm_device *dev = obj->base.dev;
3702
	drm_i915_private_t *dev_priv = dev->dev_private;
2332 Serge 3703
 
3031 serge 3704
	trace_i915_gem_object_destroy(obj);
3705
 
3706
//   if (obj->phys_obj)
3707
//       i915_gem_detach_phys_object(dev, obj);
3298 Serge 3708
//    printf("%s obj %p\n", __FUNCTION__, obj);
3031 serge 3709
 
3710
	obj->pin_count = 0;
3711
	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3712
		bool was_interruptible;
3713
 
3714
		was_interruptible = dev_priv->mm.interruptible;
3715
		dev_priv->mm.interruptible = false;
3716
 
3717
		WARN_ON(i915_gem_object_unbind(obj));
3718
 
3719
		dev_priv->mm.interruptible = was_interruptible;
2344 Serge 3720
	}
2332 Serge 3721
 
3031 serge 3722
	obj->pages_pin_count = 0;
3723
	i915_gem_object_put_pages(obj);
3724
//   i915_gem_object_free_mmap_offset(obj);
2332 Serge 3725
 
3243 Serge 3726
	BUG_ON(obj->pages);
2332 Serge 3727
 
3031 serge 3728
//   if (obj->base.import_attach)
3729
//       drm_prime_gem_destroy(&obj->base, NULL);
3730
 
3290 Serge 3731
    if(obj->base.filp != NULL)
3732
    {
3298 Serge 3733
//        printf("filp %p\n", obj->base.filp);
3290 Serge 3734
        shmem_file_delete(obj->base.filp);
3735
    }
3736
 
2344 Serge 3737
	drm_gem_object_release(&obj->base);
3738
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
2332 Serge 3739
 
2344 Serge 3740
	kfree(obj->bit_17);
3741
	kfree(obj);
3742
}
2332 Serge 3743
 
3031 serge 3744
#if 0
3745
int
3746
i915_gem_idle(struct drm_device *dev)
2344 Serge 3747
{
3031 serge 3748
	drm_i915_private_t *dev_priv = dev->dev_private;
3749
	int ret;
2332 Serge 3750
 
3031 serge 3751
	mutex_lock(&dev->struct_mutex);
2332 Serge 3752
 
3031 serge 3753
	if (dev_priv->mm.suspended) {
3754
		mutex_unlock(&dev->struct_mutex);
3755
		return 0;
3756
	}
2332 Serge 3757
 
3031 serge 3758
	ret = i915_gpu_idle(dev);
3759
	if (ret) {
3760
		mutex_unlock(&dev->struct_mutex);
3761
		return ret;
3762
	}
3763
	i915_gem_retire_requests(dev);
3764
 
3480 Serge 3765
	/* Under UMS, be paranoid and evict. */
3766
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
3767
		i915_gem_evict_everything(dev);
3768
 
3031 serge 3769
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
3770
	 * We need to replace this with a semaphore, or something.
3771
	 * And not confound mm.suspended!
3772
	 */
3773
	dev_priv->mm.suspended = 1;
3480 Serge 3774
	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
3031 serge 3775
 
3776
	i915_kernel_lost_context(dev);
3777
	i915_gem_cleanup_ringbuffer(dev);
3778
 
3779
	mutex_unlock(&dev->struct_mutex);
3780
 
3781
	/* Cancel the retire work handler, which should be idle now. */
3263 Serge 3782
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3031 serge 3783
 
3784
	return 0;
2344 Serge 3785
}
3031 serge 3786
#endif
2332 Serge 3787
 
3031 serge 3788
void i915_gem_l3_remap(struct drm_device *dev)
3789
{
3790
	drm_i915_private_t *dev_priv = dev->dev_private;
3791
	u32 misccpctl;
3792
	int i;
2332 Serge 3793
 
3480 Serge 3794
	if (!HAS_L3_GPU_CACHE(dev))
3031 serge 3795
		return;
2332 Serge 3796
 
3243 Serge 3797
	if (!dev_priv->l3_parity.remap_info)
3031 serge 3798
		return;
2332 Serge 3799
 
3031 serge 3800
	misccpctl = I915_READ(GEN7_MISCCPCTL);
3801
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3802
	POSTING_READ(GEN7_MISCCPCTL);
2332 Serge 3803
 
3031 serge 3804
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3805
		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3243 Serge 3806
		if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3031 serge 3807
			DRM_DEBUG("0x%x was already programmed to %x\n",
3808
				  GEN7_L3LOG_BASE + i, remap);
3243 Serge 3809
		if (remap && !dev_priv->l3_parity.remap_info[i/4])
3031 serge 3810
			DRM_DEBUG_DRIVER("Clearing remapped register\n");
3243 Serge 3811
		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3031 serge 3812
	}
2332 Serge 3813
 
