Subversion Repositories Kolibri OS

Rev

Rev 4560 | Rev 5271 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1123 serge 1
/*
2
 * Copyright © 1997-2003 by The XFree86 Project, Inc.
3
 * Copyright © 2007 Dave Airlie
4
 * Copyright © 2007-2008 Intel Corporation
5
 *   Jesse Barnes 
1179 serge 6
 * Copyright 2005-2006 Luc Verhaegen
7
 * Copyright (c) 2001, Andy Ritger  aritger@nvidia.com
1123 serge 8
 *
9
 * Permission is hereby granted, free of charge, to any person obtaining a
10
 * copy of this software and associated documentation files (the "Software"),
11
 * to deal in the Software without restriction, including without limitation
12
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13
 * and/or sell copies of the Software, and to permit persons to whom the
14
 * Software is furnished to do so, subject to the following conditions:
15
 *
16
 * The above copyright notice and this permission notice shall be included in
17
 * all copies or substantial portions of the Software.
18
 *
19
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
22
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
23
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
24
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
25
 * OTHER DEALINGS IN THE SOFTWARE.
26
 *
27
 * Except as contained in this notice, the name of the copyright holder(s)
28
 * and author(s) shall not be used in advertising or otherwise to promote
29
 * the sale, use or other dealings in this Software without prior written
30
 * authorization from the copyright holder(s) and author(s).
31
 */
32
 
1179 serge 33
#include 
1404 serge 34
#include 
3031 serge 35
#include 
36
#include 
37
#include 
5060 serge 38
#include 
1123 serge 39
 
5060 serge 40
#include "drm_crtc_internal.h"
41
 
1123 serge 42
/**
5060 serge 43
 * drm_mode_debug_printmodeline - print a mode to dmesg
1123 serge 44
 * @mode: mode to print
45
 *
46
 * Describe @mode using DRM_DEBUG.
47
 */
3192 Serge 48
void drm_mode_debug_printmodeline(const struct drm_display_mode *mode)
1123 serge 49
{
1179 serge 50
	DRM_DEBUG_KMS("Modeline %d:\"%s\" %d %d %d %d %d %d %d %d %d %d "
51
			"0x%x 0x%x\n",
1123 serge 52
		mode->base.id, mode->name, mode->vrefresh, mode->clock,
53
		mode->hdisplay, mode->hsync_start,
54
		mode->hsync_end, mode->htotal,
55
		mode->vdisplay, mode->vsync_start,
56
		mode->vsync_end, mode->vtotal, mode->type, mode->flags);
57
}
58
EXPORT_SYMBOL(drm_mode_debug_printmodeline);
59
 
60
/**
5060 serge 61
 * drm_mode_create - create a new display mode
1179 serge 62
 * @dev: DRM device
5060 serge 63
 *
64
 * Create a new, cleared drm_display_mode with kzalloc, allocate an ID for it
65
 * and return it.
66
 *
67
 * Returns:
68
 * Pointer to new mode on success, NULL on error.
69
 */
70
struct drm_display_mode *drm_mode_create(struct drm_device *dev)
71
{
72
	struct drm_display_mode *nmode;
73
 
74
	nmode = kzalloc(sizeof(struct drm_display_mode), GFP_KERNEL);
75
	if (!nmode)
76
		return NULL;
77
 
78
	if (drm_mode_object_get(dev, &nmode->base, DRM_MODE_OBJECT_MODE)) {
79
		kfree(nmode);
80
		return NULL;
81
	}
82
 
83
	return nmode;
84
}
85
EXPORT_SYMBOL(drm_mode_create);
86
 
87
/**
88
 * drm_mode_destroy - remove a mode
89
 * @dev: DRM device
90
 * @mode: mode to remove
91
 *
92
 * Release @mode's unique ID, then free it @mode structure itself using kfree.
93
 */
94
void drm_mode_destroy(struct drm_device *dev, struct drm_display_mode *mode)
95
{
96
	if (!mode)
97
		return;
98
 
99
	drm_mode_object_put(dev, &mode->base);
100
 
101
	kfree(mode);
102
}
103
EXPORT_SYMBOL(drm_mode_destroy);
104
 
105
/**
106
 * drm_mode_probed_add - add a mode to a connector's probed_mode list
107
 * @connector: connector the new mode
108
 * @mode: mode data
109
 *
110
 * Add @mode to @connector's probed_mode list for later use. This list should
111
 * then in a second step get filtered and all the modes actually supported by
112
 * the hardware moved to the @connector's modes list.
113
 */
114
void drm_mode_probed_add(struct drm_connector *connector,
115
			 struct drm_display_mode *mode)
116
{
117
	WARN_ON(!mutex_is_locked(&connector->dev->mode_config.mutex));
118
 
119
	list_add_tail(&mode->head, &connector->probed_modes);
120
}
121
EXPORT_SYMBOL(drm_mode_probed_add);
122
 
123
/**
124
 * drm_cvt_mode -create a modeline based on the CVT algorithm
125
 * @dev: drm device
1179 serge 126
 * @hdisplay: hdisplay size
127
 * @vdisplay: vdisplay size
5060 serge 128
 * @vrefresh: vrefresh rate
129
 * @reduced: whether to use reduced blanking
130
 * @interlaced: whether to compute an interlaced mode
131
 * @margins: whether to add margins (borders)
1179 serge 132
 *
133
 * This function is called to generate the modeline based on CVT algorithm
134
 * according to the hdisplay, vdisplay, vrefresh.
135
 * It is based from the VESA(TM) Coordinated Video Timing Generator by
136
 * Graham Loveridge April 9, 2003 available at
1963 serge 137
 * http://www.elo.utfsm.cl/~elo212/docs/CVTd6r1.xls
1179 serge 138
 *
139
 * And it is copied from xf86CVTmode in xserver/hw/xfree86/modes/xf86cvt.c.
140
 * What I have done is to translate it by using integer calculation.
5060 serge 141
 *
142
 * Returns:
143
 * The modeline based on the CVT algorithm stored in a drm_display_mode object.
144
 * The display mode object is allocated with drm_mode_create(). Returns NULL
145
 * when no mode could be allocated.
1179 serge 146
 */
147
struct drm_display_mode *drm_cvt_mode(struct drm_device *dev, int hdisplay,
148
				      int vdisplay, int vrefresh,
1221 serge 149
				      bool reduced, bool interlaced, bool margins)
1179 serge 150
{
5060 serge 151
#define HV_FACTOR			1000
1179 serge 152
	/* 1) top/bottom margin size (% of height) - default: 1.8, */
153
#define	CVT_MARGIN_PERCENTAGE		18
154
	/* 2) character cell horizontal granularity (pixels) - default 8 */
155
#define	CVT_H_GRANULARITY		8
156
	/* 3) Minimum vertical porch (lines) - default 3 */
157
#define	CVT_MIN_V_PORCH			3
158
	/* 4) Minimum number of vertical back porch lines - default 6 */
159
#define	CVT_MIN_V_BPORCH		6
160
	/* Pixel Clock step (kHz) */
161
#define CVT_CLOCK_STEP			250
162
	struct drm_display_mode *drm_mode;
163
	unsigned int vfieldrate, hperiod;
164
	int hdisplay_rnd, hmargin, vdisplay_rnd, vmargin, vsync;
165
	int interlace;
166
 
