Subversion Repositories Kolibri OS

Rev

Rev 3266 | Rev 3298 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2326 Serge 1
/*
2
 * Copyright © 2008 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Eric Anholt 
25
 *
26
 */
27
 
3031 serge 28
#include 
29
#include 
2326 Serge 30
#include "i915_drv.h"
2351 Serge 31
#include "i915_trace.h"
2326 Serge 32
#include "intel_drv.h"
3260 Serge 33
#include 
2330 Serge 34
#include 
2326 Serge 35
//#include 
36
#include 
37
 
2344 Serge 38
extern int x86_clflush_size;
2332 Serge 39
 
3263 Serge 40
#define PROT_READ       0x1             /* page can be read */
41
#define PROT_WRITE      0x2             /* page can be written */
42
#define MAP_SHARED      0x01            /* Share changes */
43
 
2344 Serge 44
#undef mb
45
#undef rmb
46
#undef wmb
47
#define mb() asm volatile("mfence")
48
#define rmb() asm volatile ("lfence")
49
#define wmb() asm volatile ("sfence")
50
 
3266 Serge 51
struct drm_i915_gem_object *get_fb_obj();
52
 
3263 Serge 53
unsigned long vm_mmap(struct file *file, unsigned long addr,
54
         unsigned long len, unsigned long prot,
55
         unsigned long flag, unsigned long offset);
56
 
2344 Serge 57
static inline void clflush(volatile void *__p)
58
{
59
    asm volatile("clflush %0" : "+m" (*(volatile char*)__p));
60
}
61
 
2332 Serge 62
#define MAX_ERRNO       4095
63
 
64
#define IS_ERR_VALUE(x) unlikely((x) >= (unsigned long)-MAX_ERRNO)
65
 
66
 
2326 Serge 67
#define I915_EXEC_CONSTANTS_MASK        (3<<6)
68
#define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
69
#define I915_EXEC_CONSTANTS_ABSOLUTE    (1<<6)
70
#define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
71
 
2332 Serge 72
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
73
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
74
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
75
						    unsigned alignment,
3031 serge 76
						    bool map_and_fenceable,
77
						    bool nonblocking);
2332 Serge 78
static int i915_gem_phys_pwrite(struct drm_device *dev,
79
				struct drm_i915_gem_object *obj,
80
				struct drm_i915_gem_pwrite *args,
81
				struct drm_file *file);
2326 Serge 82
 
3031 serge 83
static void i915_gem_write_fence(struct drm_device *dev, int reg,
84
				 struct drm_i915_gem_object *obj);
85
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
86
					 struct drm_i915_fence_reg *fence,
87
					 bool enable);
2332 Serge 88
 
3031 serge 89
static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
90
static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
91
static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
92
 
93
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
94
{
95
	if (obj->tiling_mode)
96
		i915_gem_release_mmap(obj);
97
 
98
	/* As we do not have an associated fence register, we will force
99
	 * a tiling change if we ever need to acquire one.
100
	 */
101
	obj->fence_dirty = false;
102
	obj->fence_reg = I915_FENCE_REG_NONE;
103
}
104
 
2332 Serge 105
/* some bookkeeping */
106
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
107
				  size_t size)
108
{
109
	dev_priv->mm.object_count++;
110
	dev_priv->mm.object_memory += size;
111
}
112
 
113
static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
114
				     size_t size)
115
{
116
	dev_priv->mm.object_count--;
117
	dev_priv->mm.object_memory -= size;
118
}
119
 
120
static int
121
i915_gem_wait_for_error(struct drm_device *dev)
122
{
123
	struct drm_i915_private *dev_priv = dev->dev_private;
124
	struct completion *x = &dev_priv->error_completion;
125
	unsigned long flags;
126
	int ret;
127
 
128
	if (!atomic_read(&dev_priv->mm.wedged))
129
		return 0;
3255 Serge 130
#if 0
3031 serge 131
	/*
132
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
133
	 * userspace. If it takes that long something really bad is going on and
134
	 * we should simply try to bail out and fail as gracefully as possible.
135
	 */
136
	ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
137
	if (ret == 0) {
138
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
139
		return -EIO;
140
	} else if (ret < 0) {
2332 Serge 141
		return ret;
3031 serge 142
	}
2332 Serge 143
 
144
	if (atomic_read(&dev_priv->mm.wedged)) {
145
		/* GPU is hung, bump the completion count to account for
146
		 * the token we just consumed so that we never hit zero and
147
		 * end up waiting upon a subsequent completion event that
148
		 * will never happen.
149
		 */
150
		spin_lock_irqsave(&x->wait.lock, flags);
151
		x->done++;
152
		spin_unlock_irqrestore(&x->wait.lock, flags);
153
	}
3255 Serge 154
#endif
155
 
2332 Serge 156
	return 0;
157
}
158
 
159
int i915_mutex_lock_interruptible(struct drm_device *dev)
160
{
161
	int ret;
162
 
163
	ret = i915_gem_wait_for_error(dev);
164
	if (ret)
165
		return ret;
166
 
3255 Serge 167
    mutex_lock(&dev->struct_mutex);
2332 Serge 168
 
169
	WARN_ON(i915_verify_lists(dev));
170
	return 0;
171
}
172
 
173
static inline bool
174
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
175
{
3031 serge 176
	return obj->gtt_space && !obj->active;
2332 Serge 177
}
178
 
179
 
180
#if 0
181
 
182
int
183
i915_gem_init_ioctl(struct drm_device *dev, void *data,
184
		    struct drm_file *file)
185
{
186
	struct drm_i915_gem_init *args = data;
187
 
3031 serge 188
	if (drm_core_check_feature(dev, DRIVER_MODESET))
189
		return -ENODEV;
190
 
2332 Serge 191
	if (args->gtt_start >= args->gtt_end ||
192
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
193
		return -EINVAL;
194
 
3031 serge 195
	/* GEM with user mode setting was never supported on ilk and later. */
196
	if (INTEL_INFO(dev)->gen >= 5)
197
		return -ENODEV;
198
 
2332 Serge 199
	mutex_lock(&dev->struct_mutex);
3031 serge 200
	i915_gem_init_global_gtt(dev, args->gtt_start,
201
				 args->gtt_end, args->gtt_end);
2332 Serge 202
	mutex_unlock(&dev->struct_mutex);
203
 
204
	return 0;
205
}
2351 Serge 206
#endif
2332 Serge 207
 
208
int
209
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
210
			    struct drm_file *file)
211
{
212
	struct drm_i915_private *dev_priv = dev->dev_private;
213
	struct drm_i915_gem_get_aperture *args = data;
214
	struct drm_i915_gem_object *obj;
215
	size_t pinned;
216
 
217
	pinned = 0;
218
	mutex_lock(&dev->struct_mutex);
3031 serge 219
	list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
220
		if (obj->pin_count)
2332 Serge 221
		pinned += obj->gtt_space->size;
222
	mutex_unlock(&dev->struct_mutex);
223
 
224
	args->aper_size = dev_priv->mm.gtt_total;
2342 Serge 225
	args->aper_available_size = args->aper_size - pinned;
2332 Serge 226
 
227
	return 0;
228
}
229
 
3031 serge 230
static int
231
i915_gem_create(struct drm_file *file,
2332 Serge 232
		struct drm_device *dev,
233
		uint64_t size,
234
		uint32_t *handle_p)
235
{
236
	struct drm_i915_gem_object *obj;
237
	int ret;
238
	u32 handle;
239
 
3290 Serge 240
    ENTER();
241
 
2332 Serge 242
	size = roundup(size, PAGE_SIZE);
2342 Serge 243
	if (size == 0)
244
		return -EINVAL;
2332 Serge 245
 
246
	/* Allocate the new object */
247
	obj = i915_gem_alloc_object(dev, size);
248
	if (obj == NULL)
249
		return -ENOMEM;
250
 
251
	ret = drm_gem_handle_create(file, &obj->base, &handle);
252
	if (ret) {
253
		drm_gem_object_release(&obj->base);
254
		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
255
		kfree(obj);
256
		return ret;
257
	}
258
 
259
	/* drop reference from allocate - handle holds it now */
260
	drm_gem_object_unreference(&obj->base);
2351 Serge 261
	trace_i915_gem_object_create(obj);
2332 Serge 262
 
263
	*handle_p = handle;
3290 Serge 264
 
265
    printf("%s obj %p handle %d\n", __FUNCTION__, obj, handle);
266
 
2332 Serge 267
	return 0;
268
}
269
 
270
int
271
i915_gem_dumb_create(struct drm_file *file,
272
		     struct drm_device *dev,
273
		     struct drm_mode_create_dumb *args)
274
{
275
	/* have to work out size/pitch and return them */
276
	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
277
	args->size = args->pitch * args->height;
278
	return i915_gem_create(file, dev,
279
			       args->size, &args->handle);
280
}
281
 
282
int i915_gem_dumb_destroy(struct drm_file *file,
283
			  struct drm_device *dev,
284
			  uint32_t handle)
285
{
286
	return drm_gem_handle_delete(file, handle);
287
}
288
 
2326 Serge 289
/**
2332 Serge 290
 * Creates a new mm object and returns a handle to it.
291
 */
292
int
293
i915_gem_create_ioctl(struct drm_device *dev, void *data,
294
		      struct drm_file *file)
295
{
296
	struct drm_i915_gem_create *args = data;
3031 serge 297
 
2332 Serge 298
	return i915_gem_create(file, dev,
299
			       args->size, &args->handle);
300
}
301
 
302
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
303
{
304
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
305
 
306
	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
307
		obj->tiling_mode != I915_TILING_NONE;
308
}
3260 Serge 309
#if 0
2332 Serge 310
 
3031 serge 311
static inline int
312
__copy_to_user_swizzled(char __user *cpu_vaddr,
313
			const char *gpu_vaddr, int gpu_offset,
2332 Serge 314
		int length)
315
{
3031 serge 316
	int ret, cpu_offset = 0;
2332 Serge 317
 
3031 serge 318
	while (length > 0) {
319
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
320
		int this_length = min(cacheline_end - gpu_offset, length);
321
		int swizzled_gpu_offset = gpu_offset ^ 64;
2332 Serge 322
 
3031 serge 323
		ret = __copy_to_user(cpu_vaddr + cpu_offset,
324
				     gpu_vaddr + swizzled_gpu_offset,
325
				     this_length);
326
		if (ret)
327
			return ret + length;
2332 Serge 328
 
3031 serge 329
		cpu_offset += this_length;
330
		gpu_offset += this_length;
331
		length -= this_length;
332
	}
333
 
334
	return 0;
2332 Serge 335
}
336
 
3031 serge 337
static inline int
338
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
339
			  const char __user *cpu_vaddr,
340
			  int length)
2332 Serge 341
{
3031 serge 342
	int ret, cpu_offset = 0;
2332 Serge 343
 
344
	while (length > 0) {
345
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
346
		int this_length = min(cacheline_end - gpu_offset, length);
347
		int swizzled_gpu_offset = gpu_offset ^ 64;
348
 
3031 serge 349
		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
2332 Serge 350
			       cpu_vaddr + cpu_offset,
351
			       this_length);
3031 serge 352
		if (ret)
353
			return ret + length;
354
 
2332 Serge 355
		cpu_offset += this_length;
356
		gpu_offset += this_length;
357
		length -= this_length;
358
	}
359
 
3031 serge 360
	return 0;
2332 Serge 361
}
362
 
3031 serge 363
/* Per-page copy function for the shmem pread fastpath.
364
 * Flushes invalid cachelines before reading the target if
365
 * needs_clflush is set. */
2332 Serge 366
static int
3031 serge 367
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
368
		 char __user *user_data,
369
		 bool page_do_bit17_swizzling, bool needs_clflush)
370
{
371
		char *vaddr;
372
		int ret;
373
 
374
	if (unlikely(page_do_bit17_swizzling))
375
		return -EINVAL;
376
 
377
		vaddr = kmap_atomic(page);
378
	if (needs_clflush)
379
		drm_clflush_virt_range(vaddr + shmem_page_offset,
380
				       page_length);
381
		ret = __copy_to_user_inatomic(user_data,
382
				      vaddr + shmem_page_offset,
383
					      page_length);
384
		kunmap_atomic(vaddr);
385
 
386
	return ret ? -EFAULT : 0;
387
}
388
 
389
static void
390
shmem_clflush_swizzled_range(char *addr, unsigned long length,
391
			     bool swizzled)
392
{
393
	if (unlikely(swizzled)) {
394
		unsigned long start = (unsigned long) addr;
395
		unsigned long end = (unsigned long) addr + length;
396
 
397
		/* For swizzling simply ensure that we always flush both
398
		 * channels. Lame, but simple and it works. Swizzled
399
		 * pwrite/pread is far from a hotpath - current userspace
400
		 * doesn't use it at all. */
401
		start = round_down(start, 128);
402
		end = round_up(end, 128);
403
 
404
		drm_clflush_virt_range((void *)start, end - start);
405
	} else {
406
		drm_clflush_virt_range(addr, length);
407
	}
408
 
409
}
410
 
411
/* Only difference to the fast-path function is that this can handle bit17
412
 * and uses non-atomic copy and kmap functions. */
413
static int
414
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
415
		 char __user *user_data,
416
		 bool page_do_bit17_swizzling, bool needs_clflush)
417
{
418
	char *vaddr;
419
	int ret;
420
 
421
	vaddr = kmap(page);
422
	if (needs_clflush)
423
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
424
					     page_length,
425
					     page_do_bit17_swizzling);
426
 
427
	if (page_do_bit17_swizzling)
428
		ret = __copy_to_user_swizzled(user_data,
429
					      vaddr, shmem_page_offset,
430
					      page_length);
431
	else
432
		ret = __copy_to_user(user_data,
433
				     vaddr + shmem_page_offset,
434
				     page_length);
435
	kunmap(page);
436
 
437
	return ret ? - EFAULT : 0;
438
}
439
 
440
static int
441
i915_gem_shmem_pread(struct drm_device *dev,
2332 Serge 442
			  struct drm_i915_gem_object *obj,
443
			  struct drm_i915_gem_pread *args,
444
			  struct drm_file *file)
445
{
3031 serge 446
	char __user *user_data;
2332 Serge 447
	ssize_t remain;
448
	loff_t offset;
3031 serge 449
	int shmem_page_offset, page_length, ret = 0;
450
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
451
	int hit_slowpath = 0;
452
	int prefaulted = 0;
453
	int needs_clflush = 0;
454
	struct scatterlist *sg;
455
	int i;
2332 Serge 456
 
457
	user_data = (char __user *) (uintptr_t) args->data_ptr;
458
	remain = args->size;
459
 
3031 serge 460
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
461
 
462
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
463
		/* If we're not in the cpu read domain, set ourself into the gtt
464
		 * read domain and manually flush cachelines (if required). This
465
		 * optimizes for the case when the gpu will dirty the data
466
		 * anyway again before the next pread happens. */
467
		if (obj->cache_level == I915_CACHE_NONE)
468
			needs_clflush = 1;
469
		if (obj->gtt_space) {
470
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
471
			if (ret)
472
				return ret;
473
		}
474
	}
475
 
476
	ret = i915_gem_object_get_pages(obj);
477
	if (ret)
478
		return ret;
479
 
480
	i915_gem_object_pin_pages(obj);
481
 
2332 Serge 482
	offset = args->offset;
483
 
3031 serge 484
	for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
2332 Serge 485
		struct page *page;
486
 
3031 serge 487
		if (i < offset >> PAGE_SHIFT)
488
			continue;
489
 
490
		if (remain <= 0)
491
			break;
492
 
2332 Serge 493
		/* Operation in this page
494
		 *
3031 serge 495
		 * shmem_page_offset = offset within page in shmem file
2332 Serge 496
		 * page_length = bytes to copy for this page
497
		 */
3031 serge 498
		shmem_page_offset = offset_in_page(offset);
2332 Serge 499
		page_length = remain;
3031 serge 500
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
501
			page_length = PAGE_SIZE - shmem_page_offset;
2332 Serge 502
 
3031 serge 503
		page = sg_page(sg);
504
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
505
			(page_to_phys(page) & (1 << 17)) != 0;
2332 Serge 506
 
3031 serge 507
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
508
				       user_data, page_do_bit17_swizzling,
509
				       needs_clflush);
510
		if (ret == 0)
511
			goto next_page;
2332 Serge 512
 
3031 serge 513
		hit_slowpath = 1;
514
		mutex_unlock(&dev->struct_mutex);
515
 
516
		if (!prefaulted) {
517
			ret = fault_in_multipages_writeable(user_data, remain);
518
			/* Userspace is tricking us, but we've already clobbered
519
			 * its pages with the prefault and promised to write the
520
			 * data up to the first fault. Hence ignore any errors
521
			 * and just continue. */
522
			(void)ret;
523
			prefaulted = 1;
524
		}
525
 
526
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
527
				       user_data, page_do_bit17_swizzling,
528
				       needs_clflush);
529
 
530
		mutex_lock(&dev->struct_mutex);
531
 
532
next_page:
2332 Serge 533
		mark_page_accessed(page);
3031 serge 534
 
2332 Serge 535
		if (ret)
3031 serge 536
			goto out;
2332 Serge 537
 
538
		remain -= page_length;
539
		user_data += page_length;
540
		offset += page_length;
541
	}
542
 
3031 serge 543
out:
544
	i915_gem_object_unpin_pages(obj);
545
 
546
	if (hit_slowpath) {
547
		/* Fixup: Kill any reinstated backing storage pages */
548
		if (obj->madv == __I915_MADV_PURGED)
549
			i915_gem_object_truncate(obj);
550
	}
551
 
