Subversion Repositories Kolibri OS

Rev

Rev 1321 | Rev 1963 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1123 serge 1
/*
2
 * Copyright © 1997-2003 by The XFree86 Project, Inc.
3
 * Copyright © 2007 Dave Airlie
4
 * Copyright © 2007-2008 Intel Corporation
5
 *   Jesse Barnes 
1179 serge 6
 * Copyright 2005-2006 Luc Verhaegen
7
 * Copyright (c) 2001, Andy Ritger  aritger@nvidia.com
1123 serge 8
 *
9
 * Permission is hereby granted, free of charge, to any person obtaining a
10
 * copy of this software and associated documentation files (the "Software"),
11
 * to deal in the Software without restriction, including without limitation
12
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13
 * and/or sell copies of the Software, and to permit persons to whom the
14
 * Software is furnished to do so, subject to the following conditions:
15
 *
16
 * The above copyright notice and this permission notice shall be included in
17
 * all copies or substantial portions of the Software.
18
 *
19
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
22
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
23
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
24
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
25
 * OTHER DEALINGS IN THE SOFTWARE.
26
 *
27
 * Except as contained in this notice, the name of the copyright holder(s)
28
 * and author(s) shall not be used in advertising or otherwise to promote
29
 * the sale, use or other dealings in this Software without prior written
30
 * authorization from the copyright holder(s) and author(s).
31
 */
32
 
1179 serge 33
#include 
1404 serge 34
#include 
1123 serge 35
#include "drmP.h"
36
#include "drm.h"
37
#include "drm_crtc.h"
38
 
39
/**
40
 * drm_mode_debug_printmodeline - debug print a mode
41
 * @dev: DRM device
42
 * @mode: mode to print
43
 *
44
 * LOCKING:
45
 * None.
46
 *
47
 * Describe @mode using DRM_DEBUG.
48
 */
49
void drm_mode_debug_printmodeline(struct drm_display_mode *mode)
50
{
1179 serge 51
	DRM_DEBUG_KMS("Modeline %d:\"%s\" %d %d %d %d %d %d %d %d %d %d "
52
			"0x%x 0x%x\n",
1123 serge 53
		mode->base.id, mode->name, mode->vrefresh, mode->clock,
54
		mode->hdisplay, mode->hsync_start,
55
		mode->hsync_end, mode->htotal,
56
		mode->vdisplay, mode->vsync_start,
57
		mode->vsync_end, mode->vtotal, mode->type, mode->flags);
58
}
59
EXPORT_SYMBOL(drm_mode_debug_printmodeline);
60
 
61
/**
1179 serge 62
 * drm_cvt_mode -create a modeline based on CVT algorithm
63
 * @dev: DRM device
64
 * @hdisplay: hdisplay size
65
 * @vdisplay: vdisplay size
66
 * @vrefresh  : vrefresh rate
67
 * @reduced : Whether the GTF calculation is simplified
68
 * @interlaced:Whether the interlace is supported
69
 *
70
 * LOCKING:
71
 * none.
72
 *
73
 * return the modeline based on CVT algorithm
74
 *
75
 * This function is called to generate the modeline based on CVT algorithm
76
 * according to the hdisplay, vdisplay, vrefresh.
77
 * It is based from the VESA(TM) Coordinated Video Timing Generator by
78
 * Graham Loveridge April 9, 2003 available at
79
 * http://www.vesa.org/public/CVT/CVTd6r1.xls
80
 *
81
 * And it is copied from xf86CVTmode in xserver/hw/xfree86/modes/xf86cvt.c.
82
 * What I have done is to translate it by using integer calculation.
83
 */
84
#define HV_FACTOR			1000
85
struct drm_display_mode *drm_cvt_mode(struct drm_device *dev, int hdisplay,
86
				      int vdisplay, int vrefresh,
1221 serge 87
				      bool reduced, bool interlaced, bool margins)
1179 serge 88
{
89
	/* 1) top/bottom margin size (% of height) - default: 1.8, */
90
#define	CVT_MARGIN_PERCENTAGE		18
91
	/* 2) character cell horizontal granularity (pixels) - default 8 */
92
#define	CVT_H_GRANULARITY		8
93
	/* 3) Minimum vertical porch (lines) - default 3 */
94
#define	CVT_MIN_V_PORCH			3
95
	/* 4) Minimum number of vertical back porch lines - default 6 */
96
#define	CVT_MIN_V_BPORCH		6
97
	/* Pixel Clock step (kHz) */
98
#define CVT_CLOCK_STEP			250
99
	struct drm_display_mode *drm_mode;
100
	unsigned int vfieldrate, hperiod;
101
	int hdisplay_rnd, hmargin, vdisplay_rnd, vmargin, vsync;
102
	int interlace;
103
 