167
	/* allocate the drm_display_mode structure. If failure, we will
168
	 * return directly
169
	 */
170
	drm_mode = drm_mode_create(dev);
171
	if (!drm_mode)
172
		return NULL;
173
 
174
	/* the CVT default refresh rate is 60Hz */
175
	if (!vrefresh)
176
		vrefresh = 60;
177
 
178
	/* the required field fresh rate */
179
	if (interlaced)
180
		vfieldrate = vrefresh * 2;
181
	else
182
		vfieldrate = vrefresh;
183
 
184
	/* horizontal pixels */
185
	hdisplay_rnd = hdisplay - (hdisplay % CVT_H_GRANULARITY);
186
 
187
	/* determine the left&right borders */
188
	hmargin = 0;
189
	if (margins) {
190
		hmargin = hdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
191
		hmargin -= hmargin % CVT_H_GRANULARITY;
192
	}
193
	/* find the total active pixels */
194
	drm_mode->hdisplay = hdisplay_rnd + 2 * hmargin;
195
 
196
	/* find the number of lines per field */
197
	if (interlaced)
198
		vdisplay_rnd = vdisplay / 2;
199
	else
200
		vdisplay_rnd = vdisplay;
201
 
202
	/* find the top & bottom borders */
203
	vmargin = 0;
204
	if (margins)
205
		vmargin = vdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
206
 
207
	drm_mode->vdisplay = vdisplay + 2 * vmargin;
208
 
209
	/* Interlaced */
210
	if (interlaced)
211
		interlace = 1;
212
	else
213
		interlace = 0;
214
 
215
	/* Determine VSync Width from aspect ratio */
216
	if (!(vdisplay % 3) && ((vdisplay * 4 / 3) == hdisplay))
217
		vsync = 4;
218
	else if (!(vdisplay % 9) && ((vdisplay * 16 / 9) == hdisplay))
219
		vsync = 5;
220
	else if (!(vdisplay % 10) && ((vdisplay * 16 / 10) == hdisplay))
221
		vsync = 6;
222
	else if (!(vdisplay % 4) && ((vdisplay * 5 / 4) == hdisplay))
223
		vsync = 7;
224
	else if (!(vdisplay % 9) && ((vdisplay * 15 / 9) == hdisplay))
225
		vsync = 7;
226
	else /* custom */
227
		vsync = 10;
228
 
229
	if (!reduced) {
230
		/* simplify the GTF calculation */
231
		/* 4) Minimum time of vertical sync + back porch interval (µs)
232
		 * default 550.0
233
		 */
234
		int tmp1, tmp2;
235
#define CVT_MIN_VSYNC_BP	550
236
		/* 3) Nominal HSync width (% of line period) - default 8 */
237
#define CVT_HSYNC_PERCENTAGE	8
238
		unsigned int hblank_percentage;
239
		int vsyncandback_porch, vback_porch, hblank;
240
 
241
		/* estimated the horizontal period */
242
		tmp1 = HV_FACTOR * 1000000  -
243
				CVT_MIN_VSYNC_BP * HV_FACTOR * vfieldrate;
244
		tmp2 = (vdisplay_rnd + 2 * vmargin + CVT_MIN_V_PORCH) * 2 +
245
				interlace;
246
		hperiod = tmp1 * 2 / (tmp2 * vfieldrate);
247
 