552
	return ret;
2332 Serge 553
}
554
 
555
/**
3031 serge 556
 * Reads data from the object referenced by handle.
557
 *
558
 * On error, the contents of *data are undefined.
2332 Serge 559
 */
3031 serge 560
int
561
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
562
		     struct drm_file *file)
563
{
564
	struct drm_i915_gem_pread *args = data;
565
	struct drm_i915_gem_object *obj;
566
	int ret = 0;
567
 
568
	if (args->size == 0)
569
		return 0;
570
 
571
	if (!access_ok(VERIFY_WRITE,
572
		       (char __user *)(uintptr_t)args->data_ptr,
573
		       args->size))
574
		return -EFAULT;
575
 
576
	ret = i915_mutex_lock_interruptible(dev);
577
	if (ret)
578
		return ret;
579
 
580
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
581
	if (&obj->base == NULL) {
582
		ret = -ENOENT;
583
		goto unlock;
584
	}
585
 
586
	/* Bounds check source.  */
587
	if (args->offset > obj->base.size ||
588
	    args->size > obj->base.size - args->offset) {
589
		ret = -EINVAL;
590
		goto out;
591
	}
592
 
593
	/* prime objects have no backing filp to GEM pread/pwrite
594
	 * pages from.
595
	 */
596
	if (!obj->base.filp) {
597
		ret = -EINVAL;
598
		goto out;
599
	}
600
 
601
	trace_i915_gem_object_pread(obj, args->offset, args->size);
602
 
603
	ret = i915_gem_shmem_pread(dev, obj, args, file);
604
 
605
out:
606
	drm_gem_object_unreference(&obj->base);
607
unlock:
608
	mutex_unlock(&dev->struct_mutex);
609
	return ret;
610
}
611
 
612
/* This is the fast write path which cannot handle
613
 * page faults in the source data
614
 */
615
 
616
static inline int
617
fast_user_write(struct io_mapping *mapping,
618
		loff_t page_base, int page_offset,
619
		char __user *user_data,
620
		int length)
621
{
622
	void __iomem *vaddr_atomic;
623
	void *vaddr;
624
	unsigned long unwritten;
625
 
626
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
627
	/* We can use the cpu mem copy function because this is X86. */
628
	vaddr = (void __force*)vaddr_atomic + page_offset;
629
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
630
						      user_data, length);
631
	io_mapping_unmap_atomic(vaddr_atomic);
632
	return unwritten;
633
}
3260 Serge 634
#endif
3031 serge 635
 
3260 Serge 636
#define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
3031 serge 637
/**
638
 * This is the fast pwrite path, where we copy the data directly from the
639
 * user into the GTT, uncached.
640
 */
2332 Serge 641
static int
3031 serge 642
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
643
			 struct drm_i915_gem_object *obj,
644
			 struct drm_i915_gem_pwrite *args,
645
			 struct drm_file *file)
2332 Serge 646
{
3031 serge 647
	drm_i915_private_t *dev_priv = dev->dev_private;
2332 Serge 648
	ssize_t remain;
3031 serge 649
	loff_t offset, page_base;
650
	char __user *user_data;
651
	int page_offset, page_length, ret;
3260 Serge 652
    char *vaddr;
2332 Serge 653
 
3031 serge 654
	ret = i915_gem_object_pin(obj, 0, true, true);
655
	if (ret)
656
		goto out;
657
 
658
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
659
	if (ret)
660
		goto out_unpin;
661
 
662
	ret = i915_gem_object_put_fence(obj);
663
	if (ret)
664
		goto out_unpin;
665
 
3260 Serge 666
    vaddr = AllocKernelSpace(4096);
667
    if(vaddr == NULL)
668
    {
669
        ret = -ENOSPC;
670
        goto out_unpin;
671
    };
672
 
3031 serge 673
	user_data = (char __user *) (uintptr_t) args->data_ptr;
2332 Serge 674
	remain = args->size;
675
 
3031 serge 676
	offset = obj->gtt_offset + args->offset;
2332 Serge 677
 
3031 serge 678
	while (remain > 0) {
679
		/* Operation in this page
680
		 *
681
		 * page_base = page offset within aperture
682
		 * page_offset = offset within page
683
		 * page_length = bytes to copy for this page
684
		 */
685
		page_base = offset & PAGE_MASK;
686
		page_offset = offset_in_page(offset);
687
		page_length = remain;
688
		if ((page_offset + remain) > PAGE_SIZE)
689
			page_length = PAGE_SIZE - page_offset;
2332 Serge 690
 
3260 Serge 691
        MapPage(vaddr, page_base, PG_SW|PG_NOCACHE);
3031 serge 692
 
3260 Serge 693
        memcpy(vaddr+page_offset, user_data, page_length);
694
 
3031 serge 695
		remain -= page_length;
696
		user_data += page_length;
697
		offset += page_length;
2332 Serge 698
	}
699
 
3260 Serge 700
    FreeKernelSpace(vaddr);
701
 
3031 serge 702
out_unpin:
703
	i915_gem_object_unpin(obj);
704
out:
3260 Serge 705
    printf("% s ret = %d\n", __FUNCTION__, ret);
706
 
3031 serge 707
	return ret;
708
}
709
 
710
/* Per-page copy function for the shmem pwrite fastpath.
711
 * Flushes invalid cachelines before writing to the target if
712
 * needs_clflush_before is set and flushes out any written cachelines after
713
 * writing if needs_clflush is set. */
714
static int
715
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
716
		  char __user *user_data,
717
		  bool page_do_bit17_swizzling,
718
		  bool needs_clflush_before,
719
		  bool needs_clflush_after)
720
{
721
	char *vaddr;
3260 Serge 722
	int ret = 0;
3031 serge 723
 
724
	if (unlikely(page_do_bit17_swizzling))
725
		return -EINVAL;
726
 
3260 Serge 727
	vaddr = (char *)MapIoMem((addr_t)page, 4096, PG_SW);
3031 serge 728
	if (needs_clflush_before)
729
		drm_clflush_virt_range(vaddr + shmem_page_offset,
730
				       page_length);
3260 Serge 731
	memcpy(vaddr + shmem_page_offset,
3031 serge 732
						user_data,
733
						page_length);
734
	if (needs_clflush_after)
735
		drm_clflush_virt_range(vaddr + shmem_page_offset,
736
				       page_length);
3260 Serge 737
	FreeKernelSpace(vaddr);
3031 serge 738
 
739
	return ret ? -EFAULT : 0;
740
}
3260 Serge 741
#if 0
3031 serge 742
 
743
/* Only difference to the fast-path function is that this can handle bit17
744
 * and uses non-atomic copy and kmap functions. */
745
static int
746
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
747
		  char __user *user_data,
748
		  bool page_do_bit17_swizzling,
749
		  bool needs_clflush_before,
750
		  bool needs_clflush_after)
751
{
752
	char *vaddr;
753
	int ret;
754
 
755
	vaddr = kmap(page);
756
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
757
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
758
					     page_length,
759
					     page_do_bit17_swizzling);
760
	if (page_do_bit17_swizzling)
761
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
762
						user_data,
763
						page_length);
764
	else
765
		ret = __copy_from_user(vaddr + shmem_page_offset,
766
				       user_data,
767
				       page_length);
768
	if (needs_clflush_after)
769
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
770
					     page_length,
771
					     page_do_bit17_swizzling);
772
	kunmap(page);
773
 
774
	return ret ? -EFAULT : 0;
775
}
3260 Serge 776
#endif
3031 serge 777
 
3260 Serge 778
 
3031 serge 779
static int
780
i915_gem_shmem_pwrite(struct drm_device *dev,
781
		      struct drm_i915_gem_object *obj,
782
		      struct drm_i915_gem_pwrite *args,
783
		      struct drm_file *file)
784
{
785
	ssize_t remain;
786
	loff_t offset;
787
	char __user *user_data;
788
	int shmem_page_offset, page_length, ret = 0;
789
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
790
	int hit_slowpath = 0;
791
	int needs_clflush_after = 0;
792
	int needs_clflush_before = 0;
793
	int i;
794
	struct scatterlist *sg;
795
 
796
	user_data = (char __user *) (uintptr_t) args->data_ptr;
797
	remain = args->size;
798
 
799
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
800
 
801
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
802
		/* If we're not in the cpu write domain, set ourself into the gtt
803
		 * write domain and manually flush cachelines (if required). This
804
		 * optimizes for the case when the gpu will use the data
805
		 * right away and we therefore have to clflush anyway. */
806
		if (obj->cache_level == I915_CACHE_NONE)
807
			needs_clflush_after = 1;
808
		if (obj->gtt_space) {
809
			ret = i915_gem_object_set_to_gtt_domain(obj, true);
810
			if (ret)
811
				return ret;
812
		}
813
	}
814
	/* Same trick applies for invalidate partially written cachelines before
815
	 * writing.  */
816
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
817
	    && obj->cache_level == I915_CACHE_NONE)
818
		needs_clflush_before = 1;
819
 
820
	ret = i915_gem_object_get_pages(obj);
2332 Serge 821
	if (ret)
3031 serge 822
		return ret;
2332 Serge 823
 
3031 serge 824
	i915_gem_object_pin_pages(obj);
2332 Serge 825
 
826
	offset = args->offset;
3031 serge 827
	obj->dirty = 1;
2332 Serge 828
 
3031 serge 829
	for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
2332 Serge 830
		struct page *page;
3031 serge 831
		int partial_cacheline_write;
2332 Serge 832
 
3031 serge 833
		if (i < offset >> PAGE_SHIFT)
834
			continue;
835
 
836
		if (remain <= 0)
837
			break;
838
 
2332 Serge 839
		/* Operation in this page
840
		 *
841
		 * shmem_page_offset = offset within page in shmem file
842
		 * page_length = bytes to copy for this page
843
		 */
844
		shmem_page_offset = offset_in_page(offset);
845
 
846
		page_length = remain;
847
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
848
			page_length = PAGE_SIZE - shmem_page_offset;
849
 
3031 serge 850
		/* If we don't overwrite a cacheline completely we need to be
851
		 * careful to have up-to-date data by first clflushing. Don't
852
		 * overcomplicate things and flush the entire patch. */
853
		partial_cacheline_write = needs_clflush_before &&
854
			((shmem_page_offset | page_length)
3260 Serge 855
				& (x86_clflush_size - 1));
2332 Serge 856
 
3031 serge 857
		page = sg_page(sg);
858
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
859
			(page_to_phys(page) & (1 << 17)) != 0;
2332 Serge 860
 
3031 serge 861
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
862
					user_data, page_do_bit17_swizzling,
863
					partial_cacheline_write,
864
					needs_clflush_after);
865
		if (ret == 0)
866
			goto next_page;
867
 
868
		hit_slowpath = 1;
869
		mutex_unlock(&dev->struct_mutex);
3260 Serge 870
		dbgprintf("%s need shmem_pwrite_slow\n",__FUNCTION__);
3031 serge 871
 
3260 Serge 872
//		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
873
//					user_data, page_do_bit17_swizzling,
874
//					partial_cacheline_write,
875
//					needs_clflush_after);
876
 
3031 serge 877
		mutex_lock(&dev->struct_mutex);
878
 
879
next_page:
2332 Serge 880
 
3031 serge 881
		if (ret)
882
			goto out;
883
 
2332 Serge 884
		remain -= page_length;
3031 serge 885
		user_data += page_length;
2332 Serge 886
		offset += page_length;
887
	}
888
 
889
out:
3031 serge 890
	i915_gem_object_unpin_pages(obj);
891
 
892
	if (hit_slowpath) {
893
		/* Fixup: Kill any reinstated backing storage pages */
894
		if (obj->madv == __I915_MADV_PURGED)
895
			i915_gem_object_truncate(obj);
896
		/* and flush dirty cachelines in case the object isn't in the cpu write
897
		 * domain anymore. */
898
		if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
899
			i915_gem_clflush_object(obj);
3243 Serge 900
			i915_gem_chipset_flush(dev);
3031 serge 901
		}
2332 Serge 902
	}
903
 
3031 serge 904
	if (needs_clflush_after)
3243 Serge 905
		i915_gem_chipset_flush(dev);
3031 serge 906
 
2332 Serge 907
	return ret;
908
}
3031 serge 909
 
910
/**
911
 * Writes data to the object referenced by handle.
912
 *
913
 * On error, the contents of the buffer that were to be modified are undefined.
914
 */
915
int
916
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
917
		      struct drm_file *file)
918
{
919
	struct drm_i915_gem_pwrite *args = data;
920
	struct drm_i915_gem_object *obj;
921
	int ret;
922
 
923
	if (args->size == 0)
924
		return 0;
925
 
926
	ret = i915_mutex_lock_interruptible(dev);
927
	if (ret)
928
		return ret;
929
 
930
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
931
	if (&obj->base == NULL) {
932
		ret = -ENOENT;
933
		goto unlock;
934
	}
935
 
936
	/* Bounds check destination. */
937
	if (args->offset > obj->base.size ||
938
	    args->size > obj->base.size - args->offset) {
939
		ret = -EINVAL;
940
		goto out;
941
	}
942
 
943
	/* prime objects have no backing filp to GEM pread/pwrite
944
	 * pages from.
945
	 */
946
	if (!obj->base.filp) {
947
		ret = -EINVAL;
948
		goto out;
949
	}
950
 
951
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
952
 
953
	ret = -EFAULT;
954
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
955
	 * it would end up going through the fenced access, and we'll get
956
	 * different detiling behavior between reading and writing.
957
	 * pread/pwrite currently are reading and writing from the CPU
958
	 * perspective, requiring manual detiling by the client.
959
	 */
3260 Serge 960
//   if (obj->phys_obj) {
961
//       ret = i915_gem_phys_pwrite(dev, obj, args, file);
962
//       goto out;
963
//   }
3031 serge 964
 
965
	if (obj->cache_level == I915_CACHE_NONE &&
966
	    obj->tiling_mode == I915_TILING_NONE &&
967
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
968
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
969
		/* Note that the gtt paths might fail with non-page-backed user
970
		 * pointers (e.g. gtt mappings when moving data between
971
		 * textures). Fallback to the shmem path in that case. */
972
	}
973
 
974
	if (ret == -EFAULT || ret == -ENOSPC)
3260 Serge 975
       ret = i915_gem_shmem_pwrite(dev, obj, args, file);
3031 serge 976
 
977
out:
978
	drm_gem_object_unreference(&obj->base);
979
unlock:
980
	mutex_unlock(&dev->struct_mutex);
981
	return ret;
982
}
983
 
984
int
985
i915_gem_check_wedge(struct drm_i915_private *dev_priv,
986
		     bool interruptible)
987
{
988
	if (atomic_read(&dev_priv->mm.wedged)) {
989
		struct completion *x = &dev_priv->error_completion;
990
		bool recovery_complete;
991
		unsigned long flags;
2332 Serge 992
 
3031 serge 993
		/* Give the error handler a chance to run. */
994
		spin_lock_irqsave(&x->wait.lock, flags);
995
		recovery_complete = x->done > 0;
996
		spin_unlock_irqrestore(&x->wait.lock, flags);
2332 Serge 997
 
3031 serge 998
		/* Non-interruptible callers can't handle -EAGAIN, hence return
999
		 * -EIO unconditionally for these. */
1000
		if (!interruptible)
1001
			return -EIO;
2332 Serge 1002
 
3031 serge 1003
		/* Recovery complete, but still wedged means reset failure. */
1004
		if (recovery_complete)
1005
			return -EIO;
2332 Serge 1006
 
3031 serge 1007
		return -EAGAIN;
1008
	}
2332 Serge 1009
 
3031 serge 1010
	return 0;
1011
}
2332 Serge 1012
 
3031 serge 1013
/*
1014
 * Compare seqno against outstanding lazy request. Emit a request if they are
1015
 * equal.
1016
 */
1017
static int
1018
i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1019
{
1020
	int ret;
2332 Serge 1021
 
3031 serge 1022
	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
2332 Serge 1023
 
3031 serge 1024
	ret = 0;
1025
	if (seqno == ring->outstanding_lazy_request)
1026
		ret = i915_add_request(ring, NULL, NULL);
2332 Serge 1027
 
3031 serge 1028
	return ret;
1029
}
2332 Serge 1030
 
3031 serge 1031
/**
1032
 * __wait_seqno - wait until execution of seqno has finished
1033
 * @ring: the ring expected to report seqno
1034
 * @seqno: duh!
1035
 * @interruptible: do an interruptible wait (normally yes)
1036
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1037
 *
1038
 * Returns 0 if the seqno was found within the alloted time. Else returns the
1039
 * errno with remaining time filled in timeout argument.
1040
 */
1041
static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1042
			bool interruptible, struct timespec *timeout)
1043
{
1044
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1045
	struct timespec before, now, wait_time={1,0};
1046
	unsigned long timeout_jiffies;
1047
	long end;
1048
	bool wait_forever = true;
1049
	int ret;
2332 Serge 1050
 
3031 serge 1051
	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1052
		return 0;
2332 Serge 1053
 
3031 serge 1054
	trace_i915_gem_request_wait_begin(ring, seqno);
2332 Serge 1055
 
3031 serge 1056
	if (timeout != NULL) {
1057
		wait_time = *timeout;
1058
		wait_forever = false;
1059
	}
2332 Serge 1060
 
3266 Serge 1061
	timeout_jiffies = timespec_to_jiffies(&wait_time);
2332 Serge 1062
 
3031 serge 1063
	if (WARN_ON(!ring->irq_get(ring)))
1064
		return -ENODEV;
2332 Serge 1065
 