3031 serge 3814
	/* Make sure all the writes land before disabling dop clock gating */
3815
	POSTING_READ(GEN7_L3LOG_BASE);
2332 Serge 3816
 
3031 serge 3817
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3818
}
2332 Serge 3819
 
3031 serge 3820
void i915_gem_init_swizzling(struct drm_device *dev)
3821
{
3822
	drm_i915_private_t *dev_priv = dev->dev_private;
2332 Serge 3823
 
3031 serge 3824
	if (INTEL_INFO(dev)->gen < 5 ||
3825
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3826
		return;
2332 Serge 3827
 
3031 serge 3828
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3829
				 DISP_TILE_SURFACE_SWIZZLING);
2332 Serge 3830
 
3031 serge 3831
	if (IS_GEN5(dev))
3832
		return;
2344 Serge 3833
 
3031 serge 3834
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3835
	if (IS_GEN6(dev))
3836
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3480 Serge 3837
	else if (IS_GEN7(dev))
3838
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3031 serge 3839
	else
3480 Serge 3840
		BUG();
3031 serge 3841
}
3842
 
3843
static bool
3844
intel_enable_blt(struct drm_device *dev)
3845
{
3846
	if (!HAS_BLT(dev))
3847
		return false;
3848
 
3849
	/* The blitter was dysfunctional on early prototypes */
3850
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3851
		DRM_INFO("BLT not supported on this pre-production hardware;"
3852
			 " graphics performance will be degraded.\n");
3853
		return false;
3854
	}
3855
 
3856
	return true;
3857
}
3858
 
3480 Serge 3859
static int i915_gem_init_rings(struct drm_device *dev)
2332 Serge 3860
{
3480 Serge 3861
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 3862
	int ret;
2351 Serge 3863
 
2332 Serge 3864
	ret = intel_init_render_ring_buffer(dev);
3865
	if (ret)
3866
		return ret;
3867
 
3868
    if (HAS_BSD(dev)) {
3869
		ret = intel_init_bsd_ring_buffer(dev);
3870
		if (ret)
3871
			goto cleanup_render_ring;
3872
	}
3873
 
3031 serge 3874
	if (intel_enable_blt(dev)) {
2332 Serge 3875
		ret = intel_init_blt_ring_buffer(dev);
3876
		if (ret)
3877
			goto cleanup_bsd_ring;
3878
	}
3879
 
3480 Serge 3880
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
3881
	if (ret)
3882
		goto cleanup_blt_ring;
2351 Serge 3883
 
2332 Serge 3884
	return 0;
3885
 
3480 Serge 3886
cleanup_blt_ring:
3887
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
2332 Serge 3888
cleanup_bsd_ring:
3889
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3890
cleanup_render_ring:
3891
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3480 Serge 3892
 
2332 Serge 3893
	return ret;
3894
}
3895
 
3480 Serge 3896
int
3897
i915_gem_init_hw(struct drm_device *dev)
3031 serge 3898
{
3480 Serge 3899
	drm_i915_private_t *dev_priv = dev->dev_private;
3900
	int ret;
3031 serge 3901
 
3480 Serge 3902
	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3903
		return -EIO;
3031 serge 3904
 
3480 Serge 3905
	if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3906
		I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3907
 
3746 Serge 3908
	if (HAS_PCH_NOP(dev)) {
3909
		u32 temp = I915_READ(GEN7_MSG_CTL);
3910
		temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
3911
		I915_WRITE(GEN7_MSG_CTL, temp);
3912
	}
3913
 
3480 Serge 3914
	i915_gem_l3_remap(dev);
3915
 
3916
	i915_gem_init_swizzling(dev);
3917
 
3918
	ret = i915_gem_init_rings(dev);
3919
	if (ret)
3920
		return ret;
3921
 
3922
	/*
3923
	 * XXX: There was some w/a described somewhere suggesting loading
3924
	 * contexts before PPGTT.
3925
	 */
3926
	i915_gem_context_init(dev);
3746 Serge 3927
	if (dev_priv->mm.aliasing_ppgtt) {
3928
		ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
3929
		if (ret) {
3930
			i915_gem_cleanup_aliasing_ppgtt(dev);
3931
			DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
3932
		}
3933
	}
3480 Serge 3934
 
3935
	return 0;
3031 serge 3936
}
3937
 
3938
#define LFB_SIZE 0xC00000
3939
 
3940
int i915_gem_init(struct drm_device *dev)
3941
{
3942
	struct drm_i915_private *dev_priv = dev->dev_private;
3943
	int ret;
3944
 
3945
	mutex_lock(&dev->struct_mutex);
3746 Serge 3946
 
3947
	if (IS_VALLEYVIEW(dev)) {
3948
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
3949
		I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
3950
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
3951
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
3952
	}
3953
 