104
	/* allocate the drm_display_mode structure. If failure, we will
105
	 * return directly
106
	 */
107
	drm_mode = drm_mode_create(dev);
108
	if (!drm_mode)
109
		return NULL;
110
 
111
	/* the CVT default refresh rate is 60Hz */
112
	if (!vrefresh)
113
		vrefresh = 60;
114
 
115
	/* the required field fresh rate */
116
	if (interlaced)
117
		vfieldrate = vrefresh * 2;
118
	else
119
		vfieldrate = vrefresh;
120
 
121
	/* horizontal pixels */
122
	hdisplay_rnd = hdisplay - (hdisplay % CVT_H_GRANULARITY);
123
 
124
	/* determine the left&right borders */
125
	hmargin = 0;
126
	if (margins) {
127
		hmargin = hdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
128
		hmargin -= hmargin % CVT_H_GRANULARITY;
129
	}
130
	/* find the total active pixels */
131
	drm_mode->hdisplay = hdisplay_rnd + 2 * hmargin;
132
 
133
	/* find the number of lines per field */
134
	if (interlaced)
135
		vdisplay_rnd = vdisplay / 2;
136
	else
137
		vdisplay_rnd = vdisplay;
138
 
139
	/* find the top & bottom borders */
140
	vmargin = 0;
141
	if (margins)
142
		vmargin = vdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
143
 
144
	drm_mode->vdisplay = vdisplay + 2 * vmargin;
145
 
146
	/* Interlaced */
147
	if (interlaced)
148
		interlace = 1;
149
	else
150
		interlace = 0;
151
 
152
	/* Determine VSync Width from aspect ratio */
153
	if (!(vdisplay % 3) && ((vdisplay * 4 / 3) == hdisplay))
154
		vsync = 4;
155
	else if (!(vdisplay % 9) && ((vdisplay * 16 / 9) == hdisplay))
156
		vsync = 5;
157
	else if (!(vdisplay % 10) && ((vdisplay * 16 / 10) == hdisplay))
158
		vsync = 6;
159
	else if (!(vdisplay % 4) && ((vdisplay * 5 / 4) == hdisplay))
160
		vsync = 7;
161
	else if (!(vdisplay % 9) && ((vdisplay * 15 / 9) == hdisplay))
162
		vsync = 7;
163
	else /* custom */
164
		vsync = 10;
165
 
166
	if (!reduced) {
167
		/* simplify the GTF calculation */
168
		/* 4) Minimum time of vertical sync + back porch interval (µs)
169
		 * default 550.0
170
		 */
171
		int tmp1, tmp2;
172
#define CVT_MIN_VSYNC_BP	550
173
		/* 3) Nominal HSync width (% of line period) - default 8 */
174
#define CVT_HSYNC_PERCENTAGE	8
175
		unsigned int hblank_percentage;
176
		int vsyncandback_porch, vback_porch, hblank;
177
 
178
		/* estimated the horizontal period */
179
		tmp1 = HV_FACTOR * 1000000  -
180
				CVT_MIN_VSYNC_BP * HV_FACTOR * vfieldrate;
181
		tmp2 = (vdisplay_rnd + 2 * vmargin + CVT_MIN_V_PORCH) * 2 +
182
				interlace;
183
		hperiod = tmp1 * 2 / (tmp2 * vfieldrate);
184
 