3031 serge 1066
    /* Record current time in case interrupted by signal, or wedged * */
1067
	getrawmonotonic(&before);
2332 Serge 1068
 
3031 serge 1069
#define EXIT_COND \
1070
	(i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1071
	atomic_read(&dev_priv->mm.wedged))
1072
	do {
3266 Serge 1073
		if (interruptible)
1074
			end = wait_event_interruptible_timeout(ring->irq_queue,
1075
							       EXIT_COND,
1076
							       timeout_jiffies);
1077
		else
3031 serge 1078
			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1079
						 timeout_jiffies);
2332 Serge 1080
 
3031 serge 1081
		ret = i915_gem_check_wedge(dev_priv, interruptible);
1082
		if (ret)
1083
			end = ret;
1084
	} while (end == 0 && wait_forever);
2332 Serge 1085
 
3031 serge 1086
	getrawmonotonic(&now);
2332 Serge 1087
 
3031 serge 1088
	ring->irq_put(ring);
1089
	trace_i915_gem_request_wait_end(ring, seqno);
1090
#undef EXIT_COND
2332 Serge 1091
 
3031 serge 1092
	if (timeout) {
1093
//       struct timespec sleep_time = timespec_sub(now, before);
1094
//       *timeout = timespec_sub(*timeout, sleep_time);
1095
	}
2332 Serge 1096
 
3031 serge 1097
	switch (end) {
1098
	case -EIO:
1099
	case -EAGAIN: /* Wedged */
1100
	case -ERESTARTSYS: /* Signal */
1101
		return (int)end;
1102
	case 0: /* Timeout */
3266 Serge 1103
		if (timeout)
1104
			set_normalized_timespec(timeout, 0, 0);
3031 serge 1105
		return -ETIME;
1106
	default: /* Completed */
1107
		WARN_ON(end < 0); /* We're not aware of other errors */
1108
		return 0;
1109
	}
1110
}
2332 Serge 1111
 
3031 serge 1112
/**
1113
 * Waits for a sequence number to be signaled, and cleans up the
1114
 * request and object lists appropriately for that event.
1115
 */
1116
int
1117
i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1118
{
1119
	struct drm_device *dev = ring->dev;
1120
	struct drm_i915_private *dev_priv = dev->dev_private;
1121
	bool interruptible = dev_priv->mm.interruptible;
1122
	int ret;
2332 Serge 1123
 
3031 serge 1124
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1125
	BUG_ON(seqno == 0);
2332 Serge 1126
 
3031 serge 1127
	ret = i915_gem_check_wedge(dev_priv, interruptible);
1128
	if (ret)
1129
		return ret;
2332 Serge 1130
 
3031 serge 1131
	ret = i915_gem_check_olr(ring, seqno);
1132
	if (ret)
1133
		return ret;
2332 Serge 1134
 
3031 serge 1135
	return __wait_seqno(ring, seqno, interruptible, NULL);
1136
}
2332 Serge 1137
 
3031 serge 1138
/**
1139
 * Ensures that all rendering to the object has completed and the object is
1140
 * safe to unbind from the GTT or access from the CPU.
1141
 */
1142
static __must_check int
1143
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1144
			       bool readonly)
1145
{
1146
	struct intel_ring_buffer *ring = obj->ring;
1147
	u32 seqno;
1148
	int ret;
2332 Serge 1149
 
3031 serge 1150
	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1151
	if (seqno == 0)
1152
		return 0;
2332 Serge 1153
 
3031 serge 1154
	ret = i915_wait_seqno(ring, seqno);
1155
       if (ret)
1156
           return ret;
2332 Serge 1157
 
3031 serge 1158
	i915_gem_retire_requests_ring(ring);
2332 Serge 1159
 
3031 serge 1160
	/* Manually manage the write flush as we may have not yet
1161
	 * retired the buffer.
1162
	 */
1163
	if (obj->last_write_seqno &&
1164
	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
1165
		obj->last_write_seqno = 0;
1166
		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1167
	}
2332 Serge 1168
 
3031 serge 1169
	return 0;
1170
}
2332 Serge 1171
 
3260 Serge 1172
/* A nonblocking variant of the above wait. This is a highly dangerous routine
1173
 * as the object state may change during this call.
1174
 */
1175
static __must_check int
1176
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1177
					    bool readonly)
1178
{
1179
	struct drm_device *dev = obj->base.dev;
1180
	struct drm_i915_private *dev_priv = dev->dev_private;
1181
	struct intel_ring_buffer *ring = obj->ring;
1182
	u32 seqno;
1183
	int ret;
2332 Serge 1184
 
3260 Serge 1185
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1186
	BUG_ON(!dev_priv->mm.interruptible);
2332 Serge 1187
 
3260 Serge 1188
	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1189
	if (seqno == 0)
1190
		return 0;
2332 Serge 1191
 
3260 Serge 1192
	ret = i915_gem_check_wedge(dev_priv, true);
1193
	if (ret)
1194
		return ret;
2332 Serge 1195
 
3260 Serge 1196
	ret = i915_gem_check_olr(ring, seqno);
1197
	if (ret)
1198
		return ret;
2332 Serge 1199
 
3260 Serge 1200
	mutex_unlock(&dev->struct_mutex);
1201
	ret = __wait_seqno(ring, seqno, true, NULL);
1202
	mutex_lock(&dev->struct_mutex);
2332 Serge 1203
 
3260 Serge 1204
	i915_gem_retire_requests_ring(ring);
2332 Serge 1205
 
3260 Serge 1206
	/* Manually manage the write flush as we may have not yet
1207
	 * retired the buffer.
1208
	 */
1209
	if (obj->last_write_seqno &&
1210
	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
1211
		obj->last_write_seqno = 0;
1212
		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1213
	}
2332 Serge 1214
 
3260 Serge 1215
	return ret;
1216
}
2332 Serge 1217
 
3260 Serge 1218
/**
1219
 * Called when user space prepares to use an object with the CPU, either
1220
 * through the mmap ioctl's mapping or a GTT mapping.
1221
 */
1222
int
1223
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1224
			  struct drm_file *file)
1225
{
1226
	struct drm_i915_gem_set_domain *args = data;
1227
	struct drm_i915_gem_object *obj;
1228
	uint32_t read_domains = args->read_domains;
1229
	uint32_t write_domain = args->write_domain;
1230
	int ret;
2332 Serge 1231
 
3260 Serge 1232
	/* Only handle setting domains to types used by the CPU. */
1233
	if (write_domain & I915_GEM_GPU_DOMAINS)
1234
		return -EINVAL;
2332 Serge 1235
 
3260 Serge 1236
	if (read_domains & I915_GEM_GPU_DOMAINS)
1237
		return -EINVAL;
2332 Serge 1238
 
3260 Serge 1239
	/* Having something in the write domain implies it's in the read
1240
	 * domain, and only that read domain.  Enforce that in the request.
1241
	 */
1242
	if (write_domain != 0 && read_domains != write_domain)
1243
		return -EINVAL;
2332 Serge 1244
 
3260 Serge 1245
	ret = i915_mutex_lock_interruptible(dev);
1246
	if (ret)
1247
		return ret;
2332 Serge 1248
 
3260 Serge 1249
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1250
	if (&obj->base == NULL) {
1251
		ret = -ENOENT;
1252
		goto unlock;
1253
	}
2332 Serge 1254
 
3260 Serge 1255
	/* Try to flush the object off the GPU without holding the lock.
1256
	 * We will repeat the flush holding the lock in the normal manner
1257
	 * to catch cases where we are gazumped.
1258
	 */
1259
	ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1260
	if (ret)
1261
		goto unref;
2332 Serge 1262
 
3260 Serge 1263
	if (read_domains & I915_GEM_DOMAIN_GTT) {
1264
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
2332 Serge 1265
 
3260 Serge 1266
		/* Silently promote "you're not bound, there was nothing to do"
1267
		 * to success, since the client was just asking us to
1268
		 * make sure everything was done.
1269
		 */
1270
		if (ret == -EINVAL)
1271
			ret = 0;
1272
	} else {
1273
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1274
	}
2332 Serge 1275
 
3260 Serge 1276
unref:
1277
	drm_gem_object_unreference(&obj->base);
1278
unlock:
1279
	mutex_unlock(&dev->struct_mutex);
1280
	return ret;
1281
}
2332 Serge 1282
 
1283
 
1284
 
1285
 
1286
 
1287
 
3260 Serge 1288
/**
1289
 * Maps the contents of an object, returning the address it is mapped
1290
 * into.
1291
 *
1292
 * While the mapping holds a reference on the contents of the object, it doesn't
1293
 * imply a ref on the object itself.
1294
 */
1295
int
1296
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1297
		    struct drm_file *file)
1298
{
1299
	struct drm_i915_gem_mmap *args = data;
1300
	struct drm_gem_object *obj;
1301
	unsigned long addr = 0;
2332 Serge 1302
 
3260 Serge 1303
	obj = drm_gem_object_lookup(dev, file, args->handle);
1304
	if (obj == NULL)
1305
		return -ENOENT;
1306
 
3263 Serge 1307
    dbgprintf("%s offset %lld size %lld\n",
1308
                __FUNCTION__, args->offset, args->size);
3260 Serge 1309
	/* prime objects have no backing filp to GEM mmap
1310
	 * pages from.
1311
	 */
1312
	if (!obj->filp) {
1313
		drm_gem_object_unreference_unlocked(obj);
1314
		return -EINVAL;
1315
	}
2332 Serge 1316
 
3263 Serge 1317
    addr = vm_mmap(obj->filp, 0, args->size,
1318
              PROT_READ | PROT_WRITE, MAP_SHARED,
1319
              args->offset);
3260 Serge 1320
	drm_gem_object_unreference_unlocked(obj);
3263 Serge 1321
    if (IS_ERR((void *)addr))
1322
        return addr;
2332 Serge 1323
 
3260 Serge 1324
	args->addr_ptr = (uint64_t) addr;
2332 Serge 1325
 
3263 Serge 1326
    return 0;
3260 Serge 1327
}
2332 Serge 1328
 
1329
 
1330
 
1331
 
1332
 
1333
 
1334
 
1335
 
3031 serge 1336
 
1337
 
1338
 
1339
 
1340
 
1341
/**
1342
 * i915_gem_release_mmap - remove physical page mappings
1343
 * @obj: obj in question
1344
 *
1345
 * Preserve the reservation of the mmapping with the DRM core code, but
1346
 * relinquish ownership of the pages back to the system.
1347
 *
1348
 * It is vital that we remove the page mapping if we have mapped a tiled
1349
 * object through the GTT and then lose the fence register due to
1350
 * resource pressure. Similarly if the object has been moved out of the
1351
 * aperture, than pages mapped into userspace must be revoked. Removing the
1352
 * mapping will then trigger a page fault on the next user access, allowing
1353
 * fixup by i915_gem_fault().
1354
 */
1355
void
1356
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1357
{
1358
	if (!obj->fault_mappable)
1359
		return;
1360
 
1361
	if (obj->base.dev->dev_mapping)
1362
//		unmap_mapping_range(obj->base.dev->dev_mapping,
1363
//				    (loff_t)obj->base.map_list.hash.key<
1364
//				    obj->base.size, 1);
1365
 
1366
	obj->fault_mappable = false;
1367
}
1368
 
2332 Serge 1369
static uint32_t
1370
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1371
{
1372
	uint32_t gtt_size;
1373
 
1374
	if (INTEL_INFO(dev)->gen >= 4 ||
1375
	    tiling_mode == I915_TILING_NONE)
1376
		return size;
1377
 
1378
	/* Previous chips need a power-of-two fence region when tiling */
1379
	if (INTEL_INFO(dev)->gen == 3)
1380
		gtt_size = 1024*1024;
1381
	else
1382
		gtt_size = 512*1024;
1383
 
1384
	while (gtt_size < size)
1385
		gtt_size <<= 1;
1386
 
1387
	return gtt_size;
1388
}
1389
 
1390
/**
1391
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1392
 * @obj: object to check
1393
 *
1394
 * Return the required GTT alignment for an object, taking into account
1395
 * potential fence register mapping.
1396
 */
1397
static uint32_t
1398
i915_gem_get_gtt_alignment(struct drm_device *dev,
1399
			   uint32_t size,
1400
			   int tiling_mode)
1401
{
1402
	/*
1403
	 * Minimum alignment is 4k (GTT page size), but might be greater
1404
	 * if a fence register is needed for the object.
1405
	 */
1406
	if (INTEL_INFO(dev)->gen >= 4 ||
1407
	    tiling_mode == I915_TILING_NONE)
1408
		return 4096;
1409
 
1410
	/*
1411
	 * Previous chips need to be aligned to the size of the smallest
1412
	 * fence register that can contain the object.
1413
	 */
1414
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1415
}
1416
 
1417
/**
1418
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1419
 *					 unfenced object
1420
 * @dev: the device
1421
 * @size: size of the object
1422
 * @tiling_mode: tiling mode of the object
1423
 *
1424
 * Return the required GTT alignment for an object, only taking into account
1425
 * unfenced tiled surface requirements.
1426
 */
1427
uint32_t
1428
i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1429
				    uint32_t size,
1430
				    int tiling_mode)
1431
{
1432
	/*
1433
	 * Minimum alignment is 4k (GTT page size) for sane hw.
1434
	 */
1435
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1436
	    tiling_mode == I915_TILING_NONE)
1437
		return 4096;
1438
 
1439
	/* Previous hardware however needs to be aligned to a power-of-two
1440
	 * tile height. The simplest method for determining this is to reuse
1441
	 * the power-of-tile object size.
1442
	 */
1443
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1444
}
1445
 
3031 serge 1446
/* Immediately discard the backing storage */
1447
static void
1448
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1449
{
1450
//	struct inode *inode;
2332 Serge 1451
 
3031 serge 1452
//	i915_gem_object_free_mmap_offset(obj);
2332 Serge 1453
 
3263 Serge 1454
	if (obj->base.filp == NULL)
1455
		return;
2332 Serge 1456
 
3031 serge 1457
	/* Our goal here is to return as much of the memory as
1458
	 * is possible back to the system as we are called from OOM.
1459
	 * To do this we must instruct the shmfs to drop all of its
1460
	 * backing pages, *now*.
1461
	 */
1462
//	inode = obj->base.filp->f_path.dentry->d_inode;
1463
//	shmem_truncate_range(inode, 0, (loff_t)-1);
2332 Serge 1464
 
3031 serge 1465
	obj->madv = __I915_MADV_PURGED;
1466
}
2332 Serge 1467
 
3031 serge 1468
static inline int
1469
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1470
{
1471
	return obj->madv == I915_MADV_DONTNEED;
1472
}
2332 Serge 1473
 
3031 serge 1474
static void
1475
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1476
{
3243 Serge 1477
	int page_count = obj->base.size / PAGE_SIZE;
1478
	struct scatterlist *sg;
3031 serge 1479
	int ret, i;
2332 Serge 1480
 
3031 serge 1481
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2332 Serge 1482
 
3031 serge 1483
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
1484
	if (ret) {
1485
		/* In the event of a disaster, abandon all caches and
1486
		 * hope for the best.
1487
		 */
1488
		WARN_ON(ret != -EIO);
1489
		i915_gem_clflush_object(obj);
1490
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1491
	}
2332 Serge 1492
 
3031 serge 1493
	if (obj->madv == I915_MADV_DONTNEED)
1494
		obj->dirty = 0;
2332 Serge 1495
 
3243 Serge 1496
	for_each_sg(obj->pages->sgl, sg, page_count, i) {
1497
		struct page *page = sg_page(sg);
2332 Serge 1498
 
3290 Serge 1499
        page_cache_release(page);
3243 Serge 1500
	}
1501
    //DRM_DEBUG_KMS("%s release %d pages\n", __FUNCTION__, page_count);
3290 Serge 1502
    printf("%s release %d pages\n", __FUNCTION__, page_count);
1503
 
3031 serge 1504
	obj->dirty = 0;
3243 Serge 1505
 
1506
	sg_free_table(obj->pages);
1507
	kfree(obj->pages);
3031 serge 1508
}
2332 Serge 1509
 
3031 serge 1510
static int
1511
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1512
{
1513
	const struct drm_i915_gem_object_ops *ops = obj->ops;
2332 Serge 1514
 
3243 Serge 1515
	if (obj->pages == NULL)
3031 serge 1516
		return 0;
2332 Serge 1517
 
3031 serge 1518
	BUG_ON(obj->gtt_space);
1519
 
1520
	if (obj->pages_pin_count)
1521
		return -EBUSY;
1522
 
3243 Serge 1523
	/* ->put_pages might need to allocate memory for the bit17 swizzle
1524
	 * array, hence protect them from being reaped by removing them from gtt
1525
	 * lists early. */
1526
	list_del(&obj->gtt_list);
1527
 
3031 serge 1528
	ops->put_pages(obj);
3243 Serge 1529
	obj->pages = NULL;
3031 serge 1530
 
1531
	if (i915_gem_object_is_purgeable(obj))
1532
		i915_gem_object_truncate(obj);
1533
 
1534
	return 0;
1535
}
1536
 
1537
 
1538
 
1539
 
1540
 
1541
 
1542
 
1543
 
2332 Serge 1544
static int
3031 serge 1545
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2332 Serge 1546
{
3260 Serge 1547
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3243 Serge 1548
    int page_count, i;
3260 Serge 1549
	struct address_space *mapping;
3243 Serge 1550
	struct sg_table *st;
1551
	struct scatterlist *sg;
1552
	struct page *page;
1553
	gfp_t gfp;
2332 Serge 1554
 