3480 Serge 3954
	i915_gem_init_global_gtt(dev);
3746 Serge 3955
 
3031 serge 3956
	ret = i915_gem_init_hw(dev);
3957
	mutex_unlock(&dev->struct_mutex);
3958
	if (ret) {
3959
		i915_gem_cleanup_aliasing_ppgtt(dev);
3960
		return ret;
3961
	}
3962
 
3746 Serge 3963
 
3031 serge 3964
    return 0;
3965
}
3966
 
2332 Serge 3967
void
3968
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3969
{
3970
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 3971
	struct intel_ring_buffer *ring;
2332 Serge 3972
	int i;
3973
 
3031 serge 3974
	for_each_ring(ring, dev_priv, i)
3975
		intel_cleanup_ring_buffer(ring);
2332 Serge 3976
}
3977
 
3031 serge 3978
#if 0
3979
 
2332 Serge 3980
int
3981
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3982
		       struct drm_file *file_priv)
3983
{
3984
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 3985
	int ret;
2332 Serge 3986
 
3987
	if (drm_core_check_feature(dev, DRIVER_MODESET))
3988
		return 0;
3989
 
3480 Serge 3990
	if (i915_reset_in_progress(&dev_priv->gpu_error)) {
2332 Serge 3991
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3480 Serge 3992
		atomic_set(&dev_priv->gpu_error.reset_counter, 0);
2332 Serge 3993
	}
3994
 
3995
	mutex_lock(&dev->struct_mutex);
3996
	dev_priv->mm.suspended = 0;
3997
 
3031 serge 3998
	ret = i915_gem_init_hw(dev);
2332 Serge 3999
	if (ret != 0) {
4000
		mutex_unlock(&dev->struct_mutex);
4001
		return ret;
4002
	}
4003
 
4004
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
4005
	mutex_unlock(&dev->struct_mutex);
4006
 
4007
	ret = drm_irq_install(dev);
4008
	if (ret)
4009
		goto cleanup_ringbuffer;
4010
 
4011
	return 0;
4012
 
4013
cleanup_ringbuffer:
4014
	mutex_lock(&dev->struct_mutex);
4015
	i915_gem_cleanup_ringbuffer(dev);
4016
	dev_priv->mm.suspended = 1;
4017
	mutex_unlock(&dev->struct_mutex);
4018
 
4019
	return ret;
4020
}
4021
 
4022
int
4023
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4024
		       struct drm_file *file_priv)
4025
{
4026
	if (drm_core_check_feature(dev, DRIVER_MODESET))
4027
		return 0;
4028
 
4029
	drm_irq_uninstall(dev);
4030
	return i915_gem_idle(dev);
4031
}
4032
 
4033
void
4034
i915_gem_lastclose(struct drm_device *dev)
4035
{
4036
	int ret;
4037
 
4038
	if (drm_core_check_feature(dev, DRIVER_MODESET))
4039
		return;
4040
 
4041
	ret = i915_gem_idle(dev);
4042
	if (ret)
4043
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4044
}
4045
#endif
4046
 
4047
static void
2326 Serge 4048
init_ring_lists(struct intel_ring_buffer *ring)
4049
{
4050
    INIT_LIST_HEAD(&ring->active_list);
4051
    INIT_LIST_HEAD(&ring->request_list);
4052
}
4053
 
4054
void
4055
i915_gem_load(struct drm_device *dev)
4056
{
3480 Serge 4057
	drm_i915_private_t *dev_priv = dev->dev_private;
2326 Serge 4058
    int i;
4059
 
4060
    INIT_LIST_HEAD(&dev_priv->mm.active_list);
4061
    INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3031 serge 4062
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4063
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
2326 Serge 4064
    INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4065
    for (i = 0; i < I915_NUM_RINGS; i++)
4066
        init_ring_lists(&dev_priv->ring[i]);
2342 Serge 4067
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
2326 Serge 4068
        INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
2360 Serge 4069
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4070
			  i915_gem_retire_work_handler);
3480 Serge 4071
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
2326 Serge 4072
 
4073
    /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4074
    if (IS_GEN3(dev)) {
3031 serge 4075
		I915_WRITE(MI_ARB_STATE,
4076
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
2326 Serge 4077
    }
4078
 
4079
    dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4080
 
3746 Serge 4081
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4082
		dev_priv->num_fence_regs = 32;
4083
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
2326 Serge 4084
        dev_priv->num_fence_regs = 16;
4085
    else
4086
        dev_priv->num_fence_regs = 8;
4087
 
4088
    /* Initialize fence registers to zero */
3746 Serge 4089
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4090
	i915_gem_restore_fences(dev);
2326 Serge 4091
 
4092
    i915_gem_detect_bit_6_swizzle(dev);
4093
 
4094
    dev_priv->mm.interruptible = true;
4095
 
4096
//    dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4097
//    dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4098
//    register_shrinker(&dev_priv->mm.inactive_shrinker);
4099
}
4100
 
4101