248
		tmp1 = CVT_MIN_VSYNC_BP * HV_FACTOR / hperiod + 1;
249
		/* 9. Find number of lines in sync + backporch */
250
		if (tmp1 < (vsync + CVT_MIN_V_PORCH))
251
			vsyncandback_porch = vsync + CVT_MIN_V_PORCH;
252
		else
253
			vsyncandback_porch = tmp1;
254
		/* 10. Find number of lines in back porch */
255
		vback_porch = vsyncandback_porch - vsync;
256
		drm_mode->vtotal = vdisplay_rnd + 2 * vmargin +
257
				vsyncandback_porch + CVT_MIN_V_PORCH;
258
		/* 5) Definition of Horizontal blanking time limitation */
259
		/* Gradient (%/kHz) - default 600 */
260
#define CVT_M_FACTOR	600
261
		/* Offset (%) - default 40 */
262
#define CVT_C_FACTOR	40
263
		/* Blanking time scaling factor - default 128 */
264
#define CVT_K_FACTOR	128
265
		/* Scaling factor weighting - default 20 */
266
#define CVT_J_FACTOR	20
267
#define CVT_M_PRIME	(CVT_M_FACTOR * CVT_K_FACTOR / 256)
268
#define CVT_C_PRIME	((CVT_C_FACTOR - CVT_J_FACTOR) * CVT_K_FACTOR / 256 + \
269
			 CVT_J_FACTOR)
270
		/* 12. Find ideal blanking duty cycle from formula */
271
		hblank_percentage = CVT_C_PRIME * HV_FACTOR - CVT_M_PRIME *
272
					hperiod / 1000;
273
		/* 13. Blanking time */
274
		if (hblank_percentage < 20 * HV_FACTOR)
275
			hblank_percentage = 20 * HV_FACTOR;
276
		hblank = drm_mode->hdisplay * hblank_percentage /
277
			 (100 * HV_FACTOR - hblank_percentage);
278
		hblank -= hblank % (2 * CVT_H_GRANULARITY);
279
		/* 14. find the total pixes per line */
280
		drm_mode->htotal = drm_mode->hdisplay + hblank;
281
		drm_mode->hsync_end = drm_mode->hdisplay + hblank / 2;
282
		drm_mode->hsync_start = drm_mode->hsync_end -
283
			(drm_mode->htotal * CVT_HSYNC_PERCENTAGE) / 100;
284
		drm_mode->hsync_start += CVT_H_GRANULARITY -
285
			drm_mode->hsync_start % CVT_H_GRANULARITY;
286
		/* fill the Vsync values */
287
		drm_mode->vsync_start = drm_mode->vdisplay + CVT_MIN_V_PORCH;
288
		drm_mode->vsync_end = drm_mode->vsync_start + vsync;
289
	} else {
290
		/* Reduced blanking */
291
		/* Minimum vertical blanking interval time (µs)- default 460 */
292
#define CVT_RB_MIN_VBLANK	460
293
		/* Fixed number of clocks for horizontal sync */
294
#define CVT_RB_H_SYNC		32
295
		/* Fixed number of clocks for horizontal blanking */
296
#define CVT_RB_H_BLANK		160
297
		/* Fixed number of lines for vertical front porch - default 3*/
298
#define CVT_RB_VFPORCH		3
299
		int vbilines;
300
		int tmp1, tmp2;
301
		/* 8. Estimate Horizontal period. */
302
		tmp1 = HV_FACTOR * 1000000 -
303
			CVT_RB_MIN_VBLANK * HV_FACTOR * vfieldrate;
304
		tmp2 = vdisplay_rnd + 2 * vmargin;
305
		hperiod = tmp1 / (tmp2 * vfieldrate);
306
		/* 9. Find number of lines in vertical blanking */
307
		vbilines = CVT_RB_MIN_VBLANK * HV_FACTOR / hperiod + 1;
308
		/* 10. Check if vertical blanking is sufficient */
309
		if (vbilines < (CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH))
310
			vbilines = CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH;
311
		/* 11. Find total number of lines in vertical field */
312
		drm_mode->vtotal = vdisplay_rnd + 2 * vmargin + vbilines;
313
		/* 12. Find total number of pixels in a line */
314
		drm_mode->htotal = drm_mode->hdisplay + CVT_RB_H_BLANK;
315
		/* Fill in HSync values */
316
		drm_mode->hsync_end = drm_mode->hdisplay + CVT_RB_H_BLANK / 2;
1963 serge 317
		drm_mode->hsync_start = drm_mode->hsync_end - CVT_RB_H_SYNC;
318
		/* Fill in VSync values */
319
		drm_mode->vsync_start = drm_mode->vdisplay + CVT_RB_VFPORCH;
320
		drm_mode->vsync_end = drm_mode->vsync_start + vsync;
1179 serge 321
	}
322
	/* 15/13. Find pixel clock frequency (kHz for xf86) */
323
	drm_mode->clock = drm_mode->htotal * HV_FACTOR * 1000 / hperiod;
324
	drm_mode->clock -= drm_mode->clock % CVT_CLOCK_STEP;
325
	/* 18/16. Find actual vertical frame frequency */
326
	/* ignore - just set the mode flag for interlaced */
1963 serge 327
	if (interlaced) {
1179 serge 328
		drm_mode->vtotal *= 2;
1963 serge 329
		drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
330
	}
1179 serge 331
	/* Fill the mode line name */
332
	drm_mode_set_name(drm_mode);
333
	if (reduced)
334
		drm_mode->flags |= (DRM_MODE_FLAG_PHSYNC |
335
					DRM_MODE_FLAG_NVSYNC);
336
	else
337
		drm_mode->flags |= (DRM_MODE_FLAG_PVSYNC |
338
					DRM_MODE_FLAG_NHSYNC);
339
 
340
    return drm_mode;
341
}
342
EXPORT_SYMBOL(drm_cvt_mode);
343
 
344
/**
5060 serge 345
 * drm_gtf_mode_complex - create the modeline based on the full GTF algorithm
346
 * @dev: drm device
347
 * @hdisplay: hdisplay size
348
 * @vdisplay: vdisplay size
349
 * @vrefresh: vrefresh rate.
350
 * @interlaced: whether to compute an interlaced mode
351
 * @margins: desired margin (borders) size
352
 * @GTF_M: extended GTF formula parameters
353
 * @GTF_2C: extended GTF formula parameters
354
 * @GTF_K: extended GTF formula parameters
355
 * @GTF_2J: extended GTF formula parameters
1179 serge 356
 *
1963 serge 357
 * GTF feature blocks specify C and J in multiples of 0.5, so we pass them
358
 * in here multiplied by two.  For a C of 40, pass in 80.
5060 serge 359
 *
360
 * Returns:
361
 * The modeline based on the full GTF algorithm stored in a drm_display_mode object.
362
 * The display mode object is allocated with drm_mode_create(). Returns NULL
363
 * when no mode could be allocated.
1179 serge 364
 */
1963 serge 365
struct drm_display_mode *
366
drm_gtf_mode_complex(struct drm_device *dev, int hdisplay, int vdisplay,
367
		     int vrefresh, bool interlaced, int margins,
368
		     int GTF_M, int GTF_2C, int GTF_K, int GTF_2J)
369
{	/* 1) top/bottom margin size (% of height) - default: 1.8, */
1179 serge 370
#define	GTF_MARGIN_PERCENTAGE		18
371
	/* 2) character cell horizontal granularity (pixels) - default 8 */
372
#define	GTF_CELL_GRAN			8
373
	/* 3) Minimum vertical porch (lines) - default 3 */
374
#define	GTF_MIN_V_PORCH			1
375
	/* width of vsync in lines */
376
#define V_SYNC_RQD			3
377
	/* width of hsync as % of total line */
378
#define H_SYNC_PERCENT			8
379
	/* min time of vsync + back porch (microsec) */
380
#define MIN_VSYNC_PLUS_BP		550
381
	/* C' and M' are part of the Blanking Duty Cycle computation */
1963 serge 382
#define GTF_C_PRIME	((((GTF_2C - GTF_2J) * GTF_K / 256) + GTF_2J) / 2)
1179 serge 383
#define GTF_M_PRIME		(GTF_K * GTF_M / 256)
384
	struct drm_display_mode *drm_mode;
385
	unsigned int hdisplay_rnd, vdisplay_rnd, vfieldrate_rqd;
386
	int top_margin, bottom_margin;
387
	int interlace;
388
	unsigned int hfreq_est;
389
	int vsync_plus_bp, vback_porch;
390
	unsigned int vtotal_lines, vfieldrate_est, hperiod;
391
	unsigned int vfield_rate, vframe_rate;
392
	int left_margin, right_margin;
393
	unsigned int total_active_pixels, ideal_duty_cycle;
394
	unsigned int hblank, total_pixels, pixel_freq;
395
	int hsync, hfront_porch, vodd_front_porch_lines;
396
	unsigned int tmp1, tmp2;
397
 