3243 Serge 1555
	/* Assert that the object is not currently in any GPU domain. As it
1556
	 * wasn't in the GTT, there shouldn't be any way it could have been in
1557
	 * a GPU cache
2332 Serge 1558
	 */
3243 Serge 1559
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1560
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1561
 
1562
	st = kmalloc(sizeof(*st), GFP_KERNEL);
1563
	if (st == NULL)
1564
		return -ENOMEM;
1565
 
2332 Serge 1566
	page_count = obj->base.size / PAGE_SIZE;
3243 Serge 1567
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1568
		sg_free_table(st);
1569
		kfree(st);
2332 Serge 1570
		return -ENOMEM;
3243 Serge 1571
	}
2332 Serge 1572
 
3243 Serge 1573
	/* Get the list of pages out of our struct file.  They'll be pinned
1574
	 * at this point until we release them.
1575
	 *
1576
	 * Fail silently without starting the shrinker
1577
	 */
1578
	for_each_sg(st->sgl, sg, page_count, i) {
3260 Serge 1579
		page = shmem_read_mapping_page_gfp(obj->base.filp, i, gfp);
1580
		if (IS_ERR(page)) {
1581
            dbgprintf("%s invalid page %p\n", __FUNCTION__, page);
2332 Serge 1582
			goto err_pages;
1583
 
3260 Serge 1584
		}
3243 Serge 1585
		sg_set_page(sg, page, PAGE_SIZE, 0);
1586
	}
3031 serge 1587
 
3243 Serge 1588
	obj->pages = st;
3031 serge 1589
 
3260 Serge 1590
    DRM_DEBUG_KMS("%s alloc %d pages\n", __FUNCTION__, page_count);
2332 Serge 1591
 
1592
	return 0;
1593
 
1594
err_pages:
3243 Serge 1595
	for_each_sg(st->sgl, sg, i, page_count)
1596
		page_cache_release(sg_page(sg));
1597
	sg_free_table(st);
1598
	kfree(st);
1599
	return PTR_ERR(page);
2332 Serge 1600
}
1601
 
3031 serge 1602
/* Ensure that the associated pages are gathered from the backing storage
1603
 * and pinned into our object. i915_gem_object_get_pages() may be called
1604
 * multiple times before they are released by a single call to
1605
 * i915_gem_object_put_pages() - once the pages are no longer referenced
1606
 * either as a result of memory pressure (reaping pages under the shrinker)
1607
 * or as the object is itself released.
1608
 */
1609
int
1610
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2332 Serge 1611
{
3031 serge 1612
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1613
	const struct drm_i915_gem_object_ops *ops = obj->ops;
1614
	int ret;
2332 Serge 1615
 
3243 Serge 1616
	if (obj->pages)
3031 serge 1617
		return 0;
2332 Serge 1618
 
3031 serge 1619
	BUG_ON(obj->pages_pin_count);
2332 Serge 1620
 
3031 serge 1621
	ret = ops->get_pages(obj);
1622
	if (ret)
1623
		return ret;
2344 Serge 1624
 
3031 serge 1625
	list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
3243 Serge 1626
    return 0;
2332 Serge 1627
}
1628
 
1629
void
1630
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
3243 Serge 1631
			       struct intel_ring_buffer *ring)
2332 Serge 1632
{
1633
	struct drm_device *dev = obj->base.dev;
1634
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 1635
	u32 seqno = intel_ring_get_seqno(ring);
2332 Serge 1636
 
1637
	BUG_ON(ring == NULL);
1638
	obj->ring = ring;
1639
 
1640
	/* Add a reference if we're newly entering the active list. */
1641
	if (!obj->active) {
2344 Serge 1642
		drm_gem_object_reference(&obj->base);
2332 Serge 1643
		obj->active = 1;
1644
	}
1645
 
1646
	/* Move from whatever list we were on to the tail of execution. */
1647
	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1648
	list_move_tail(&obj->ring_list, &ring->active_list);
1649
 
3031 serge 1650
	obj->last_read_seqno = seqno;
1651
 
2332 Serge 1652
	if (obj->fenced_gpu_access) {
3031 serge 1653
		obj->last_fenced_seqno = seqno;
1654
 
1655
		/* Bump MRU to take account of the delayed flush */
1656
		if (obj->fence_reg != I915_FENCE_REG_NONE) {
2332 Serge 1657
		struct drm_i915_fence_reg *reg;
1658
 
1659
		reg = &dev_priv->fence_regs[obj->fence_reg];
3031 serge 1660
			list_move_tail(®->lru_list,
1661
				       &dev_priv->mm.fence_list);
1662
		}
2332 Serge 1663
	}
1664
}
1665
 
2344 Serge 1666
static void
3031 serge 1667
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2344 Serge 1668
{
1669
	struct drm_device *dev = obj->base.dev;
3031 serge 1670
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 1671
 
3031 serge 1672
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2344 Serge 1673
	BUG_ON(!obj->active);
2332 Serge 1674
 
3031 serge 1675
	if (obj->pin_count) /* are we a framebuffer? */
1676
		intel_mark_fb_idle(obj);
2344 Serge 1677
 
2352 Serge 1678
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2344 Serge 1679
 
3031 serge 1680
	list_del_init(&obj->ring_list);
2352 Serge 1681
	obj->ring = NULL;
2344 Serge 1682
 
3031 serge 1683
	obj->last_read_seqno = 0;
1684
	obj->last_write_seqno = 0;
1685
	obj->base.write_domain = 0;
1686
 
1687
	obj->last_fenced_seqno = 0;
2352 Serge 1688
	obj->fenced_gpu_access = false;
2344 Serge 1689
 
2352 Serge 1690
	obj->active = 0;
1691
	drm_gem_object_unreference(&obj->base);
1692
 
1693
	WARN_ON(i915_verify_lists(dev));
1694
}
1695
 
3243 Serge 1696
static int
1697
i915_gem_handle_seqno_wrap(struct drm_device *dev)
2344 Serge 1698
{
3243 Serge 1699
	struct drm_i915_private *dev_priv = dev->dev_private;
1700
	struct intel_ring_buffer *ring;
1701
	int ret, i, j;
2344 Serge 1702
 
3243 Serge 1703
	/* The hardware uses various monotonic 32-bit counters, if we
1704
	 * detect that they will wraparound we need to idle the GPU
1705
	 * and reset those counters.
1706
	 */
1707
	ret = 0;
1708
	for_each_ring(ring, dev_priv, i) {
1709
		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1710
			ret |= ring->sync_seqno[j] != 0;
1711
	}
1712
	if (ret == 0)
1713
		return ret;
2344 Serge 1714
 
3243 Serge 1715
	ret = i915_gpu_idle(dev);
1716
	if (ret)
1717
		return ret;
1718
 
1719
	i915_gem_retire_requests(dev);
1720
	for_each_ring(ring, dev_priv, i) {
1721
		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1722
			ring->sync_seqno[j] = 0;
1723
	}
1724
 
1725
	return 0;
2344 Serge 1726
}
1727
 
3243 Serge 1728
int
1729
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2344 Serge 1730
{
3243 Serge 1731
	struct drm_i915_private *dev_priv = dev->dev_private;
2344 Serge 1732
 
3243 Serge 1733
	/* reserve 0 for non-seqno */
1734
	if (dev_priv->next_seqno == 0) {
1735
		int ret = i915_gem_handle_seqno_wrap(dev);
1736
		if (ret)
1737
			return ret;
1738
 
1739
		dev_priv->next_seqno = 1;
1740
	}
1741
 
1742
	*seqno = dev_priv->next_seqno++;
1743
	return 0;
2332 Serge 1744
}
1745
 
2352 Serge 1746
int
1747
i915_add_request(struct intel_ring_buffer *ring,
1748
		 struct drm_file *file,
3031 serge 1749
		 u32 *out_seqno)
2352 Serge 1750
{
1751
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
3031 serge 1752
	struct drm_i915_gem_request *request;
1753
	u32 request_ring_position;
2352 Serge 1754
	int was_empty;
1755
	int ret;
2332 Serge 1756
 
3031 serge 1757
	/*
1758
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
1759
	 * after having emitted the batchbuffer command. Hence we need to fix
1760
	 * things up similar to emitting the lazy request. The difference here
1761
	 * is that the flush _must_ happen before the next request, no matter
1762
	 * what.
1763
	 */
1764
	ret = intel_ring_flush_all_caches(ring);
1765
	if (ret)
1766
		return ret;
2332 Serge 1767
 
3031 serge 1768
	request = kmalloc(sizeof(*request), GFP_KERNEL);
1769
	if (request == NULL)
1770
		return -ENOMEM;
1771
 
1772
 
1773
	/* Record the position of the start of the request so that
1774
	 * should we detect the updated seqno part-way through the
1775
	 * GPU processing the request, we never over-estimate the
1776
	 * position of the head.
1777
	 */
1778
	request_ring_position = intel_ring_get_tail(ring);
1779
 
3243 Serge 1780
	ret = ring->add_request(ring);
3031 serge 1781
	if (ret) {
1782
		kfree(request);
2352 Serge 1783
	    return ret;
3031 serge 1784
	}
2332 Serge 1785
 
3243 Serge 1786
	request->seqno = intel_ring_get_seqno(ring);
2352 Serge 1787
	request->ring = ring;
3031 serge 1788
	request->tail = request_ring_position;
1789
    request->emitted_jiffies = GetTimerTicks();
2352 Serge 1790
	was_empty = list_empty(&ring->request_list);
1791
	list_add_tail(&request->list, &ring->request_list);
3031 serge 1792
	request->file_priv = NULL;
2332 Serge 1793
 
3263 Serge 1794
	if (file) {
1795
		struct drm_i915_file_private *file_priv = file->driver_priv;
2332 Serge 1796
 
3263 Serge 1797
		spin_lock(&file_priv->mm.lock);
1798
		request->file_priv = file_priv;
1799
		list_add_tail(&request->client_list,
1800
			      &file_priv->mm.request_list);
1801
		spin_unlock(&file_priv->mm.lock);
1802
	}
1803
 
1804
	trace_i915_gem_request_add(ring, request->seqno);
3031 serge 1805
	ring->outstanding_lazy_request = 0;
2332 Serge 1806
 
2360 Serge 1807
	if (!dev_priv->mm.suspended) {
1808
		if (i915_enable_hangcheck) {
2352 Serge 1809
//			mod_timer(&dev_priv->hangcheck_timer,
1810
//				  jiffies +
1811
//				  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
2360 Serge 1812
		}
3031 serge 1813
		if (was_empty) {
2360 Serge 1814
           queue_delayed_work(dev_priv->wq,
1815
                      &dev_priv->mm.retire_work, HZ);
3031 serge 1816
			intel_mark_busy(dev_priv->dev);
1817
		}
2360 Serge 1818
	}
3031 serge 1819
 
1820
	if (out_seqno)
3243 Serge 1821
		*out_seqno = request->seqno;
2352 Serge 1822
	return 0;
1823
}
2332 Serge 1824
 
3263 Serge 1825
static inline void
1826
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1827
{
1828
	struct drm_i915_file_private *file_priv = request->file_priv;
2332 Serge 1829
 
3263 Serge 1830
	if (!file_priv)
1831
		return;
2332 Serge 1832
 
3263 Serge 1833
	spin_lock(&file_priv->mm.lock);
1834
	if (request->file_priv) {
1835
		list_del(&request->client_list);
1836
		request->file_priv = NULL;
1837
	}
1838
	spin_unlock(&file_priv->mm.lock);
1839
}
2332 Serge 1840
 
3031 serge 1841
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1842
				      struct intel_ring_buffer *ring)
1843
{
1844
	while (!list_empty(&ring->request_list)) {
1845
		struct drm_i915_gem_request *request;
2332 Serge 1846
 
3031 serge 1847
		request = list_first_entry(&ring->request_list,
1848
					   struct drm_i915_gem_request,
1849
					   list);
2332 Serge 1850
 
3031 serge 1851
		list_del(&request->list);
3263 Serge 1852
		i915_gem_request_remove_from_client(request);
3031 serge 1853
		kfree(request);
1854
	}
2332 Serge 1855
 
3031 serge 1856
	while (!list_empty(&ring->active_list)) {
1857
		struct drm_i915_gem_object *obj;
2332 Serge 1858
 
3031 serge 1859
		obj = list_first_entry(&ring->active_list,
1860
				       struct drm_i915_gem_object,
1861
				       ring_list);
2332 Serge 1862
 
3031 serge 1863
		i915_gem_object_move_to_inactive(obj);
1864
	}
1865
}
2332 Serge 1866
 
3031 serge 1867
static void i915_gem_reset_fences(struct drm_device *dev)
1868
{
1869
	struct drm_i915_private *dev_priv = dev->dev_private;
1870
	int i;
2332 Serge 1871
 
3031 serge 1872
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
1873
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2332 Serge 1874
 
3031 serge 1875
		i915_gem_write_fence(dev, i, NULL);
2360 Serge 1876
 
3031 serge 1877
		if (reg->obj)
1878
			i915_gem_object_fence_lost(reg->obj);
2360 Serge 1879
 
3031 serge 1880
		reg->pin_count = 0;
1881
		reg->obj = NULL;
1882
		INIT_LIST_HEAD(®->lru_list);
1883
	}
2360 Serge 1884
 
3031 serge 1885
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1886
}
2360 Serge 1887
 
3031 serge 1888
void i915_gem_reset(struct drm_device *dev)
1889
{
1890
	struct drm_i915_private *dev_priv = dev->dev_private;
1891
	struct drm_i915_gem_object *obj;
1892
	struct intel_ring_buffer *ring;
1893
	int i;
2360 Serge 1894
 
3031 serge 1895
	for_each_ring(ring, dev_priv, i)
1896
		i915_gem_reset_ring_lists(dev_priv, ring);
2360 Serge 1897
 
3031 serge 1898
	/* Move everything out of the GPU domains to ensure we do any
1899
	 * necessary invalidation upon reuse.
1900
	 */
1901
	list_for_each_entry(obj,
1902
			    &dev_priv->mm.inactive_list,
1903
			    mm_list)
1904
	{
1905
		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1906
	}
2360 Serge 1907
 
3031 serge 1908
	/* The fence registers are invalidated so clear them out */
1909
	i915_gem_reset_fences(dev);
1910
}
2360 Serge 1911
 
2352 Serge 1912
/**
1913
 * This function clears the request list as sequence numbers are passed.
1914
 */
3031 serge 1915
void
2352 Serge 1916
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1917
{
1918
	uint32_t seqno;
2332 Serge 1919
 
2352 Serge 1920
	if (list_empty(&ring->request_list))
1921
		return;
2332 Serge 1922
 
2352 Serge 1923
	WARN_ON(i915_verify_lists(ring->dev));
2332 Serge 1924
 
3031 serge 1925
	seqno = ring->get_seqno(ring, true);
2332 Serge 1926
 
2352 Serge 1927
	while (!list_empty(&ring->request_list)) {
1928
		struct drm_i915_gem_request *request;
2332 Serge 1929
 
2352 Serge 1930
		request = list_first_entry(&ring->request_list,
1931
					   struct drm_i915_gem_request,
1932
					   list);
2332 Serge 1933
 
2352 Serge 1934
		if (!i915_seqno_passed(seqno, request->seqno))
1935
			break;
2332 Serge 1936
 
2352 Serge 1937
		trace_i915_gem_request_retire(ring, request->seqno);
3031 serge 1938
		/* We know the GPU must have read the request to have
1939
		 * sent us the seqno + interrupt, so use the position
1940
		 * of tail of the request to update the last known position
1941
		 * of the GPU head.
1942
		 */
1943
		ring->last_retired_head = request->tail;
2332 Serge 1944
 
2352 Serge 1945
		list_del(&request->list);
3263 Serge 1946
		i915_gem_request_remove_from_client(request);
2352 Serge 1947
		kfree(request);
1948
	}
2332 Serge 1949
 
2352 Serge 1950
	/* Move any buffers on the active list that are no longer referenced
1951
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
1952
	 */
1953
	while (!list_empty(&ring->active_list)) {
1954
		struct drm_i915_gem_object *obj;
2332 Serge 1955
 
2352 Serge 1956
		obj = list_first_entry(&ring->active_list,
1957
				      struct drm_i915_gem_object,
1958
				      ring_list);
2332 Serge 1959
 
3031 serge 1960
		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2352 Serge 1961
			break;
2332 Serge 1962
 
2352 Serge 1963
			i915_gem_object_move_to_inactive(obj);
1964
	}
2332 Serge 1965
 
2352 Serge 1966
	if (unlikely(ring->trace_irq_seqno &&
1967
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1968
		ring->irq_put(ring);
1969
		ring->trace_irq_seqno = 0;
1970
	}
2332 Serge 1971
 
2352 Serge 1972
	WARN_ON(i915_verify_lists(ring->dev));
1973
}
2332 Serge 1974
 
2352 Serge 1975
void
1976
i915_gem_retire_requests(struct drm_device *dev)
1977
{
1978
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 1979
	struct intel_ring_buffer *ring;
2352 Serge 1980
	int i;
2332 Serge 1981
 
3031 serge 1982
	for_each_ring(ring, dev_priv, i)
1983
		i915_gem_retire_requests_ring(ring);
2352 Serge 1984
}
1985
 