185
		tmp1 = CVT_MIN_VSYNC_BP * HV_FACTOR / hperiod + 1;
186
		/* 9. Find number of lines in sync + backporch */
187
		if (tmp1 < (vsync + CVT_MIN_V_PORCH))
188
			vsyncandback_porch = vsync + CVT_MIN_V_PORCH;
189
		else
190
			vsyncandback_porch = tmp1;
191
		/* 10. Find number of lines in back porch */
192
		vback_porch = vsyncandback_porch - vsync;
193
		drm_mode->vtotal = vdisplay_rnd + 2 * vmargin +
194
				vsyncandback_porch + CVT_MIN_V_PORCH;
195
		/* 5) Definition of Horizontal blanking time limitation */
196
		/* Gradient (%/kHz) - default 600 */
197
#define CVT_M_FACTOR	600
198
		/* Offset (%) - default 40 */
199
#define CVT_C_FACTOR	40
200
		/* Blanking time scaling factor - default 128 */
201
#define CVT_K_FACTOR	128
202
		/* Scaling factor weighting - default 20 */
203
#define CVT_J_FACTOR	20
204
#define CVT_M_PRIME	(CVT_M_FACTOR * CVT_K_FACTOR / 256)
205
#define CVT_C_PRIME	((CVT_C_FACTOR - CVT_J_FACTOR) * CVT_K_FACTOR / 256 + \
206
			 CVT_J_FACTOR)
207
		/* 12. Find ideal blanking duty cycle from formula */
208
		hblank_percentage = CVT_C_PRIME * HV_FACTOR - CVT_M_PRIME *
209
					hperiod / 1000;
210
		/* 13. Blanking time */
211
		if (hblank_percentage < 20 * HV_FACTOR)
212
			hblank_percentage = 20 * HV_FACTOR;
213
		hblank = drm_mode->hdisplay * hblank_percentage /
214
			 (100 * HV_FACTOR - hblank_percentage);
215
		hblank -= hblank % (2 * CVT_H_GRANULARITY);
216
		/* 14. find the total pixes per line */
217
		drm_mode->htotal = drm_mode->hdisplay + hblank;
218
		drm_mode->hsync_end = drm_mode->hdisplay + hblank / 2;
219
		drm_mode->hsync_start = drm_mode->hsync_end -
220
			(drm_mode->htotal * CVT_HSYNC_PERCENTAGE) / 100;
221
		drm_mode->hsync_start += CVT_H_GRANULARITY -
222
			drm_mode->hsync_start % CVT_H_GRANULARITY;
223
		/* fill the Vsync values */
224
		drm_mode->vsync_start = drm_mode->vdisplay + CVT_MIN_V_PORCH;
225
		drm_mode->vsync_end = drm_mode->vsync_start + vsync;
226
	} else {
227
		/* Reduced blanking */
228
		/* Minimum vertical blanking interval time (µs)- default 460 */
229
#define CVT_RB_MIN_VBLANK	460
230
		/* Fixed number of clocks for horizontal sync */
231
#define CVT_RB_H_SYNC		32
232
		/* Fixed number of clocks for horizontal blanking */
233
#define CVT_RB_H_BLANK		160
234
		/* Fixed number of lines for vertical front porch - default 3*/
235
#define CVT_RB_VFPORCH		3
236
		int vbilines;
237
		int tmp1, tmp2;
238
		/* 8. Estimate Horizontal period. */
239
		tmp1 = HV_FACTOR * 1000000 -
240
			CVT_RB_MIN_VBLANK * HV_FACTOR * vfieldrate;
241
		tmp2 = vdisplay_rnd + 2 * vmargin;
242
		hperiod = tmp1 / (tmp2 * vfieldrate);
243
		/* 9. Find number of lines in vertical blanking */
244
		vbilines = CVT_RB_MIN_VBLANK * HV_FACTOR / hperiod + 1;
245
		/* 10. Check if vertical blanking is sufficient */
246
		if (vbilines < (CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH))
247
			vbilines = CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH;
248
		/* 11. Find total number of lines in vertical field */
249
		drm_mode->vtotal = vdisplay_rnd + 2 * vmargin + vbilines;
250
		/* 12. Find total number of pixels in a line */
251
		drm_mode->htotal = drm_mode->hdisplay + CVT_RB_H_BLANK;
252
		/* Fill in HSync values */
253
		drm_mode->hsync_end = drm_mode->hdisplay + CVT_RB_H_BLANK / 2;
254
		drm_mode->hsync_start = drm_mode->hsync_end = CVT_RB_H_SYNC;
255
	}
256
	/* 15/13. Find pixel clock frequency (kHz for xf86) */
257
	drm_mode->clock = drm_mode->htotal * HV_FACTOR * 1000 / hperiod;
258
	drm_mode->clock -= drm_mode->clock % CVT_CLOCK_STEP;
259
	/* 18/16. Find actual vertical frame frequency */
260
	/* ignore - just set the mode flag for interlaced */
261
	if (interlaced)
262
		drm_mode->vtotal *= 2;
263
	/* Fill the mode line name */
264
	drm_mode_set_name(drm_mode);
265
	if (reduced)
266
		drm_mode->flags |= (DRM_MODE_FLAG_PHSYNC |
267
					DRM_MODE_FLAG_NVSYNC);
268
	else
269
		drm_mode->flags |= (DRM_MODE_FLAG_PVSYNC |
270
					DRM_MODE_FLAG_NHSYNC);
271
	if (interlaced)
272
		drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
273
 