398
	drm_mode = drm_mode_create(dev);
399
	if (!drm_mode)
400
		return NULL;
401
 
402
	/* 1. In order to give correct results, the number of horizontal
403
	 * pixels requested is first processed to ensure that it is divisible
404
	 * by the character size, by rounding it to the nearest character
405
	 * cell boundary:
406
	 */
407
	hdisplay_rnd = (hdisplay + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
408
	hdisplay_rnd = hdisplay_rnd * GTF_CELL_GRAN;
409
 
410
	/* 2. If interlace is requested, the number of vertical lines assumed
411
	 * by the calculation must be halved, as the computation calculates
412
	 * the number of vertical lines per field.
413
	 */
414
	if (interlaced)
415
		vdisplay_rnd = vdisplay / 2;
416
	else
417
		vdisplay_rnd = vdisplay;
418
 
419
	/* 3. Find the frame rate required: */
420
	if (interlaced)
421
		vfieldrate_rqd = vrefresh * 2;
422
	else
423
		vfieldrate_rqd = vrefresh;
424
 
425
	/* 4. Find number of lines in Top margin: */
426
	top_margin = 0;
427
	if (margins)
428
		top_margin = (vdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
429
				1000;
430
	/* 5. Find number of lines in bottom margin: */
431
	bottom_margin = top_margin;
432
 
433
	/* 6. If interlace is required, then set variable interlace: */
434
	if (interlaced)
435
		interlace = 1;
436
	else
437
		interlace = 0;
438
 
439
	/* 7. Estimate the Horizontal frequency */
440
	{
441
		tmp1 = (1000000  - MIN_VSYNC_PLUS_BP * vfieldrate_rqd) / 500;
442
		tmp2 = (vdisplay_rnd + 2 * top_margin + GTF_MIN_V_PORCH) *
443
				2 + interlace;
444
		hfreq_est = (tmp2 * 1000 * vfieldrate_rqd) / tmp1;
445
	}
446
 
447
	/* 8. Find the number of lines in V sync + back porch */
448
	/* [V SYNC+BP] = RINT(([MIN VSYNC+BP] * hfreq_est / 1000000)) */
449
	vsync_plus_bp = MIN_VSYNC_PLUS_BP * hfreq_est / 1000;
450
	vsync_plus_bp = (vsync_plus_bp + 500) / 1000;
451
	/*  9. Find the number of lines in V back porch alone: */
452
	vback_porch = vsync_plus_bp - V_SYNC_RQD;
453
	/*  10. Find the total number of lines in Vertical field period: */
454
	vtotal_lines = vdisplay_rnd + top_margin + bottom_margin +
455
			vsync_plus_bp + GTF_MIN_V_PORCH;
456
	/*  11. Estimate the Vertical field frequency: */
457
	vfieldrate_est = hfreq_est / vtotal_lines;
458
	/*  12. Find the actual horizontal period: */
459
	hperiod = 1000000 / (vfieldrate_rqd * vtotal_lines);
460
 
461
	/*  13. Find the actual Vertical field frequency: */
462
	vfield_rate = hfreq_est / vtotal_lines;
463
	/*  14. Find the Vertical frame frequency: */
464
	if (interlaced)
465
		vframe_rate = vfield_rate / 2;
466
	else
467
		vframe_rate = vfield_rate;
468
	/*  15. Find number of pixels in left margin: */
469
	if (margins)
470
		left_margin = (hdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
471
				1000;
472
	else
473
		left_margin = 0;
474
 
475
	/* 16.Find number of pixels in right margin: */
476
	right_margin = left_margin;
477
	/* 17.Find total number of active pixels in image and left and right */
478
	total_active_pixels = hdisplay_rnd + left_margin + right_margin;
479
	/* 18.Find the ideal blanking duty cycle from blanking duty cycle */
480
	ideal_duty_cycle = GTF_C_PRIME * 1000 -
481
				(GTF_M_PRIME * 1000000 / hfreq_est);
482
	/* 19.Find the number of pixels in the blanking time to the nearest
483
	 * double character cell: */
484
	hblank = total_active_pixels * ideal_duty_cycle /
485
			(100000 - ideal_duty_cycle);
486
	hblank = (hblank + GTF_CELL_GRAN) / (2 * GTF_CELL_GRAN);
487
	hblank = hblank * 2 * GTF_CELL_GRAN;
488
	/* 20.Find total number of pixels: */
489
	total_pixels = total_active_pixels + hblank;
490
	/* 21.Find pixel clock frequency: */
491
	pixel_freq = total_pixels * hfreq_est / 1000;
492
	/* Stage 1 computations are now complete; I should really pass
493
	 * the results to another function and do the Stage 2 computations,
494
	 * but I only need a few more values so I'll just append the
495
	 * computations here for now */
496
	/* 17. Find the number of pixels in the horizontal sync period: */
497
	hsync = H_SYNC_PERCENT * total_pixels / 100;
498
	hsync = (hsync + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
499
	hsync = hsync * GTF_CELL_GRAN;
500
	/* 18. Find the number of pixels in horizontal front porch period */
501
	hfront_porch = hblank / 2 - hsync;
502
	/*  36. Find the number of lines in the odd front porch period: */
503
	vodd_front_porch_lines = GTF_MIN_V_PORCH ;
504
 
505
	/* finally, pack the results in the mode struct */
506
	drm_mode->hdisplay = hdisplay_rnd;
507
	drm_mode->hsync_start = hdisplay_rnd + hfront_porch;
508
	drm_mode->hsync_end = drm_mode->hsync_start + hsync;
509
	drm_mode->htotal = total_pixels;
510
	drm_mode->vdisplay = vdisplay_rnd;
511
	drm_mode->vsync_start = vdisplay_rnd + vodd_front_porch_lines;
512
	drm_mode->vsync_end = drm_mode->vsync_start + V_SYNC_RQD;
513
	drm_mode->vtotal = vtotal_lines;
514
 