2360 Serge 1986
static void
1987
i915_gem_retire_work_handler(struct work_struct *work)
1988
{
1989
	drm_i915_private_t *dev_priv;
1990
	struct drm_device *dev;
3031 serge 1991
	struct intel_ring_buffer *ring;
2360 Serge 1992
	bool idle;
1993
	int i;
2352 Serge 1994
 
2360 Serge 1995
	dev_priv = container_of(work, drm_i915_private_t,
1996
				mm.retire_work.work);
1997
	dev = dev_priv->dev;
2352 Serge 1998
 
2360 Serge 1999
	/* Come back later if the device is busy... */
2000
	if (!mutex_trylock(&dev->struct_mutex)) {
2001
        queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
3243 Serge 2002
        return;
2360 Serge 2003
	}
2352 Serge 2004
 
2360 Serge 2005
	i915_gem_retire_requests(dev);
2352 Serge 2006
 
2360 Serge 2007
	/* Send a periodic flush down the ring so we don't hold onto GEM
2008
	 * objects indefinitely.
2009
	 */
2010
	idle = true;
3031 serge 2011
	for_each_ring(ring, dev_priv, i) {
2012
		if (ring->gpu_caches_dirty)
2013
			i915_add_request(ring, NULL, NULL);
2352 Serge 2014
 
2360 Serge 2015
		idle &= list_empty(&ring->request_list);
2016
	}
2352 Serge 2017
 
2360 Serge 2018
   if (!dev_priv->mm.suspended && !idle)
2019
       queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
3031 serge 2020
	if (idle)
2021
		intel_mark_idle(dev);
2360 Serge 2022
 
2023
	mutex_unlock(&dev->struct_mutex);
2024
}
2025
 
2344 Serge 2026
/**
3031 serge 2027
 * Ensures that an object will eventually get non-busy by flushing any required
2028
 * write domains, emitting any outstanding lazy request and retiring and
2029
 * completed requests.
2352 Serge 2030
 */
3031 serge 2031
static int
2032
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2352 Serge 2033
{
3031 serge 2034
	int ret;
2352 Serge 2035
 
3031 serge 2036
	if (obj->active) {
2037
		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2038
		if (ret)
2039
			return ret;
2352 Serge 2040
 
3031 serge 2041
		i915_gem_retire_requests_ring(obj->ring);
2042
	}
2352 Serge 2043
 
3031 serge 2044
	return 0;
2045
}
2352 Serge 2046
 
3243 Serge 2047
/**
2048
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2049
 * @DRM_IOCTL_ARGS: standard ioctl arguments
2050
 *
2051
 * Returns 0 if successful, else an error is returned with the remaining time in
2052
 * the timeout parameter.
2053
 *  -ETIME: object is still busy after timeout
2054
 *  -ERESTARTSYS: signal interrupted the wait
2055
 *  -ENONENT: object doesn't exist
2056
 * Also possible, but rare:
2057
 *  -EAGAIN: GPU wedged
2058
 *  -ENOMEM: damn
2059
 *  -ENODEV: Internal IRQ fail
2060
 *  -E?: The add request failed
2061
 *
2062
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2063
 * non-zero timeout parameter the wait ioctl will wait for the given number of
2064
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2065
 * without holding struct_mutex the object may become re-busied before this
2066
 * function completes. A similar but shorter * race condition exists in the busy
2067
 * ioctl
2068
 */
2352 Serge 2069
 
2070
 
2071
 
2072
 
2073
 
2074
 
2075
 
2076
 
2077
 
3243 Serge 2078
 
2079
 
2080
 
2352 Serge 2081
/**
3031 serge 2082
 * i915_gem_object_sync - sync an object to a ring.
2083
 *
2084
 * @obj: object which may be in use on another ring.
2085
 * @to: ring we wish to use the object on. May be NULL.
2086
 *
2087
 * This code is meant to abstract object synchronization with the GPU.
2088
 * Calling with NULL implies synchronizing the object with the CPU
2089
 * rather than a particular GPU ring.
2090
 *
2091
 * Returns 0 if successful, else propagates up the lower layer error.
2344 Serge 2092
 */
2093
int
3031 serge 2094
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2095
		     struct intel_ring_buffer *to)
2344 Serge 2096
{
3031 serge 2097
	struct intel_ring_buffer *from = obj->ring;
2098
	u32 seqno;
2099
	int ret, idx;
2332 Serge 2100
 
3031 serge 2101
	if (from == NULL || to == from)
2102
		return 0;
2332 Serge 2103
 
3031 serge 2104
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2105
		return i915_gem_object_wait_rendering(obj, false);
2332 Serge 2106
 
3031 serge 2107
	idx = intel_ring_sync_index(from, to);
2108
 
2109
	seqno = obj->last_read_seqno;
2110
	if (seqno <= from->sync_seqno[idx])
2111
		return 0;
2112
 
2113
	ret = i915_gem_check_olr(obj->ring, seqno);
2114
	if (ret)
2115
		return ret;
2116
 
2117
	ret = to->sync_to(to, from, seqno);
2118
	if (!ret)
3243 Serge 2119
		/* We use last_read_seqno because sync_to()
2120
		 * might have just caused seqno wrap under
2121
		 * the radar.
2122
		 */
2123
		from->sync_seqno[idx] = obj->last_read_seqno;
3031 serge 2124
 
2125
	return ret;
2344 Serge 2126
}
2332 Serge 2127
 
2344 Serge 2128
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2129
{
2130
	u32 old_write_domain, old_read_domains;
2332 Serge 2131
 
2344 Serge 2132
	/* Act a barrier for all accesses through the GTT */
2133
	mb();
2332 Serge 2134
 
2344 Serge 2135
	/* Force a pagefault for domain tracking on next user access */
2136
//	i915_gem_release_mmap(obj);
2332 Serge 2137
 
2344 Serge 2138
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2139
		return;
2332 Serge 2140
 
2344 Serge 2141
	old_read_domains = obj->base.read_domains;
2142
	old_write_domain = obj->base.write_domain;
2351 Serge 2143
 
2344 Serge 2144
	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2145
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2332 Serge 2146
 
2351 Serge 2147
	trace_i915_gem_object_change_domain(obj,
2148
					    old_read_domains,
2149
					    old_write_domain);
2344 Serge 2150
}
2332 Serge 2151
 
2344 Serge 2152
/**
2153
 * Unbinds an object from the GTT aperture.
2154
 */
2155
int
2156
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2157
{
3031 serge 2158
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2344 Serge 2159
	int ret = 0;
2332 Serge 2160
 
3263 Serge 2161
    if(obj == get_fb_obj())
2162
        return 0;
2163
 
2344 Serge 2164
	if (obj->gtt_space == NULL)
2165
		return 0;
2332 Serge 2166
 
3031 serge 2167
	if (obj->pin_count)
2168
		return -EBUSY;
2332 Serge 2169
 
3243 Serge 2170
	BUG_ON(obj->pages == NULL);
3031 serge 2171
 
2344 Serge 2172
	ret = i915_gem_object_finish_gpu(obj);
3031 serge 2173
	if (ret)
2344 Serge 2174
		return ret;
2175
	/* Continue on if we fail due to EIO, the GPU is hung so we
2176
	 * should be safe and we need to cleanup or else we might
2177
	 * cause memory corruption through use-after-free.
2178
	 */
2332 Serge 2179
 
2344 Serge 2180
	i915_gem_object_finish_gtt(obj);
2332 Serge 2181
 
2344 Serge 2182
	/* release the fence reg _after_ flushing */
2183
	ret = i915_gem_object_put_fence(obj);
3031 serge 2184
	if (ret)
2344 Serge 2185
		return ret;
2332 Serge 2186
 
2351 Serge 2187
	trace_i915_gem_object_unbind(obj);
2332 Serge 2188
 
3031 serge 2189
	if (obj->has_global_gtt_mapping)
3243 Serge 2190
        i915_gem_gtt_unbind_object(obj);
3031 serge 2191
	if (obj->has_aliasing_ppgtt_mapping) {
2192
		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2193
		obj->has_aliasing_ppgtt_mapping = 0;
2194
	}
2195
	i915_gem_gtt_finish_object(obj);
2332 Serge 2196
 
3031 serge 2197
	list_del(&obj->mm_list);
2198
	list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2344 Serge 2199
	/* Avoid an unnecessary call to unbind on rebind. */
2200
	obj->map_and_fenceable = true;
2332 Serge 2201
 
2344 Serge 2202
	drm_mm_put_block(obj->gtt_space);
2203
	obj->gtt_space = NULL;
2204
	obj->gtt_offset = 0;
2332 Serge 2205
 
2344 Serge 2206
	return 0;
2207
}
2332 Serge 2208
 
3031 serge 2209
int i915_gpu_idle(struct drm_device *dev)
2344 Serge 2210
{
2211
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 2212
	struct intel_ring_buffer *ring;
2344 Serge 2213
	int ret, i;
2332 Serge 2214
 
2344 Serge 2215
	/* Flush everything onto the inactive list. */
3031 serge 2216
	for_each_ring(ring, dev_priv, i) {
2217
		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2344 Serge 2218
		if (ret)
2219
			return ret;
3031 serge 2220
 
3243 Serge 2221
		ret = intel_ring_idle(ring);
3031 serge 2222
		if (ret)
2223
			return ret;
2344 Serge 2224
	}
2332 Serge 2225
 
2344 Serge 2226
	return 0;
2227
}
2332 Serge 2228
 
3031 serge 2229
static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2230
					struct drm_i915_gem_object *obj)
2231
{
2232
	drm_i915_private_t *dev_priv = dev->dev_private;
2233
	uint64_t val;
2332 Serge 2234
 
3031 serge 2235
	if (obj) {
2236
		u32 size = obj->gtt_space->size;
2332 Serge 2237
 
3031 serge 2238
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
2239
				 0xfffff000) << 32;
2240
		val |= obj->gtt_offset & 0xfffff000;
2241
		val |= (uint64_t)((obj->stride / 128) - 1) <<
2242
			SANDYBRIDGE_FENCE_PITCH_SHIFT;
2332 Serge 2243
 
3031 serge 2244
		if (obj->tiling_mode == I915_TILING_Y)
2245
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2246
		val |= I965_FENCE_REG_VALID;
2247
	} else
2248
		val = 0;
2332 Serge 2249
 
3031 serge 2250
	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2251
	POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2252
}
2332 Serge 2253
 
3031 serge 2254
static void i965_write_fence_reg(struct drm_device *dev, int reg,
2255
				 struct drm_i915_gem_object *obj)
2256
{
2257
	drm_i915_private_t *dev_priv = dev->dev_private;
2258
	uint64_t val;
2332 Serge 2259
 
3031 serge 2260
	if (obj) {
2261
		u32 size = obj->gtt_space->size;
2332 Serge 2262
 
3031 serge 2263
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
2264
				 0xfffff000) << 32;
2265
		val |= obj->gtt_offset & 0xfffff000;
2266
		val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2267
		if (obj->tiling_mode == I915_TILING_Y)
2268
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2269
		val |= I965_FENCE_REG_VALID;
2270
	} else
2271
		val = 0;
2332 Serge 2272
 
3031 serge 2273
	I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2274
	POSTING_READ(FENCE_REG_965_0 + reg * 8);
2275
}
2332 Serge 2276
 
3031 serge 2277
static void i915_write_fence_reg(struct drm_device *dev, int reg,
2278
				 struct drm_i915_gem_object *obj)
2279
{
2280
	drm_i915_private_t *dev_priv = dev->dev_private;
2281
	u32 val;
2332 Serge 2282
 
3031 serge 2283
	if (obj) {
2284
		u32 size = obj->gtt_space->size;
2285
		int pitch_val;
2286
		int tile_width;
2332 Serge 2287
 
3031 serge 2288
		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2289
		     (size & -size) != size ||
2290
		     (obj->gtt_offset & (size - 1)),
2291
		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2292
		     obj->gtt_offset, obj->map_and_fenceable, size);
2332 Serge 2293
 
3031 serge 2294
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2295
			tile_width = 128;
2296
		else
2297
			tile_width = 512;
2332 Serge 2298
 
3031 serge 2299
		/* Note: pitch better be a power of two tile widths */
2300
		pitch_val = obj->stride / tile_width;
2301
		pitch_val = ffs(pitch_val) - 1;
2332 Serge 2302
 
3031 serge 2303
		val = obj->gtt_offset;
2304
		if (obj->tiling_mode == I915_TILING_Y)
2305
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2306
		val |= I915_FENCE_SIZE_BITS(size);
2307
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2308
		val |= I830_FENCE_REG_VALID;
2309
	} else
2310
		val = 0;
2332 Serge 2311
 
3031 serge 2312
	if (reg < 8)
2313
		reg = FENCE_REG_830_0 + reg * 4;
2314
	else
2315
		reg = FENCE_REG_945_8 + (reg - 8) * 4;
2332 Serge 2316
 
3031 serge 2317
	I915_WRITE(reg, val);
2318
	POSTING_READ(reg);
2319
}
2332 Serge 2320
 
3031 serge 2321
static void i830_write_fence_reg(struct drm_device *dev, int reg,
2322
				struct drm_i915_gem_object *obj)
2323
{
2324
	drm_i915_private_t *dev_priv = dev->dev_private;
2325
	uint32_t val;
2344 Serge 2326
 
3031 serge 2327
	if (obj) {
2328
		u32 size = obj->gtt_space->size;
2329
		uint32_t pitch_val;
2344 Serge 2330
 
3031 serge 2331
		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2332
		     (size & -size) != size ||
2333
		     (obj->gtt_offset & (size - 1)),
2334
		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2335
		     obj->gtt_offset, size);
2344 Serge 2336
 
3031 serge 2337
		pitch_val = obj->stride / 128;
2338
		pitch_val = ffs(pitch_val) - 1;
2344 Serge 2339
 
3031 serge 2340
		val = obj->gtt_offset;
2341
		if (obj->tiling_mode == I915_TILING_Y)
2342
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2343
		val |= I830_FENCE_SIZE_BITS(size);
2344
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2345
		val |= I830_FENCE_REG_VALID;
2346
	} else
2347
		val = 0;
2348
 
2349
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2350
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
2351
}
2352
 
2353
static void i915_gem_write_fence(struct drm_device *dev, int reg,
2354
				 struct drm_i915_gem_object *obj)
2332 Serge 2355
{
3031 serge 2356
	switch (INTEL_INFO(dev)->gen) {
2357
	case 7:
2358
	case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2359
	case 5:
2360
	case 4: i965_write_fence_reg(dev, reg, obj); break;
2361
	case 3: i915_write_fence_reg(dev, reg, obj); break;
2362
	case 2: i830_write_fence_reg(dev, reg, obj); break;
2363
	default: break;
2364
	}
2344 Serge 2365
}
2366
 
3031 serge 2367
static inline int fence_number(struct drm_i915_private *dev_priv,
2368
			       struct drm_i915_fence_reg *fence)
2344 Serge 2369
{
3031 serge 2370
	return fence - dev_priv->fence_regs;
2371
}
2332 Serge 2372
 
3031 serge 2373
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2374
					 struct drm_i915_fence_reg *fence,
2375
					 bool enable)
2376
{
2377
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2378
	int reg = fence_number(dev_priv, fence);
2332 Serge 2379
 
3031 serge 2380
	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2381
 
2382
	if (enable) {
2383
		obj->fence_reg = reg;
2384
		fence->obj = obj;
2385
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2386
	} else {
2387
		obj->fence_reg = I915_FENCE_REG_NONE;
2388
		fence->obj = NULL;
2389
		list_del_init(&fence->lru_list);
2344 Serge 2390
	}
3031 serge 2391
}
2344 Serge 2392
 
3031 serge 2393
static int
2394
i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2395
{
2396
	if (obj->last_fenced_seqno) {
2397
		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2352 Serge 2398
			if (ret)
2399
				return ret;
2344 Serge 2400
 
2401
		obj->last_fenced_seqno = 0;
2402
	}
2403
 
2404
	/* Ensure that all CPU reads are completed before installing a fence
2405
	 * and all writes before removing the fence.
2332 Serge 2406
	 */
2344 Serge 2407
	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2408
		mb();
2332 Serge 2409
 
3031 serge 2410
	obj->fenced_gpu_access = false;
2332 Serge 2411
	return 0;
2412
}
2413
 
2414
int
2344 Serge 2415
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2332 Serge 2416
{
3031 serge 2417
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2332 Serge 2418
	int ret;
2419
 
3031 serge 2420
	ret = i915_gem_object_flush_fence(obj);
2332 Serge 2421
	if (ret)
2422
		return ret;
2423
 
3031 serge 2424
	if (obj->fence_reg == I915_FENCE_REG_NONE)
2425
		return 0;
2332 Serge 2426
 
3031 serge 2427
	i915_gem_object_update_fence(obj,
2428
				     &dev_priv->fence_regs[obj->fence_reg],
2429
				     false);
2430
	i915_gem_object_fence_lost(obj);
2344 Serge 2431
 
2332 Serge 2432
	return 0;
2433
}
2434
 
3031 serge 2435
static struct drm_i915_fence_reg *
2436
i915_find_fence_reg(struct drm_device *dev)
2437
{
2438
	struct drm_i915_private *dev_priv = dev->dev_private;
2439
	struct drm_i915_fence_reg *reg, *avail;
2440
	int i;
2332 Serge 2441
 
3031 serge 2442
	/* First try to find a free reg */
2443
	avail = NULL;
2444
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2445
		reg = &dev_priv->fence_regs[i];
2446
		if (!reg->obj)
2447
			return reg;
2332 Serge 2448
 