274
    return drm_mode;
275
}
276
EXPORT_SYMBOL(drm_cvt_mode);
277
 
278
/**
279
 * drm_gtf_mode - create the modeline based on GTF algorithm
280
 *
281
 * @dev		:drm device
282
 * @hdisplay	:hdisplay size
283
 * @vdisplay	:vdisplay size
284
 * @vrefresh	:vrefresh rate.
285
 * @interlaced	:whether the interlace is supported
286
 * @margins	:whether the margin is supported
287
 *
288
 * LOCKING.
289
 * none.
290
 *
291
 * return the modeline based on GTF algorithm
292
 *
293
 * This function is to create the modeline based on the GTF algorithm.
294
 * Generalized Timing Formula is derived from:
295
 *	GTF Spreadsheet by Andy Morrish (1/5/97)
296
 *	available at http://www.vesa.org
297
 *
298
 * And it is copied from the file of xserver/hw/xfree86/modes/xf86gtf.c.
299
 * What I have done is to translate it by using integer calculation.
300
 * I also refer to the function of fb_get_mode in the file of
301
 * drivers/video/fbmon.c
302
 */
303
struct drm_display_mode *drm_gtf_mode(struct drm_device *dev, int hdisplay,
304
				      int vdisplay, int vrefresh,
305
				      bool interlaced, int margins)
306
{
307
	/* 1) top/bottom margin size (% of height) - default: 1.8, */
308
#define	GTF_MARGIN_PERCENTAGE		18
309
	/* 2) character cell horizontal granularity (pixels) - default 8 */
310
#define	GTF_CELL_GRAN			8
311
	/* 3) Minimum vertical porch (lines) - default 3 */
312
#define	GTF_MIN_V_PORCH			1
313
	/* width of vsync in lines */
314
#define V_SYNC_RQD			3
315
	/* width of hsync as % of total line */
316
#define H_SYNC_PERCENT			8
317
	/* min time of vsync + back porch (microsec) */
318
#define MIN_VSYNC_PLUS_BP		550
319
	/* blanking formula gradient */
320
#define GTF_M				600
321
	/* blanking formula offset */
322
#define GTF_C				40
323
	/* blanking formula scaling factor */
324
#define GTF_K				128
325
	/* blanking formula scaling factor */
326
#define GTF_J				20
327
	/* C' and M' are part of the Blanking Duty Cycle computation */
328
#define GTF_C_PRIME		(((GTF_C - GTF_J) * GTF_K / 256) + GTF_J)
329
#define GTF_M_PRIME		(GTF_K * GTF_M / 256)
330
	struct drm_display_mode *drm_mode;
331
	unsigned int hdisplay_rnd, vdisplay_rnd, vfieldrate_rqd;
332
	int top_margin, bottom_margin;
333
	int interlace;
334
	unsigned int hfreq_est;
335
	int vsync_plus_bp, vback_porch;
336
	unsigned int vtotal_lines, vfieldrate_est, hperiod;
337
	unsigned int vfield_rate, vframe_rate;
338
	int left_margin, right_margin;
339
	unsigned int total_active_pixels, ideal_duty_cycle;
340
	unsigned int hblank, total_pixels, pixel_freq;
341
	int hsync, hfront_porch, vodd_front_porch_lines;
342
	unsigned int tmp1, tmp2;
343
 