515
	drm_mode->clock = pixel_freq;
516
 
517
	if (interlaced) {
518
		drm_mode->vtotal *= 2;
519
		drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
520
	}
521
 
1963 serge 522
	drm_mode_set_name(drm_mode);
523
	if (GTF_M == 600 && GTF_2C == 80 && GTF_K == 128 && GTF_2J == 40)
524
		drm_mode->flags = DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC;
525
	else
526
		drm_mode->flags = DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC;
527
 
1179 serge 528
	return drm_mode;
529
}
1963 serge 530
EXPORT_SYMBOL(drm_gtf_mode_complex);
531
 
532
/**
5060 serge 533
 * drm_gtf_mode - create the modeline based on the GTF algorithm
534
 * @dev: drm device
535
 * @hdisplay: hdisplay size
536
 * @vdisplay: vdisplay size
537
 * @vrefresh: vrefresh rate.
538
 * @interlaced: whether to compute an interlaced mode
539
 * @margins: desired margin (borders) size
1963 serge 540
 *
541
 * return the modeline based on GTF algorithm
542
 *
543
 * This function is to create the modeline based on the GTF algorithm.
544
 * Generalized Timing Formula is derived from:
545
 *	GTF Spreadsheet by Andy Morrish (1/5/97)
546
 *	available at http://www.vesa.org
547
 *
548
 * And it is copied from the file of xserver/hw/xfree86/modes/xf86gtf.c.
549
 * What I have done is to translate it by using integer calculation.
550
 * I also refer to the function of fb_get_mode in the file of
551
 * drivers/video/fbmon.c
552
 *
553
 * Standard GTF parameters:
554
 * M = 600
555
 * C = 40
556
 * K = 128
557
 * J = 20
5060 serge 558
 *
559
 * Returns:
560
 * The modeline based on the GTF algorithm stored in a drm_display_mode object.
561
 * The display mode object is allocated with drm_mode_create(). Returns NULL
562
 * when no mode could be allocated.
1963 serge 563
 */
564
struct drm_display_mode *
565
drm_gtf_mode(struct drm_device *dev, int hdisplay, int vdisplay, int vrefresh,
5060 serge 566
	     bool interlaced, int margins)
1963 serge 567
{
5060 serge 568
	return drm_gtf_mode_complex(dev, hdisplay, vdisplay, vrefresh,
569
				    interlaced, margins,
570
				    600, 40 * 2, 128, 20 * 2);
1963 serge 571
}
1179 serge 572
EXPORT_SYMBOL(drm_gtf_mode);
1963 serge 573
 
3746 Serge 574
#ifdef CONFIG_VIDEOMODE_HELPERS
5060 serge 575
/**
576
 * drm_display_mode_from_videomode - fill in @dmode using @vm,
577
 * @vm: videomode structure to use as source
578
 * @dmode: drm_display_mode structure to use as destination
579
 *
580
 * Fills out @dmode using the display mode specified in @vm.
581
 */
582
void drm_display_mode_from_videomode(const struct videomode *vm,
3480 Serge 583
				    struct drm_display_mode *dmode)
584
{
585
	dmode->hdisplay = vm->hactive;
586
	dmode->hsync_start = dmode->hdisplay + vm->hfront_porch;
587
	dmode->hsync_end = dmode->hsync_start + vm->hsync_len;
588
	dmode->htotal = dmode->hsync_end + vm->hback_porch;
589
 
590
	dmode->vdisplay = vm->vactive;
591
	dmode->vsync_start = dmode->vdisplay + vm->vfront_porch;
592
	dmode->vsync_end = dmode->vsync_start + vm->vsync_len;
593
	dmode->vtotal = dmode->vsync_end + vm->vback_porch;
594
 
595
	dmode->clock = vm->pixelclock / 1000;
596
 
597
	dmode->flags = 0;
3746 Serge 598
	if (vm->flags & DISPLAY_FLAGS_HSYNC_HIGH)
3480 Serge 599
		dmode->flags |= DRM_MODE_FLAG_PHSYNC;
3746 Serge 600
	else if (vm->flags & DISPLAY_FLAGS_HSYNC_LOW)
3480 Serge 601
		dmode->flags |= DRM_MODE_FLAG_NHSYNC;
3746 Serge 602
	if (vm->flags & DISPLAY_FLAGS_VSYNC_HIGH)
3480 Serge 603
		dmode->flags |= DRM_MODE_FLAG_PVSYNC;
3746 Serge 604
	else if (vm->flags & DISPLAY_FLAGS_VSYNC_LOW)
3480 Serge 605
		dmode->flags |= DRM_MODE_FLAG_NVSYNC;
3746 Serge 606
	if (vm->flags & DISPLAY_FLAGS_INTERLACED)
3480 Serge 607
		dmode->flags |= DRM_MODE_FLAG_INTERLACE;
3746 Serge 608
	if (vm->flags & DISPLAY_FLAGS_DOUBLESCAN)
3480 Serge 609
		dmode->flags |= DRM_MODE_FLAG_DBLSCAN;
4075 Serge 610
	if (vm->flags & DISPLAY_FLAGS_DOUBLECLK)
611
		dmode->flags |= DRM_MODE_FLAG_DBLCLK;
3480 Serge 612
	drm_mode_set_name(dmode);
613
}
614
EXPORT_SYMBOL_GPL(drm_display_mode_from_videomode);
615
 
3746 Serge 616
#ifdef CONFIG_OF
1179 serge 617
/**
3480 Serge 618
 * of_get_drm_display_mode - get a drm_display_mode from devicetree
619
 * @np: device_node with the timing specification
620
 * @dmode: will be set to the return value
621
 * @index: index into the list of display timings in devicetree
622
 *
623
 * This function is expensive and should only be used, if only one mode is to be
624
 * read from DT. To get multiple modes start with of_get_display_timings and
625
 * work with that instead.
5060 serge 626
 *
627
 * Returns:
628
 * 0 on success, a negative errno code when no of videomode node was found.
3480 Serge 629
 */
630
int of_get_drm_display_mode(struct device_node *np,
631
			    struct drm_display_mode *dmode, int index)
632
{
633
	struct videomode vm;
634
	int ret;
635
 