3031 serge 2449
		if (!reg->pin_count)
2450
			avail = reg;
2451
	}
2332 Serge 2452
 
3031 serge 2453
	if (avail == NULL)
2454
		return NULL;
2332 Serge 2455
 
3031 serge 2456
	/* None available, try to steal one or wait for a user to finish */
2457
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2458
		if (reg->pin_count)
2459
			continue;
2332 Serge 2460
 
3031 serge 2461
		return reg;
2462
	}
2332 Serge 2463
 
3031 serge 2464
	return NULL;
2465
}
2332 Serge 2466
 
3031 serge 2467
/**
2468
 * i915_gem_object_get_fence - set up fencing for an object
2469
 * @obj: object to map through a fence reg
2470
 *
2471
 * When mapping objects through the GTT, userspace wants to be able to write
2472
 * to them without having to worry about swizzling if the object is tiled.
2473
 * This function walks the fence regs looking for a free one for @obj,
2474
 * stealing one if it can't find any.
2475
 *
2476
 * It then sets up the reg based on the object's properties: address, pitch
2477
 * and tiling format.
2478
 *
2479
 * For an untiled surface, this removes any existing fence.
2480
 */
2481
int
2482
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2483
{
2484
	struct drm_device *dev = obj->base.dev;
2485
	struct drm_i915_private *dev_priv = dev->dev_private;
2486
	bool enable = obj->tiling_mode != I915_TILING_NONE;
2487
	struct drm_i915_fence_reg *reg;
2488
	int ret;
2332 Serge 2489
 
3031 serge 2490
	/* Have we updated the tiling parameters upon the object and so
2491
	 * will need to serialise the write to the associated fence register?
2492
	 */
2493
	if (obj->fence_dirty) {
2494
		ret = i915_gem_object_flush_fence(obj);
2495
		if (ret)
2496
			return ret;
2497
	}
2332 Serge 2498
 
3031 serge 2499
	/* Just update our place in the LRU if our fence is getting reused. */
2500
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2501
		reg = &dev_priv->fence_regs[obj->fence_reg];
2502
		if (!obj->fence_dirty) {
2503
			list_move_tail(®->lru_list,
2504
				       &dev_priv->mm.fence_list);
2505
			return 0;
2506
		}
2507
	} else if (enable) {
2508
		reg = i915_find_fence_reg(dev);
2509
		if (reg == NULL)
2510
			return -EDEADLK;
2332 Serge 2511
 
3031 serge 2512
		if (reg->obj) {
2513
			struct drm_i915_gem_object *old = reg->obj;
2332 Serge 2514
 
3031 serge 2515
			ret = i915_gem_object_flush_fence(old);
2516
			if (ret)
2517
				return ret;
2332 Serge 2518
 
3031 serge 2519
			i915_gem_object_fence_lost(old);
2520
		}
2521
	} else
2522
		return 0;
2332 Serge 2523
 
3031 serge 2524
	i915_gem_object_update_fence(obj, reg, enable);
2525
	obj->fence_dirty = false;
2332 Serge 2526
 
3031 serge 2527
	return 0;
2528
}
2332 Serge 2529
 
3031 serge 2530
static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2531
				     struct drm_mm_node *gtt_space,
2532
				     unsigned long cache_level)
2533
{
2534
	struct drm_mm_node *other;
2332 Serge 2535
 
3031 serge 2536
	/* On non-LLC machines we have to be careful when putting differing
2537
	 * types of snoopable memory together to avoid the prefetcher
2538
	 * crossing memory domains and dieing.
2539
	 */
2540
	if (HAS_LLC(dev))
2541
		return true;
2332 Serge 2542
 
3031 serge 2543
	if (gtt_space == NULL)
2544
		return true;
2332 Serge 2545
 
3031 serge 2546
	if (list_empty(>t_space->node_list))
2547
		return true;
2332 Serge 2548
 
3031 serge 2549
	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2550
	if (other->allocated && !other->hole_follows && other->color != cache_level)
2551
		return false;
2344 Serge 2552
 
3031 serge 2553
	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2554
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2555
		return false;
2344 Serge 2556
 
3031 serge 2557
	return true;
2558
}
2344 Serge 2559
 
3031 serge 2560
static void i915_gem_verify_gtt(struct drm_device *dev)
2561
{
2562
#if WATCH_GTT
2563
	struct drm_i915_private *dev_priv = dev->dev_private;
2564
	struct drm_i915_gem_object *obj;
2565
	int err = 0;
2344 Serge 2566
 
3031 serge 2567
	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2568
		if (obj->gtt_space == NULL) {
2569
			printk(KERN_ERR "object found on GTT list with no space reserved\n");
2570
			err++;
2571
			continue;
2572
		}
2344 Serge 2573
 
3031 serge 2574
		if (obj->cache_level != obj->gtt_space->color) {
2575
			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2576
			       obj->gtt_space->start,
2577
			       obj->gtt_space->start + obj->gtt_space->size,
2578
			       obj->cache_level,
2579
			       obj->gtt_space->color);
2580
			err++;
2581
			continue;
2582
		}
2344 Serge 2583
 
3031 serge 2584
		if (!i915_gem_valid_gtt_space(dev,
2585
					      obj->gtt_space,
2586
					      obj->cache_level)) {
2587
			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2588
			       obj->gtt_space->start,
2589
			       obj->gtt_space->start + obj->gtt_space->size,
2590
			       obj->cache_level);
2591
			err++;
2592
			continue;
2593
		}
2594
	}
2344 Serge 2595
 
3031 serge 2596
	WARN_ON(err);
2597
#endif
2326 Serge 2598
}
2599
 
2332 Serge 2600
/**
2601
 * Finds free space in the GTT aperture and binds the object there.
2602
 */
2603
static int
2604
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2605
			    unsigned alignment,
3031 serge 2606
			    bool map_and_fenceable,
2607
			    bool nonblocking)
2332 Serge 2608
{
2609
	struct drm_device *dev = obj->base.dev;
2610
	drm_i915_private_t *dev_priv = dev->dev_private;
3243 Serge 2611
	struct drm_mm_node *node;
2332 Serge 2612
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2613
	bool mappable, fenceable;
2614
	int ret;
2326 Serge 2615
 
2332 Serge 2616
	if (obj->madv != I915_MADV_WILLNEED) {
3243 Serge 2617
        DRM_ERROR("Attempting to bind a purgeable object\n");
2332 Serge 2618
		return -EINVAL;
2619
	}
2620
 
2621
	fence_size = i915_gem_get_gtt_size(dev,
2622
					   obj->base.size,
2623
					   obj->tiling_mode);
2624
	fence_alignment = i915_gem_get_gtt_alignment(dev,
2625
						     obj->base.size,
2626
						     obj->tiling_mode);
2627
	unfenced_alignment =
2628
		i915_gem_get_unfenced_gtt_alignment(dev,
2629
						    obj->base.size,
2630
						    obj->tiling_mode);
2631
 
2632
	if (alignment == 0)
2633
		alignment = map_and_fenceable ? fence_alignment :
2634
						unfenced_alignment;
2635
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2636
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2637
		return -EINVAL;
2638
	}
2639
 
2640
	size = map_and_fenceable ? fence_size : obj->base.size;
2641
 
2642
	/* If the object is bigger than the entire aperture, reject it early
2643
	 * before evicting everything in a vain attempt to find space.
2644
	 */
2645
	if (obj->base.size >
2646
	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2647
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2648
		return -E2BIG;
2649
	}
2650
 
3031 serge 2651
	ret = i915_gem_object_get_pages(obj);
2652
	if (ret)
2653
		return ret;
2654
 
3243 Serge 2655
	i915_gem_object_pin_pages(obj);
2656
 
2657
	node = kzalloc(sizeof(*node), GFP_KERNEL);
2658
	if (node == NULL) {
2659
		i915_gem_object_unpin_pages(obj);
2660
		return -ENOMEM;
2661
	}
2662
 
2332 Serge 2663
 search_free:
2664
	if (map_and_fenceable)
3243 Serge 2665
		ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
3031 serge 2666
							  size, alignment, obj->cache_level,
3243 Serge 2667
							  0, dev_priv->mm.gtt_mappable_end);
2332 Serge 2668
	else
3243 Serge 2669
		ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
2670
						 size, alignment, obj->cache_level);
2671
	if (ret) {
2332 Serge 2672
 
3243 Serge 2673
		i915_gem_object_unpin_pages(obj);
2674
		kfree(node);
2332 Serge 2675
			return ret;
2676
	}
3243 Serge 2677
	if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
2678
		i915_gem_object_unpin_pages(obj);
2679
		drm_mm_put_block(node);
3031 serge 2680
		return -EINVAL;
2681
	}
2332 Serge 2682
 
3031 serge 2683
	ret = i915_gem_gtt_prepare_object(obj);
2332 Serge 2684
	if (ret) {
3243 Serge 2685
		i915_gem_object_unpin_pages(obj);
2686
		drm_mm_put_block(node);
2332 Serge 2687
			return ret;
2688
	}
2689
 
3031 serge 2690
	list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2332 Serge 2691
	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2692
 
3243 Serge 2693
	obj->gtt_space = node;
2694
	obj->gtt_offset = node->start;
2332 Serge 2695
 
2696
	fenceable =
3243 Serge 2697
		node->size == fence_size &&
2698
		(node->start & (fence_alignment - 1)) == 0;
2332 Serge 2699
 
2700
	mappable =
2701
		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2702
 
2703
	obj->map_and_fenceable = mappable && fenceable;
2704
 
3243 Serge 2705
	i915_gem_object_unpin_pages(obj);
2351 Serge 2706
	trace_i915_gem_object_bind(obj, map_and_fenceable);
3031 serge 2707
	i915_gem_verify_gtt(dev);
2332 Serge 2708
	return 0;
2709
}
2710
 
2711
void
2712
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2713
{
2714
	/* If we don't have a page list set up, then we're not pinned
2715
	 * to GPU, and we can ignore the cache flush because it'll happen
2716
	 * again at bind time.
2717
	 */
3243 Serge 2718
	if (obj->pages == NULL)
2332 Serge 2719
		return;
2720
 
2721
	/* If the GPU is snooping the contents of the CPU cache,
2722
	 * we do not need to manually clear the CPU cache lines.  However,
2723
	 * the caches are only snooped when the render cache is
2724
	 * flushed/invalidated.  As we always have to emit invalidations
2725
	 * and flushes when moving into and out of the RENDER domain, correct
2726
	 * snooping behaviour occurs naturally as the result of our domain
2727
	 * tracking.
2728
	 */
2729
	if (obj->cache_level != I915_CACHE_NONE)
2730
		return;
3243 Serge 2731
#if 0
2344 Serge 2732
     if(obj->mapped != NULL)
2733
     {
2734
        uint8_t *page_virtual;
2735
        unsigned int i;
2332 Serge 2736
 
2344 Serge 2737
        page_virtual = obj->mapped;
2738
        asm volatile("mfence");
2739
        for (i = 0; i < obj->base.size; i += x86_clflush_size)
2740
            clflush(page_virtual + i);
2741
        asm volatile("mfence");
2742
     }
2743
     else
2744
     {
2745
        uint8_t *page_virtual;
2746
        unsigned int i;
2747
        page_virtual = AllocKernelSpace(obj->base.size);
2748
        if(page_virtual != NULL)
2749
        {
3031 serge 2750
            dma_addr_t *src, *dst;
2344 Serge 2751
            u32 count;
2752
 
2753
#define page_tabs  0xFDC00000      /* really dirty hack */
2754
 
3031 serge 2755
            src =  obj->pages.page;
2756
            dst =  &((dma_addr_t*)page_tabs)[(u32_t)page_virtual >> 12];
2344 Serge 2757
            count = obj->base.size/4096;
2758
 
2759
            while(count--)
2760
            {
2761
                *dst++ = (0xFFFFF000 & *src++) | 0x001 ;
2762
            };
2763
 
2764
            asm volatile("mfence");
2765
            for (i = 0; i < obj->base.size; i += x86_clflush_size)
2766
                clflush(page_virtual + i);
2767
            asm volatile("mfence");
2768
            FreeKernelSpace(page_virtual);
2769
        }
2770
        else
2771
        {
2772
            asm volatile (
2773
            "mfence         \n"
2774
            "wbinvd         \n"                 /* this is really ugly  */
2775
            "mfence");
2776
        }
2777
     }
3243 Serge 2778
#endif
2779
 
2332 Serge 2780
}
2781
 
2344 Serge 2782
/** Flushes the GTT write domain for the object if it's dirty. */
2783
static void
2784
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2785
{
2786
	uint32_t old_write_domain;
2332 Serge 2787
 
2344 Serge 2788
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2789
		return;
2332 Serge 2790
 
2344 Serge 2791
	/* No actual flushing is required for the GTT write domain.  Writes
2792
	 * to it immediately go to main memory as far as we know, so there's
2793
	 * no chipset flush.  It also doesn't land in render cache.
2794
	 *
2795
	 * However, we do have to enforce the order so that all writes through
2796
	 * the GTT land before any writes to the device, such as updates to
2797
	 * the GATT itself.
2798
	 */
2799
	wmb();
2332 Serge 2800
 
2344 Serge 2801
	old_write_domain = obj->base.write_domain;
2802
	obj->base.write_domain = 0;
2332 Serge 2803
 
2351 Serge 2804
	trace_i915_gem_object_change_domain(obj,
2805
					    obj->base.read_domains,
2806
					    old_write_domain);
2344 Serge 2807
}
2332 Serge 2808
 
2809
/** Flushes the CPU write domain for the object if it's dirty. */
2326 Serge 2810
static void
2332 Serge 2811
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2812
{
2813
	uint32_t old_write_domain;
2814
 
2815
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2816
		return;
2817
 
2818
	i915_gem_clflush_object(obj);
3243 Serge 2819
	i915_gem_chipset_flush(obj->base.dev);
2332 Serge 2820
	old_write_domain = obj->base.write_domain;
2821
	obj->base.write_domain = 0;
2822
 
2351 Serge 2823
	trace_i915_gem_object_change_domain(obj,
2824
					    obj->base.read_domains,
2825
					    old_write_domain);
2332 Serge 2826
}
2827
 
2828
/**
2829
 * Moves a single object to the GTT read, and possibly write domain.
2830
 *
2831
 * This function returns when the move is complete, including waiting on
2832
 * flushes to occur.
2833
 */
2834
int
2835
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2836
{
3031 serge 2837
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2332 Serge 2838
	uint32_t old_write_domain, old_read_domains;
2839
	int ret;
2840
 
2841
	/* Not valid to be called on unbound objects. */
2842
	if (obj->gtt_space == NULL)
2843
		return -EINVAL;
2844
 
2845
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2846
		return 0;
2847
 
3031 serge 2848
	ret = i915_gem_object_wait_rendering(obj, !write);
2332 Serge 2849
		if (ret)
2850
			return ret;
2851
 
2852
	i915_gem_object_flush_cpu_write_domain(obj);
2853
 
2854
	old_write_domain = obj->base.write_domain;
2855
	old_read_domains = obj->base.read_domains;
2856
 
2857
	/* It should now be out of any other write domains, and we can update
2858
	 * the domain values for our changes.
2859
	 */
2860
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2861
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2862
	if (write) {
2863
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2864
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2865
		obj->dirty = 1;
2866
	}
2867
 
2351 Serge 2868
	trace_i915_gem_object_change_domain(obj,
2869
					    old_read_domains,
2870
					    old_write_domain);
2871
 
3031 serge 2872
	/* And bump the LRU for this access */
2873
	if (i915_gem_object_is_inactive(obj))
2874
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2875
 
2332 Serge 2876
	return 0;
2877
}
2878
 
2335 Serge 2879
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2880
				    enum i915_cache_level cache_level)
2881
{
3031 serge 2882
	struct drm_device *dev = obj->base.dev;
2883
	drm_i915_private_t *dev_priv = dev->dev_private;
2335 Serge 2884
	int ret;
2332 Serge 2885
 
2335 Serge 2886
	if (obj->cache_level == cache_level)
2887
		return 0;
2332 Serge 2888
 
2335 Serge 2889
	if (obj->pin_count) {
2890
		DRM_DEBUG("can not change the cache level of pinned objects\n");
2891
		return -EBUSY;
2892
	}
2332 Serge 2893
 
3031 serge 2894
	if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
2895
		ret = i915_gem_object_unbind(obj);
2896
		if (ret)
2897
			return ret;
2898
	}
2899
 
2335 Serge 2900
	if (obj->gtt_space) {
2901
		ret = i915_gem_object_finish_gpu(obj);
2902
		if (ret)
2903
			return ret;
2332 Serge 2904
 
2335 Serge 2905
		i915_gem_object_finish_gtt(obj);
2332 Serge 2906
 
2335 Serge 2907
		/* Before SandyBridge, you could not use tiling or fence
2908
		 * registers with snooped memory, so relinquish any fences
2909
		 * currently pointing to our region in the aperture.
2910
		 */
3031 serge 2911
		if (INTEL_INFO(dev)->gen < 6) {
2335 Serge 2912
			ret = i915_gem_object_put_fence(obj);
2913
			if (ret)
2914
				return ret;
2915
		}
2332 Serge 2916
 
3031 serge 2917
		if (obj->has_global_gtt_mapping)
2918
			i915_gem_gtt_bind_object(obj, cache_level);
2919
		if (obj->has_aliasing_ppgtt_mapping)
2920
			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2921
					       obj, cache_level);
2922
 