636
	ret = of_get_videomode(np, &vm, index);
637
	if (ret)
638
		return ret;
639
 
640
	drm_display_mode_from_videomode(&vm, dmode);
641
 
642
	pr_debug("%s: got %dx%d display mode from %s\n",
643
		of_node_full_name(np), vm.hactive, vm.vactive, np->name);
644
	drm_mode_debug_printmodeline(dmode);
645
 
646
	return 0;
647
}
648
EXPORT_SYMBOL_GPL(of_get_drm_display_mode);
3746 Serge 649
#endif /* CONFIG_OF */
650
#endif /* CONFIG_VIDEOMODE_HELPERS */
3480 Serge 651
 
652
/**
1123 serge 653
 * drm_mode_set_name - set the name on a mode
654
 * @mode: name will be set in this mode
655
 *
5060 serge 656
 * Set the name of @mode to a standard format which is x
657
 * with an optional 'i' suffix for interlaced modes.
1123 serge 658
 */
659
void drm_mode_set_name(struct drm_display_mode *mode)
660
{
1963 serge 661
	bool interlaced = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
662
 
663
	snprintf(mode->name, DRM_DISPLAY_MODE_LEN, "%dx%d%s",
664
		 mode->hdisplay, mode->vdisplay,
665
		 interlaced ? "i" : "");
1123 serge 666
}
667
EXPORT_SYMBOL(drm_mode_set_name);
668
 
1321 serge 669
/** drm_mode_hsync - get the hsync of a mode
670
 * @mode: mode
671
 *
5060 serge 672
 * Returns:
673
 * @modes's hsync rate in kHz, rounded to the nearest integer. Calculates the
674
 * value first if it is not yet set.
1321 serge 675
 */
1963 serge 676
int drm_mode_hsync(const struct drm_display_mode *mode)
1321 serge 677
{
678
	unsigned int calc_val;
679
 
680
	if (mode->hsync)
681
		return mode->hsync;
682
 
683
	if (mode->htotal < 0)
684
		return 0;
685
 
686
	calc_val = (mode->clock * 1000) / mode->htotal; /* hsync in Hz */
687
	calc_val += 500;				/* round to 1000Hz */
688
	calc_val /= 1000;				/* truncate to kHz */
689
 
690
	return calc_val;
691
}
692
EXPORT_SYMBOL(drm_mode_hsync);
693
 
1123 serge 694
/**
695
 * drm_mode_vrefresh - get the vrefresh of a mode
696
 * @mode: mode
697
 *
5060 serge 698
 * Returns:
699
 * @modes's vrefresh rate in Hz, rounded to the nearest integer. Calculates the
700
 * value first if it is not yet set.
1123 serge 701
 */
1963 serge 702
int drm_mode_vrefresh(const struct drm_display_mode *mode)
1123 serge 703
{
704
	int refresh = 0;
705
	unsigned int calc_val;
706
 
707
	if (mode->vrefresh > 0)
708
		refresh = mode->vrefresh;
709
	else if (mode->htotal > 0 && mode->vtotal > 0) {
1179 serge 710
		int vtotal;
711
		vtotal = mode->vtotal;
1123 serge 712
		/* work out vrefresh the value will be x1000 */
713
		calc_val = (mode->clock * 1000);
714
		calc_val /= mode->htotal;
1179 serge 715
		refresh = (calc_val + vtotal / 2) / vtotal;
1123 serge 716
 
717
		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
718
			refresh *= 2;
719
		if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
720
			refresh /= 2;
721
		if (mode->vscan > 1)
722
			refresh /= mode->vscan;
723
	}
724
	return refresh;
725
}
726
EXPORT_SYMBOL(drm_mode_vrefresh);
727
 
728
/**
5060 serge 729
 * drm_mode_set_crtcinfo - set CRTC modesetting timing parameters
1123 serge 730
 * @p: mode
4560 Serge 731
 * @adjust_flags: a combination of adjustment flags
1123 serge 732
 *
5060 serge 733
 * Setup the CRTC modesetting timing parameters for @p, adjusting if necessary.
1123 serge 734
 *
4560 Serge 735
 * - The CRTC_INTERLACE_HALVE_V flag can be used to halve vertical timings of
736
 *   interlaced modes.
737
 * - The CRTC_STEREO_DOUBLE flag can be used to compute the timings for
738
 *   buffers containing two eyes (only adjust the timings when needed, eg. for
739
 *   "frame packing" or "side by side full").
1123 serge 740
 */
741
void drm_mode_set_crtcinfo(struct drm_display_mode *p, int adjust_flags)
742
{
743
	if ((p == NULL) || ((p->type & DRM_MODE_TYPE_CRTC_C) == DRM_MODE_TYPE_BUILTIN))
744
		return;
745
 
4560 Serge 746
	p->crtc_clock = p->clock;
1123 serge 747
	p->crtc_hdisplay = p->hdisplay;
748
	p->crtc_hsync_start = p->hsync_start;
749
	p->crtc_hsync_end = p->hsync_end;
750
	p->crtc_htotal = p->htotal;
751
	p->crtc_hskew = p->hskew;
752
	p->crtc_vdisplay = p->vdisplay;
753
	p->crtc_vsync_start = p->vsync_start;
754
	p->crtc_vsync_end = p->vsync_end;
755
	p->crtc_vtotal = p->vtotal;
756
 
757
	if (p->flags & DRM_MODE_FLAG_INTERLACE) {
758
		if (adjust_flags & CRTC_INTERLACE_HALVE_V) {
759
			p->crtc_vdisplay /= 2;
760
			p->crtc_vsync_start /= 2;
761
			p->crtc_vsync_end /= 2;
762
			p->crtc_vtotal /= 2;
763
		}
764
	}
765
 
766
	if (p->flags & DRM_MODE_FLAG_DBLSCAN) {
767
		p->crtc_vdisplay *= 2;
768
		p->crtc_vsync_start *= 2;
769
		p->crtc_vsync_end *= 2;
770
		p->crtc_vtotal *= 2;
771
	}
772
 
773
	if (p->vscan > 1) {
774
		p->crtc_vdisplay *= p->vscan;
775
		p->crtc_vsync_start *= p->vscan;
776
		p->crtc_vsync_end *= p->vscan;
777
		p->crtc_vtotal *= p->vscan;
778
	}
779
 
4560 Serge 780
	if (adjust_flags & CRTC_STEREO_DOUBLE) {
781
		unsigned int layout = p->flags & DRM_MODE_FLAG_3D_MASK;
782
 
783
		switch (layout) {
784
		case DRM_MODE_FLAG_3D_FRAME_PACKING:
785
			p->crtc_clock *= 2;
786
			p->crtc_vdisplay += p->crtc_vtotal;
787
			p->crtc_vsync_start += p->crtc_vtotal;
788
			p->crtc_vsync_end += p->crtc_vtotal;
789
			p->crtc_vtotal += p->crtc_vtotal;
790
			break;
791
		}
792
	}
793
 
1123 serge 794
	p->crtc_vblank_start = min(p->crtc_vsync_start, p->crtc_vdisplay);
795
	p->crtc_vblank_end = max(p->crtc_vsync_end, p->crtc_vtotal);
796
	p->crtc_hblank_start = min(p->crtc_hsync_start, p->crtc_hdisplay);
797
	p->crtc_hblank_end = max(p->crtc_hsync_end, p->crtc_htotal);
798
}
799
EXPORT_SYMBOL(drm_mode_set_crtcinfo);
800
 
801
/**
3031 serge 802
 * drm_mode_copy - copy the mode
803
 * @dst: mode to overwrite
804
 * @src: mode to copy
805
 *
4075 Serge 806
 * Copy an existing mode into another mode, preserving the object id and
807
 * list head of the destination mode.
3031 serge 808
 */
809
void drm_mode_copy(struct drm_display_mode *dst, const struct drm_display_mode *src)
810
{
811
	int id = dst->base.id;
4075 Serge 812
	struct list_head head = dst->head;
3031 serge 813
 
814
	*dst = *src;
815
	dst->base.id = id;
4075 Serge 816
	dst->head = head;
3031 serge 817
}
818
EXPORT_SYMBOL(drm_mode_copy);
819
 
820
/**
1123 serge 821
 * drm_mode_duplicate - allocate and duplicate an existing mode
5060 serge 822
 * @dev: drm_device to allocate the duplicated mode for
823
 * @mode: mode to duplicate
1123 serge 824
 *
825
 * Just allocate a new mode, copy the existing mode into it, and return
826
 * a pointer to it.  Used to create new instances of established modes.
5060 serge 827
 *
828
 * Returns:
829
 * Pointer to duplicated mode on success, NULL on error.
1123 serge 830
 */
831
struct drm_display_mode *drm_mode_duplicate(struct drm_device *dev,
1963 serge 832
					    const struct drm_display_mode *mode)
1123 serge 833
{
834
	struct drm_display_mode *nmode;
835
 
836
	nmode = drm_mode_create(dev);
837
	if (!nmode)
838
		return NULL;
839
 
3031 serge 840
	drm_mode_copy(nmode, mode);
841
 
1123 serge 842
	return nmode;
843
}
844
EXPORT_SYMBOL(drm_mode_duplicate);
845
 
846
/**
847
 * drm_mode_equal - test modes for equality
848
 * @mode1: first mode
849
 * @mode2: second mode
850
 *
851
 * Check to see if @mode1 and @mode2 are equivalent.
852
 *
5060 serge 853
 * Returns:
1123 serge 854
 * True if the modes are equal, false otherwise.
855
 */
3192 Serge 856
bool drm_mode_equal(const struct drm_display_mode *mode1, const struct drm_display_mode *mode2)
1123 serge 857
{
858
	/* do clock check convert to PICOS so fb modes get matched
859
	 * the same */
860
	if (mode1->clock && mode2->clock) {
861
		if (KHZ2PICOS(mode1->clock) != KHZ2PICOS(mode2->clock))
862
			return false;
863
	} else if (mode1->clock != mode2->clock)
864
		return false;
865
 
4560 Serge 866
	if ((mode1->flags & DRM_MODE_FLAG_3D_MASK) !=
867
	    (mode2->flags & DRM_MODE_FLAG_3D_MASK))
868
		return false;
869
 
870
	return drm_mode_equal_no_clocks_no_stereo(mode1, mode2);
3746 Serge 871
}
872
EXPORT_SYMBOL(drm_mode_equal);
873
 
874
/**
4560 Serge 875
 * drm_mode_equal_no_clocks_no_stereo - test modes for equality
3746 Serge 876
 * @mode1: first mode
877
 * @mode2: second mode
878
 *
879
 * Check to see if @mode1 and @mode2 are equivalent, but
4560 Serge 880
 * don't check the pixel clocks nor the stereo layout.
3746 Serge 881
 *
5060 serge 882
 * Returns:
3746 Serge 883
 * True if the modes are equal, false otherwise.
884
 */
4560 Serge 885
bool drm_mode_equal_no_clocks_no_stereo(const struct drm_display_mode *mode1,
886
					const struct drm_display_mode *mode2)
3746 Serge 887
{
1123 serge 888
	if (mode1->hdisplay == mode2->hdisplay &&
889
	    mode1->hsync_start == mode2->hsync_start &&
890
	    mode1->hsync_end == mode2->hsync_end &&
891
	    mode1->htotal == mode2->htotal &&
892
	    mode1->hskew == mode2->hskew &&
893
	    mode1->vdisplay == mode2->vdisplay &&
894
	    mode1->vsync_start == mode2->vsync_start &&
895
	    mode1->vsync_end == mode2->vsync_end &&
896
	    mode1->vtotal == mode2->vtotal &&
897
	    mode1->vscan == mode2->vscan &&
4560 Serge 898
	    (mode1->flags & ~DRM_MODE_FLAG_3D_MASK) ==
899
	     (mode2->flags & ~DRM_MODE_FLAG_3D_MASK))
1123 serge 900
		return true;
901
 
902
	return false;
903
}
4560 Serge 904
EXPORT_SYMBOL(drm_mode_equal_no_clocks_no_stereo);
1123 serge 905
 