2923
		obj->gtt_space->color = cache_level;
2335 Serge 2924
	}
2332 Serge 2925
 
2335 Serge 2926
	if (cache_level == I915_CACHE_NONE) {
2927
		u32 old_read_domains, old_write_domain;
2332 Serge 2928
 
2335 Serge 2929
		/* If we're coming from LLC cached, then we haven't
2930
		 * actually been tracking whether the data is in the
2931
		 * CPU cache or not, since we only allow one bit set
2932
		 * in obj->write_domain and have been skipping the clflushes.
2933
		 * Just set it to the CPU cache for now.
2934
		 */
2935
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2936
		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2332 Serge 2937
 
2335 Serge 2938
		old_read_domains = obj->base.read_domains;
2939
		old_write_domain = obj->base.write_domain;
2332 Serge 2940
 
2335 Serge 2941
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2942
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2332 Serge 2943
 
2351 Serge 2944
		trace_i915_gem_object_change_domain(obj,
2945
						    old_read_domains,
2946
						    old_write_domain);
2344 Serge 2947
    }
2332 Serge 2948
 
2335 Serge 2949
	obj->cache_level = cache_level;
3031 serge 2950
	i915_gem_verify_gtt(dev);
2335 Serge 2951
	return 0;
2952
}
2332 Serge 2953
 
3260 Serge 2954
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
2955
			       struct drm_file *file)
2956
{
2957
	struct drm_i915_gem_caching *args = data;
2958
	struct drm_i915_gem_object *obj;
2959
	int ret;
2960
 
2961
	ret = i915_mutex_lock_interruptible(dev);
2962
	if (ret)
2963
		return ret;
2964
 
2965
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
2966
	if (&obj->base == NULL) {
2967
		ret = -ENOENT;
2968
		goto unlock;
2969
	}
2970
 
2971
	args->caching = obj->cache_level != I915_CACHE_NONE;
2972
 
2973
	drm_gem_object_unreference(&obj->base);
2974
unlock:
2975
	mutex_unlock(&dev->struct_mutex);
2976
	return ret;
2977
}
2978
 
2979
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
2980
			       struct drm_file *file)
2981
{
2982
	struct drm_i915_gem_caching *args = data;
2983
	struct drm_i915_gem_object *obj;
2984
	enum i915_cache_level level;
2985
	int ret;
2986
 
2987
	switch (args->caching) {
2988
	case I915_CACHING_NONE:
2989
		level = I915_CACHE_NONE;
2990
		break;
2991
	case I915_CACHING_CACHED:
2992
		level = I915_CACHE_LLC;
2993
		break;
2994
	default:
2995
		return -EINVAL;
2996
	}
2997
 
2998
	ret = i915_mutex_lock_interruptible(dev);
2999
	if (ret)
3000
		return ret;
3001
 
3002
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3003
	if (&obj->base == NULL) {
3004
		ret = -ENOENT;
3005
		goto unlock;
3006
	}
3007
 
3008
	ret = i915_gem_object_set_cache_level(obj, level);
3009
 
3010
	drm_gem_object_unreference(&obj->base);
3011
unlock:
3012
	mutex_unlock(&dev->struct_mutex);
3013
	return ret;
3014
}
3015
 
2335 Serge 3016
/*
3017
 * Prepare buffer for display plane (scanout, cursors, etc).
3018
 * Can be called from an uninterruptible phase (modesetting) and allows
3019
 * any flushes to be pipelined (for pageflips).
3020
 */
3021
int
3022
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3023
				     u32 alignment,
3024
				     struct intel_ring_buffer *pipelined)
3025
{
3026
	u32 old_read_domains, old_write_domain;
3027
	int ret;
2332 Serge 3028
 
3031 serge 3029
	if (pipelined != obj->ring) {
3030
		ret = i915_gem_object_sync(obj, pipelined);
2335 Serge 3031
	if (ret)
3032
		return ret;
3033
	}
2332 Serge 3034
 
2335 Serge 3035
	/* The display engine is not coherent with the LLC cache on gen6.  As
3036
	 * a result, we make sure that the pinning that is about to occur is
3037
	 * done with uncached PTEs. This is lowest common denominator for all
3038
	 * chipsets.
3039
	 *
3040
	 * However for gen6+, we could do better by using the GFDT bit instead
3041
	 * of uncaching, which would allow us to flush all the LLC-cached data
3042
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3043
	 */
2360 Serge 3044
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3045
	if (ret)
3046
		return ret;
2332 Serge 3047
 
2335 Serge 3048
	/* As the user may map the buffer once pinned in the display plane
3049
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3050
	 * always use map_and_fenceable for all scanout buffers.
3051
	 */
3031 serge 3052
	ret = i915_gem_object_pin(obj, alignment, true, false);
2335 Serge 3053
	if (ret)
3054
		return ret;
2332 Serge 3055
 
2335 Serge 3056
	i915_gem_object_flush_cpu_write_domain(obj);
2332 Serge 3057
 
2335 Serge 3058
	old_write_domain = obj->base.write_domain;
3059
	old_read_domains = obj->base.read_domains;
2332 Serge 3060
 
2335 Serge 3061
	/* It should now be out of any other write domains, and we can update
3062
	 * the domain values for our changes.
3063
	 */
3031 serge 3064
	obj->base.write_domain = 0;
2335 Serge 3065
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2332 Serge 3066
 
2351 Serge 3067
	trace_i915_gem_object_change_domain(obj,
3068
					    old_read_domains,
3069
					    old_write_domain);
2332 Serge 3070
 
2335 Serge 3071
	return 0;
3072
}
2332 Serge 3073
 
2344 Serge 3074
int
3075
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3076
{
3077
	int ret;
2332 Serge 3078
 
2344 Serge 3079
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3080
		return 0;
2332 Serge 3081
 
3031 serge 3082
	ret = i915_gem_object_wait_rendering(obj, false);
3243 Serge 3083
    if (ret)
3084
        return ret;
2332 Serge 3085
 
2344 Serge 3086
	/* Ensure that we invalidate the GPU's caches and TLBs. */
3087
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3031 serge 3088
	return 0;
2344 Serge 3089
}
2332 Serge 3090
 
2344 Serge 3091
/**
3092
 * Moves a single object to the CPU read, and possibly write domain.
3093
 *
3094
 * This function returns when the move is complete, including waiting on
3095
 * flushes to occur.
3096
 */
3031 serge 3097
int
2344 Serge 3098
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3099
{
3100
	uint32_t old_write_domain, old_read_domains;
3101
	int ret;
2332 Serge 3102
 
2344 Serge 3103
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3104
		return 0;
2332 Serge 3105
 
3031 serge 3106
	ret = i915_gem_object_wait_rendering(obj, !write);
2344 Serge 3107
	if (ret)
3108
		return ret;
2332 Serge 3109
 
2344 Serge 3110
	i915_gem_object_flush_gtt_write_domain(obj);
2332 Serge 3111
 
2344 Serge 3112
	old_write_domain = obj->base.write_domain;
3113
	old_read_domains = obj->base.read_domains;
2332 Serge 3114
 
2344 Serge 3115
	/* Flush the CPU cache if it's still invalid. */
3116
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3117
		i915_gem_clflush_object(obj);
2332 Serge 3118
 
2344 Serge 3119
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3120
	}
2332 Serge 3121
 
2344 Serge 3122
	/* It should now be out of any other write domains, and we can update
3123
	 * the domain values for our changes.
3124
	 */
3125
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2332 Serge 3126
 
2344 Serge 3127
	/* If we're writing through the CPU, then the GPU read domains will
3128
	 * need to be invalidated at next use.
3129
	 */
3130
	if (write) {
3131
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3132
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3133
	}
2332 Serge 3134
 
2351 Serge 3135
	trace_i915_gem_object_change_domain(obj,
3136
					    old_read_domains,
3137
					    old_write_domain);
2332 Serge 3138
 
2344 Serge 3139
	return 0;
3140
}
2332 Serge 3141
 
3031 serge 3142
/* Throttle our rendering by waiting until the ring has completed our requests
3143
 * emitted over 20 msec ago.
2344 Serge 3144
 *
3031 serge 3145
 * Note that if we were to use the current jiffies each time around the loop,
3146
 * we wouldn't escape the function with any frames outstanding if the time to
3147
 * render a frame was over 20ms.
3148
 *
3149
 * This should get us reasonable parallelism between CPU and GPU but also
3150
 * relatively low latency when blocking on a particular request to finish.
2344 Serge 3151
 */
3031 serge 3152
static int
3153
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
2344 Serge 3154
{
3031 serge 3155
	struct drm_i915_private *dev_priv = dev->dev_private;
3156
	struct drm_i915_file_private *file_priv = file->driver_priv;
3263 Serge 3157
	unsigned long recent_enough = GetTimerTicks() - msecs_to_jiffies(20);
3031 serge 3158
	struct drm_i915_gem_request *request;
3159
	struct intel_ring_buffer *ring = NULL;
3160
	u32 seqno = 0;
3161
	int ret;
2332 Serge 3162
 
3031 serge 3163
	if (atomic_read(&dev_priv->mm.wedged))
3164
		return -EIO;
2332 Serge 3165
 
3031 serge 3166
	spin_lock(&file_priv->mm.lock);
3167
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3168
		if (time_after_eq(request->emitted_jiffies, recent_enough))
3169
			break;
2332 Serge 3170
 
3031 serge 3171
		ring = request->ring;
3172
		seqno = request->seqno;
3173
	}
3174
	spin_unlock(&file_priv->mm.lock);
2332 Serge 3175
 
3031 serge 3176
	if (seqno == 0)
3177
		return 0;
2332 Serge 3178
 
3031 serge 3179
	ret = __wait_seqno(ring, seqno, true, NULL);
3180
	if (ret == 0)
3181
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
2332 Serge 3182
 
3031 serge 3183
	return ret;
2352 Serge 3184
}
2332 Serge 3185
 
3186
int
3187
i915_gem_object_pin(struct drm_i915_gem_object *obj,
3188
		    uint32_t alignment,
3031 serge 3189
		    bool map_and_fenceable,
3190
		    bool nonblocking)
2332 Serge 3191
{
3192
	int ret;
3193
 
3031 serge 3194
	if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3195
		return -EBUSY;
2332 Serge 3196
 
3197
	if (obj->gtt_space != NULL) {
3198
		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3199
		    (map_and_fenceable && !obj->map_and_fenceable)) {
3200
			WARN(obj->pin_count,
3201
			     "bo is already pinned with incorrect alignment:"
3202
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3203
			     " obj->map_and_fenceable=%d\n",
3204
			     obj->gtt_offset, alignment,
3205
			     map_and_fenceable,
3206
			     obj->map_and_fenceable);
3207
			ret = i915_gem_object_unbind(obj);
3208
			if (ret)
3209
				return ret;
3210
		}
3211
	}
3212
 
3213
	if (obj->gtt_space == NULL) {
3243 Serge 3214
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3215
 
2332 Serge 3216
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3031 serge 3217
						  map_and_fenceable,
3218
						  nonblocking);
2332 Serge 3219
		if (ret)
3220
			return ret;
3243 Serge 3221
 
3222
		if (!dev_priv->mm.aliasing_ppgtt)
3223
			i915_gem_gtt_bind_object(obj, obj->cache_level);
2332 Serge 3224
	}
3225
 
3031 serge 3226
	if (!obj->has_global_gtt_mapping && map_and_fenceable)
3227
		i915_gem_gtt_bind_object(obj, obj->cache_level);
3228
 
3229
	obj->pin_count++;
2332 Serge 3230
	obj->pin_mappable |= map_and_fenceable;
3231
 
3232
	return 0;
3233
}
3234
 
2344 Serge 3235
void
3236
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3237
{
3238
	BUG_ON(obj->pin_count == 0);
3239
	BUG_ON(obj->gtt_space == NULL);
2332 Serge 3240
 
3031 serge 3241
	if (--obj->pin_count == 0)
2344 Serge 3242
		obj->pin_mappable = false;
3243
}
2332 Serge 3244
 
3031 serge 3245
int
3246
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3247
		   struct drm_file *file)
3248
{
3249
	struct drm_i915_gem_pin *args = data;
3250
	struct drm_i915_gem_object *obj;
3251
	int ret;
2332 Serge 3252
 
3031 serge 3253
	ret = i915_mutex_lock_interruptible(dev);
3254
	if (ret)
3255
		return ret;
2332 Serge 3256
 
3031 serge 3257
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3258
	if (&obj->base == NULL) {
3259
		ret = -ENOENT;
3260
		goto unlock;
3261
	}
2332 Serge 3262
 
3031 serge 3263
	if (obj->madv != I915_MADV_WILLNEED) {
3264
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3265
		ret = -EINVAL;
3266
		goto out;
3267
	}
2332 Serge 3268
 
3031 serge 3269
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
3270
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3271
			  args->handle);
3272
		ret = -EINVAL;
3273
		goto out;
3274
	}
2332 Serge 3275
 
3243 Serge 3276
	if (obj->user_pin_count == 0) {
3031 serge 3277
		ret = i915_gem_object_pin(obj, args->alignment, true, false);
3278
		if (ret)
3279
			goto out;
3280
	}
2332 Serge 3281
 
3243 Serge 3282
	obj->user_pin_count++;
3283
	obj->pin_filp = file;
3284
 
3031 serge 3285
	/* XXX - flush the CPU caches for pinned objects
3286
	 * as the X server doesn't manage domains yet
3287
	 */
3288
	i915_gem_object_flush_cpu_write_domain(obj);
3289
	args->offset = obj->gtt_offset;
3290
out:
3291
	drm_gem_object_unreference(&obj->base);
3292
unlock:
3293
	mutex_unlock(&dev->struct_mutex);
3294
	return ret;
3295
}
2332 Serge 3296
 
3255 Serge 3297
#if 0
3298
 
3031 serge 3299
int
3300
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3301
		     struct drm_file *file)
3302
{
3303
	struct drm_i915_gem_pin *args = data;
3304
	struct drm_i915_gem_object *obj;
3305
	int ret;
2332 Serge 3306
 
3031 serge 3307
	ret = i915_mutex_lock_interruptible(dev);
3308
	if (ret)
3309
		return ret;
2332 Serge 3310
 
3031 serge 3311
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3312
	if (&obj->base == NULL) {
3313
		ret = -ENOENT;
3314
		goto unlock;
3315
	}
2332 Serge 3316
 
3031 serge 3317
	if (obj->pin_filp != file) {
3318
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3319
			  args->handle);
3320
		ret = -EINVAL;
3321
		goto out;
3322
	}
3323
	obj->user_pin_count--;
3324
	if (obj->user_pin_count == 0) {
3325
		obj->pin_filp = NULL;
3326
		i915_gem_object_unpin(obj);
3327
	}
2332 Serge 3328
 
3031 serge 3329
out:
3330
	drm_gem_object_unreference(&obj->base);
3331
unlock:
3332
	mutex_unlock(&dev->struct_mutex);
3333
	return ret;
3334
}
2332 Serge 3335
 
3260 Serge 3336
#endif
3337
 
3031 serge 3338
int
3339
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3340
		    struct drm_file *file)
3341
{
3342
	struct drm_i915_gem_busy *args = data;
3343
	struct drm_i915_gem_object *obj;
3344
	int ret;
2332 Serge 3345
 
3031 serge 3346
	ret = i915_mutex_lock_interruptible(dev);
3347
	if (ret)
3348
		return ret;
2332 Serge 3349
 
3031 serge 3350
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3351
	if (&obj->base == NULL) {
3352
		ret = -ENOENT;
3353
		goto unlock;
3354
	}
2332 Serge 3355
 
3031 serge 3356
	/* Count all active objects as busy, even if they are currently not used
3357
	 * by the gpu. Users of this interface expect objects to eventually
3358
	 * become non-busy without any further actions, therefore emit any
3359
	 * necessary flushes here.
3360
	 */
3361
	ret = i915_gem_object_flush_active(obj);
2332 Serge 3362
 
3031 serge 3363
	args->busy = obj->active;
3364
	if (obj->ring) {
3365
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
3366
		args->busy |= intel_ring_flag(obj->ring) << 16;
3367
	}
2332 Serge 3368
 
3031 serge 3369
	drm_gem_object_unreference(&obj->base);
3370
unlock:
3371
	mutex_unlock(&dev->struct_mutex);
3372
	return ret;
3373
}
2332 Serge 3374
 
3031 serge 3375
int
3376
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3377
			struct drm_file *file_priv)
3378
{
3379
	return i915_gem_ring_throttle(dev, file_priv);
3380
}
2332 Serge 3381
 
3263 Serge 3382
#if 0
3383
 
3031 serge 3384
int
3385
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3386
		       struct drm_file *file_priv)
3387
{
3388
	struct drm_i915_gem_madvise *args = data;
3389
	struct drm_i915_gem_object *obj;
3390
	int ret;
2332 Serge 3391
 
3031 serge 3392
	switch (args->madv) {
3393
	case I915_MADV_DONTNEED:
3394
	case I915_MADV_WILLNEED:
3395
	    break;
3396
	default:
3397
	    return -EINVAL;
3398
	}
2332 Serge 3399
 
3031 serge 3400
	ret = i915_mutex_lock_interruptible(dev);
3401
	if (ret)
3402
		return ret;
2332 Serge 3403
 
3031 serge 3404
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3405
	if (&obj->base == NULL) {
3406
		ret = -ENOENT;
3407
		goto unlock;
3408
	}
2332 Serge 3409
 
3031 serge 3410
	if (obj->pin_count) {
3411
		ret = -EINVAL;
3412
		goto out;
3413
	}
2332 Serge 3414
 