906
/**
907
 * drm_mode_validate_size - make sure modes adhere to size constraints
908
 * @dev: DRM device
909
 * @mode_list: list of modes to check
910
 * @maxX: maximum width
911
 * @maxY: maximum height
912
 *
5060 serge 913
 * This function is a helper which can be used to validate modes against size
914
 * limitations of the DRM device/connector. If a mode is too big its status
915
 * memeber is updated with the appropriate validation failure code. The list
916
 * itself is not changed.
1123 serge 917
 */
918
void drm_mode_validate_size(struct drm_device *dev,
919
			    struct list_head *mode_list,
5060 serge 920
			    int maxX, int maxY)
1123 serge 921
{
922
	struct drm_display_mode *mode;
923
 
924
	list_for_each_entry(mode, mode_list, head) {
925
		if (maxX > 0 && mode->hdisplay > maxX)
926
			mode->status = MODE_VIRTUAL_X;
927
 
928
		if (maxY > 0 && mode->vdisplay > maxY)
929
			mode->status = MODE_VIRTUAL_Y;
930
	}
931
}
932
EXPORT_SYMBOL(drm_mode_validate_size);
933
 
934
/**
935
 * drm_mode_prune_invalid - remove invalid modes from mode list
936
 * @dev: DRM device
937
 * @mode_list: list of modes to check
938
 * @verbose: be verbose about it
939
 *
5060 serge 940
 * This helper function can be used to prune a display mode list after
941
 * validation has been completed. All modes who's status is not MODE_OK will be
942
 * removed from the list, and if @verbose the status code and mode name is also
943
 * printed to dmesg.
1123 serge 944
 */
945
void drm_mode_prune_invalid(struct drm_device *dev,
946
			    struct list_head *mode_list, bool verbose)
947
{
948
	struct drm_display_mode *mode, *t;
949
 
950
	list_for_each_entry_safe(mode, t, mode_list, head) {
951
		if (mode->status != MODE_OK) {
952
			list_del(&mode->head);
953
			if (verbose) {
954
				drm_mode_debug_printmodeline(mode);
1179 serge 955
				DRM_DEBUG_KMS("Not using %s mode %d\n",
1123 serge 956
					mode->name, mode->status);
957
			}
958
			drm_mode_destroy(dev, mode);
959
		}
960
	}
961
}
962
EXPORT_SYMBOL(drm_mode_prune_invalid);
963
 
964
/**
965
 * drm_mode_compare - compare modes for favorability
1404 serge 966
 * @priv: unused
1123 serge 967
 * @lh_a: list_head for first mode
968
 * @lh_b: list_head for second mode
969
 *
970
 * Compare two modes, given by @lh_a and @lh_b, returning a value indicating
971
 * which is better.
972
 *
5060 serge 973
 * Returns:
1123 serge 974
 * Negative if @lh_a is better than @lh_b, zero if they're equivalent, or
975
 * positive if @lh_b is better than @lh_a.
976
 */
1404 serge 977
static int drm_mode_compare(void *priv, struct list_head *lh_a, struct list_head *lh_b)
1123 serge 978
{
979
	struct drm_display_mode *a = list_entry(lh_a, struct drm_display_mode, head);
980
	struct drm_display_mode *b = list_entry(lh_b, struct drm_display_mode, head);
981
	int diff;
982
 
983
	diff = ((b->type & DRM_MODE_TYPE_PREFERRED) != 0) -
984
		((a->type & DRM_MODE_TYPE_PREFERRED) != 0);
985
	if (diff)
986
		return diff;
987
	diff = b->hdisplay * b->vdisplay - a->hdisplay * a->vdisplay;
988
	if (diff)
989
		return diff;
4075 Serge 990
 
991
	diff = b->vrefresh - a->vrefresh;
992
	if (diff)
993
		return diff;
994
 
1123 serge 995
	diff = b->clock - a->clock;
996
	return diff;
997
}
998
 
999
/**
1000
 * drm_mode_sort - sort mode list
5060 serge 1001
 * @mode_list: list of drm_display_mode structures to sort
1123 serge 1002
 *
5060 serge 1003
 * Sort @mode_list by favorability, moving good modes to the head of the list.
1123 serge 1004
 */
1005
void drm_mode_sort(struct list_head *mode_list)
1006
{
1404 serge 1007
	list_sort(NULL, mode_list, drm_mode_compare);
1123 serge 1008
}
1009
EXPORT_SYMBOL(drm_mode_sort);
1010
 
1011
/**
1012
 * drm_mode_connector_list_update - update the mode list for the connector
1013
 * @connector: the connector to update
5060 serge 1014
 * @merge_type_bits: whether to merge or overright type bits.
1123 serge 1015
 *
1016
 * This moves the modes from the @connector probed_modes list
1017
 * to the actual mode list. It compares the probed mode against the current
5060 serge 1018
 * list and only adds different/new modes.
1019
 *
1020
 * This is just a helper functions doesn't validate any modes itself and also
1021
 * doesn't prune any invalid modes. Callers need to do that themselves.
1123 serge 1022
 */
5060 serge 1023
void drm_mode_connector_list_update(struct drm_connector *connector,
1024
				    bool merge_type_bits)
1123 serge 1025
{
1026
	struct drm_display_mode *mode;
1027
	struct drm_display_mode *pmode, *pt;
1028
	int found_it;
1029
 
5060 serge 1030
	WARN_ON(!mutex_is_locked(&connector->dev->mode_config.mutex));
1031
 
1123 serge 1032
	list_for_each_entry_safe(pmode, pt, &connector->probed_modes,
1033
				 head) {
1034
		found_it = 0;
1035
		/* go through current modes checking for the new probed mode */
1036
		list_for_each_entry(mode, &connector->modes, head) {
1037
			if (drm_mode_equal(pmode, mode)) {
1038
				found_it = 1;
1039
				/* if equal delete the probed mode */
1040
				mode->status = pmode->status;
1179 serge 1041
				/* Merge type bits together */
5060 serge 1042
				if (merge_type_bits)
1179 serge 1043
				mode->type |= pmode->type;
5060 serge 1044
				else
1045
					mode->type = pmode->type;
1123 serge 1046
				list_del(&pmode->head);
1047
				drm_mode_destroy(connector->dev, pmode);
1048
				break;
1049
			}
1050
		}
1051
 
1052
		if (!found_it) {
1053
			list_move_tail(&pmode->head, &connector->modes);
1054
		}
1055
	}
1056
}
1057
EXPORT_SYMBOL(drm_mode_connector_list_update);