3031 serge 3415
	if (obj->madv != __I915_MADV_PURGED)
3416
		obj->madv = args->madv;
2332 Serge 3417
 
3031 serge 3418
	/* if the object is no longer attached, discard its backing storage */
3419
	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3420
		i915_gem_object_truncate(obj);
2332 Serge 3421
 
3031 serge 3422
	args->retained = obj->madv != __I915_MADV_PURGED;
2332 Serge 3423
 
3031 serge 3424
out:
3425
	drm_gem_object_unreference(&obj->base);
3426
unlock:
3427
	mutex_unlock(&dev->struct_mutex);
3428
	return ret;
3429
}
3430
#endif
2332 Serge 3431
 
3031 serge 3432
void i915_gem_object_init(struct drm_i915_gem_object *obj,
3433
			  const struct drm_i915_gem_object_ops *ops)
3434
{
3435
	INIT_LIST_HEAD(&obj->mm_list);
3436
	INIT_LIST_HEAD(&obj->gtt_list);
3437
	INIT_LIST_HEAD(&obj->ring_list);
3438
	INIT_LIST_HEAD(&obj->exec_list);
2332 Serge 3439
 
3031 serge 3440
	obj->ops = ops;
3441
 
3442
	obj->fence_reg = I915_FENCE_REG_NONE;
3443
	obj->madv = I915_MADV_WILLNEED;
3444
	/* Avoid an unnecessary call to unbind on the first bind. */
3445
	obj->map_and_fenceable = true;
3446
 
3447
	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3448
}
3449
 
3450
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3451
	.get_pages = i915_gem_object_get_pages_gtt,
3452
	.put_pages = i915_gem_object_put_pages_gtt,
3453
};
3454
 
2332 Serge 3455
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3456
						  size_t size)
3457
{
3458
	struct drm_i915_gem_object *obj;
3031 serge 3459
	struct address_space *mapping;
3460
	u32 mask;
2340 Serge 3461
 
2332 Serge 3462
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3463
	if (obj == NULL)
3464
		return NULL;
3465
 
3466
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3467
		kfree(obj);
3468
		return NULL;
3469
	}
3470
 
3471
 
3031 serge 3472
	i915_gem_object_init(obj, &i915_gem_object_ops);
2332 Serge 3473
 
3474
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3475
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3476
 
3031 serge 3477
	if (HAS_LLC(dev)) {
3478
		/* On some devices, we can have the GPU use the LLC (the CPU
2332 Serge 3479
		 * cache) for about a 10% performance improvement
3480
		 * compared to uncached.  Graphics requests other than
3481
		 * display scanout are coherent with the CPU in
3482
		 * accessing this cache.  This means in this mode we
3483
		 * don't need to clflush on the CPU side, and on the
3484
		 * GPU side we only need to flush internal caches to
3485
		 * get data visible to the CPU.
3486
		 *
3487
		 * However, we maintain the display planes as UC, and so
3488
		 * need to rebind when first used as such.
3489
		 */
3490
		obj->cache_level = I915_CACHE_LLC;
3491
	} else
3492
		obj->cache_level = I915_CACHE_NONE;
3493
 
3494
	return obj;
3495
}
3496
 
2344 Serge 3497
int i915_gem_init_object(struct drm_gem_object *obj)
3498
{
3499
	BUG();
2332 Serge 3500
 
2344 Serge 3501
	return 0;
3502
}
2332 Serge 3503
 
3031 serge 3504
void i915_gem_free_object(struct drm_gem_object *gem_obj)
2344 Serge 3505
{
3031 serge 3506
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
2344 Serge 3507
	struct drm_device *dev = obj->base.dev;
3508
	drm_i915_private_t *dev_priv = dev->dev_private;
2332 Serge 3509
 
3031 serge 3510
	trace_i915_gem_object_destroy(obj);
3511
 
3512
//   if (obj->phys_obj)
3513
//       i915_gem_detach_phys_object(dev, obj);
3290 Serge 3514
    printf("%s obj %p\n", __FUNCTION__, obj);
3031 serge 3515
 
3516
	obj->pin_count = 0;
3517
	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3518
		bool was_interruptible;
3519
 
3520
		was_interruptible = dev_priv->mm.interruptible;
3521
		dev_priv->mm.interruptible = false;
3522
 
3523
		WARN_ON(i915_gem_object_unbind(obj));
3524
 
3525
		dev_priv->mm.interruptible = was_interruptible;
2344 Serge 3526
	}
2332 Serge 3527
 
3031 serge 3528
	obj->pages_pin_count = 0;
3529
	i915_gem_object_put_pages(obj);
3530
//   i915_gem_object_free_mmap_offset(obj);
2332 Serge 3531
 
3243 Serge 3532
	BUG_ON(obj->pages);
2332 Serge 3533
 
3031 serge 3534
//   if (obj->base.import_attach)
3535
//       drm_prime_gem_destroy(&obj->base, NULL);
3536
 
3290 Serge 3537
    if(obj->base.filp != NULL)
3538
    {
3539
        printf("filp %p\n", obj->base.filp);
3540
        shmem_file_delete(obj->base.filp);
3541
    }
3542
 
2344 Serge 3543
	drm_gem_object_release(&obj->base);
3544
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
2332 Serge 3545
 
2344 Serge 3546
	kfree(obj->bit_17);
3547
	kfree(obj);
3548
}
2332 Serge 3549
 
3031 serge 3550
#if 0
3551
int
3552
i915_gem_idle(struct drm_device *dev)
2344 Serge 3553
{
3031 serge 3554
	drm_i915_private_t *dev_priv = dev->dev_private;
3555
	int ret;
2332 Serge 3556
 
3031 serge 3557
	mutex_lock(&dev->struct_mutex);
2332 Serge 3558
 
3031 serge 3559
	if (dev_priv->mm.suspended) {
3560
		mutex_unlock(&dev->struct_mutex);
3561
		return 0;
3562
	}
2332 Serge 3563
 
3031 serge 3564
	ret = i915_gpu_idle(dev);
3565
	if (ret) {
3566
		mutex_unlock(&dev->struct_mutex);
3567
		return ret;
3568
	}
3569
	i915_gem_retire_requests(dev);
3570
 
3571
	i915_gem_reset_fences(dev);
3572
 
3573
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
3574
	 * We need to replace this with a semaphore, or something.
3575
	 * And not confound mm.suspended!
3576
	 */
3577
	dev_priv->mm.suspended = 1;
3578
	del_timer_sync(&dev_priv->hangcheck_timer);
3579
 
3580
	i915_kernel_lost_context(dev);
3581
	i915_gem_cleanup_ringbuffer(dev);
3582
 
3583
	mutex_unlock(&dev->struct_mutex);
3584
 
3585
	/* Cancel the retire work handler, which should be idle now. */
3263 Serge 3586
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3031 serge 3587
 
3588
	return 0;
2344 Serge 3589
}
3031 serge 3590
#endif
2332 Serge 3591
 
3031 serge 3592
void i915_gem_l3_remap(struct drm_device *dev)
3593
{
3594
	drm_i915_private_t *dev_priv = dev->dev_private;
3595
	u32 misccpctl;
3596
	int i;
2332 Serge 3597
 
3031 serge 3598
	if (!IS_IVYBRIDGE(dev))
3599
		return;
2332 Serge 3600
 
3243 Serge 3601
	if (!dev_priv->l3_parity.remap_info)
3031 serge 3602
		return;
2332 Serge 3603
 
3031 serge 3604
	misccpctl = I915_READ(GEN7_MISCCPCTL);
3605
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3606
	POSTING_READ(GEN7_MISCCPCTL);
2332 Serge 3607
 
3031 serge 3608
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3609
		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3243 Serge 3610
		if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3031 serge 3611
			DRM_DEBUG("0x%x was already programmed to %x\n",
3612
				  GEN7_L3LOG_BASE + i, remap);
3243 Serge 3613
		if (remap && !dev_priv->l3_parity.remap_info[i/4])
3031 serge 3614
			DRM_DEBUG_DRIVER("Clearing remapped register\n");
3243 Serge 3615
		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3031 serge 3616
	}
2332 Serge 3617
 
3031 serge 3618
	/* Make sure all the writes land before disabling dop clock gating */
3619
	POSTING_READ(GEN7_L3LOG_BASE);
2332 Serge 3620
 
3031 serge 3621
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3622
}
2332 Serge 3623
 
3031 serge 3624
void i915_gem_init_swizzling(struct drm_device *dev)
3625
{
3626
	drm_i915_private_t *dev_priv = dev->dev_private;
2332 Serge 3627
 
3031 serge 3628
	if (INTEL_INFO(dev)->gen < 5 ||
3629
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3630
		return;
2332 Serge 3631
 
3031 serge 3632
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3633
				 DISP_TILE_SURFACE_SWIZZLING);
2332 Serge 3634
 
3031 serge 3635
	if (IS_GEN5(dev))
3636
		return;
2344 Serge 3637
 
3031 serge 3638
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3639
	if (IS_GEN6(dev))
3640
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3641
	else
3642
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3643
}
3644
 
3645
static bool
3646
intel_enable_blt(struct drm_device *dev)
3647
{
3648
	if (!HAS_BLT(dev))
3649
		return false;
3650
 
3651
	/* The blitter was dysfunctional on early prototypes */
3652
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3653
		DRM_INFO("BLT not supported on this pre-production hardware;"
3654
			 " graphics performance will be degraded.\n");
3655
		return false;
3656
	}
3657
 
3658
	return true;
3659
}
3660
 
2332 Serge 3661
int
3031 serge 3662
i915_gem_init_hw(struct drm_device *dev)
2332 Serge 3663
{
3664
	drm_i915_private_t *dev_priv = dev->dev_private;
3665
	int ret;
2351 Serge 3666
 
3243 Serge 3667
	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3031 serge 3668
		return -EIO;
3669
 
3670
	if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3671
		I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3672
 
3673
	i915_gem_l3_remap(dev);
3674
 
3675
	i915_gem_init_swizzling(dev);
3676
 
2332 Serge 3677
	ret = intel_init_render_ring_buffer(dev);
3678
	if (ret)
3679
		return ret;
3680
 
3681
    if (HAS_BSD(dev)) {
3682
		ret = intel_init_bsd_ring_buffer(dev);
3683
		if (ret)
3684
			goto cleanup_render_ring;
3685
	}
3686
 
3031 serge 3687
	if (intel_enable_blt(dev)) {
2332 Serge 3688
		ret = intel_init_blt_ring_buffer(dev);
3689
		if (ret)
3690
			goto cleanup_bsd_ring;
3691
	}
3692
 
3693
	dev_priv->next_seqno = 1;
2351 Serge 3694
 
3031 serge 3695
	/*
3696
	 * XXX: There was some w/a described somewhere suggesting loading
3697
	 * contexts before PPGTT.
3698
	 */
3699
	i915_gem_context_init(dev);
3700
	i915_gem_init_ppgtt(dev);
3701
 
2332 Serge 3702
	return 0;
3703
 
3704
cleanup_bsd_ring:
3705
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3706
cleanup_render_ring:
3707
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3708
	return ret;
3709
}
3710
 
3031 serge 3711
static bool
3712
intel_enable_ppgtt(struct drm_device *dev)
3713
{
3714
	if (i915_enable_ppgtt >= 0)
3715
		return i915_enable_ppgtt;
3716
 
3717
#ifdef CONFIG_INTEL_IOMMU
3718
	/* Disable ppgtt on SNB if VT-d is on. */
3719
	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3720
		return false;
3721
#endif
3722
 
3723
	return true;
3724
}
3725
 
3726
#define LFB_SIZE 0xC00000
3727
 
3728
int i915_gem_init(struct drm_device *dev)
3729
{
3730
	struct drm_i915_private *dev_priv = dev->dev_private;
3731
	unsigned long gtt_size, mappable_size;
3732
	int ret;
3733
 
3734
	gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3735
	mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3736
 
3737
	mutex_lock(&dev->struct_mutex);
3738
	if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3739
		/* PPGTT pdes are stolen from global gtt ptes, so shrink the
3740
		 * aperture accordingly when using aliasing ppgtt. */
3741
		gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3742
 
3743
        i915_gem_init_global_gtt(dev, LFB_SIZE, mappable_size, gtt_size - LFB_SIZE);
3744
 
3745
		ret = i915_gem_init_aliasing_ppgtt(dev);
3746
		if (ret) {
3747
			mutex_unlock(&dev->struct_mutex);
3748
			return ret;
3749
		}
3750
	} else {
3751
		/* Let GEM Manage all of the aperture.
3752
		 *
3753
		 * However, leave one page at the end still bound to the scratch
3754
		 * page.  There are a number of places where the hardware
3755
		 * apparently prefetches past the end of the object, and we've
3756
		 * seen multiple hangs with the GPU head pointer stuck in a
3757
		 * batchbuffer bound at the last page of the aperture.  One page
3758
		 * should be enough to keep any prefetching inside of the
3759
		 * aperture.
3760
		 */
3761
        i915_gem_init_global_gtt(dev, LFB_SIZE, mappable_size, gtt_size - LFB_SIZE);
3762
	}
3763
 
3764
	ret = i915_gem_init_hw(dev);
3765
	mutex_unlock(&dev->struct_mutex);
3766
	if (ret) {
3767
		i915_gem_cleanup_aliasing_ppgtt(dev);
3768
		return ret;
3769
	}
3770
 
3771
    return 0;
3772
}
3773
 
2332 Serge 3774
void
3775
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3776
{
3777
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 3778
	struct intel_ring_buffer *ring;
2332 Serge 3779
	int i;
3780
 
3031 serge 3781
	for_each_ring(ring, dev_priv, i)
3782
		intel_cleanup_ring_buffer(ring);
2332 Serge 3783
}
3784
 
3031 serge 3785
#if 0
3786
 
2332 Serge 3787
int
3788
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3789
		       struct drm_file *file_priv)
3790
{
3791
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 3792
	int ret;
2332 Serge 3793
 
3794
	if (drm_core_check_feature(dev, DRIVER_MODESET))
3795
		return 0;
3796
 
3797
	if (atomic_read(&dev_priv->mm.wedged)) {
3798
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3799
		atomic_set(&dev_priv->mm.wedged, 0);
3800
	}
3801
 
3802
	mutex_lock(&dev->struct_mutex);
3803
	dev_priv->mm.suspended = 0;
3804
 
3031 serge 3805
	ret = i915_gem_init_hw(dev);
2332 Serge 3806
	if (ret != 0) {
3807
		mutex_unlock(&dev->struct_mutex);
3808
		return ret;
3809
	}
3810
 
3811
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3812
	mutex_unlock(&dev->struct_mutex);
3813
 
3814
	ret = drm_irq_install(dev);
3815
	if (ret)
3816
		goto cleanup_ringbuffer;
3817
 
3818
	return 0;
3819
 
3820
cleanup_ringbuffer:
3821
	mutex_lock(&dev->struct_mutex);
3822
	i915_gem_cleanup_ringbuffer(dev);
3823
	dev_priv->mm.suspended = 1;
3824
	mutex_unlock(&dev->struct_mutex);
3825
 
3826
	return ret;
3827
}
3828
 
3829
int
3830
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3831
		       struct drm_file *file_priv)
3832
{
3833
	if (drm_core_check_feature(dev, DRIVER_MODESET))
3834
		return 0;
3835
 
3836
	drm_irq_uninstall(dev);
3837
	return i915_gem_idle(dev);
3838
}
3839
 
3840
void
3841
i915_gem_lastclose(struct drm_device *dev)
3842
{
3843
	int ret;
3844
 
3845
	if (drm_core_check_feature(dev, DRIVER_MODESET))
3846
		return;
3847
 
3848
	ret = i915_gem_idle(dev);
3849
	if (ret)
3850
		DRM_ERROR("failed to idle hardware: %d\n", ret);
3851
}
3852
#endif
3853
 
3854
static void
2326 Serge 3855
init_ring_lists(struct intel_ring_buffer *ring)
3856
{
3857
    INIT_LIST_HEAD(&ring->active_list);
3858
    INIT_LIST_HEAD(&ring->request_list);
3859
}
3860
 
3861
void
3862
i915_gem_load(struct drm_device *dev)
3863
{
3864
    int i;
3865
    drm_i915_private_t *dev_priv = dev->dev_private;
3866
 
3867
    INIT_LIST_HEAD(&dev_priv->mm.active_list);
3868
    INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3031 serge 3869
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
3870
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
2326 Serge 3871
    INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3872
    for (i = 0; i < I915_NUM_RINGS; i++)
3873
        init_ring_lists(&dev_priv->ring[i]);
2342 Serge 3874
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
2326 Serge 3875
        INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
2360 Serge 3876
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3877
			  i915_gem_retire_work_handler);
2326 Serge 3878
 
3879
    /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3880
    if (IS_GEN3(dev)) {
3031 serge 3881
		I915_WRITE(MI_ARB_STATE,
3882
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
2326 Serge 3883
    }
3884
 
3885
    dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3886
 
3887
    if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3888
        dev_priv->num_fence_regs = 16;
3889
    else
3890
        dev_priv->num_fence_regs = 8;
3891
 
3892
    /* Initialize fence registers to zero */
3031 serge 3893
	i915_gem_reset_fences(dev);
2326 Serge 3894
 
3895
    i915_gem_detect_bit_6_swizzle(dev);
3896
 
3897
    dev_priv->mm.interruptible = true;
3898
 
3899
//    dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3900
//    dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3901
//    register_shrinker(&dev_priv->mm.inactive_shrinker);
3902
}
3903
 
3904