344
	drm_mode = drm_mode_create(dev);
345
	if (!drm_mode)
346
		return NULL;
347
 
348
	/* 1. In order to give correct results, the number of horizontal
349
	 * pixels requested is first processed to ensure that it is divisible
350
	 * by the character size, by rounding it to the nearest character
351
	 * cell boundary:
352
	 */
353
	hdisplay_rnd = (hdisplay + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
354
	hdisplay_rnd = hdisplay_rnd * GTF_CELL_GRAN;
355
 
356
	/* 2. If interlace is requested, the number of vertical lines assumed
357
	 * by the calculation must be halved, as the computation calculates
358
	 * the number of vertical lines per field.
359
	 */
360
	if (interlaced)
361
		vdisplay_rnd = vdisplay / 2;
362
	else
363
		vdisplay_rnd = vdisplay;
364
 
365
	/* 3. Find the frame rate required: */
366
	if (interlaced)
367
		vfieldrate_rqd = vrefresh * 2;
368
	else
369
		vfieldrate_rqd = vrefresh;
370
 
371
	/* 4. Find number of lines in Top margin: */
372
	top_margin = 0;
373
	if (margins)
374
		top_margin = (vdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
375
				1000;
376
	/* 5. Find number of lines in bottom margin: */
377
	bottom_margin = top_margin;
378
 
379
	/* 6. If interlace is required, then set variable interlace: */
380
	if (interlaced)
381
		interlace = 1;
382
	else
383
		interlace = 0;
384
 
385
	/* 7. Estimate the Horizontal frequency */
386
	{
387
		tmp1 = (1000000  - MIN_VSYNC_PLUS_BP * vfieldrate_rqd) / 500;
388
		tmp2 = (vdisplay_rnd + 2 * top_margin + GTF_MIN_V_PORCH) *
389
				2 + interlace;
390
		hfreq_est = (tmp2 * 1000 * vfieldrate_rqd) / tmp1;
391
	}
392
 
393
	/* 8. Find the number of lines in V sync + back porch */
394
	/* [V SYNC+BP] = RINT(([MIN VSYNC+BP] * hfreq_est / 1000000)) */
395
	vsync_plus_bp = MIN_VSYNC_PLUS_BP * hfreq_est / 1000;
396
	vsync_plus_bp = (vsync_plus_bp + 500) / 1000;
397
	/*  9. Find the number of lines in V back porch alone: */
398
	vback_porch = vsync_plus_bp - V_SYNC_RQD;
399
	/*  10. Find the total number of lines in Vertical field period: */
400
	vtotal_lines = vdisplay_rnd + top_margin + bottom_margin +
401
			vsync_plus_bp + GTF_MIN_V_PORCH;
402
	/*  11. Estimate the Vertical field frequency: */
403
	vfieldrate_est = hfreq_est / vtotal_lines;
404
	/*  12. Find the actual horizontal period: */
405
	hperiod = 1000000 / (vfieldrate_rqd * vtotal_lines);
406
 
407
	/*  13. Find the actual Vertical field frequency: */
408
	vfield_rate = hfreq_est / vtotal_lines;
409
	/*  14. Find the Vertical frame frequency: */
410
	if (interlaced)
411
		vframe_rate = vfield_rate / 2;
412
	else
413
		vframe_rate = vfield_rate;
414
	/*  15. Find number of pixels in left margin: */
415
	if (margins)
416
		left_margin = (hdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
417
				1000;
418
	else
419
		left_margin = 0;
420
 
421
	/* 16.Find number of pixels in right margin: */
422
	right_margin = left_margin;
423
	/* 17.Find total number of active pixels in image and left and right */
424
	total_active_pixels = hdisplay_rnd + left_margin + right_margin;
425
	/* 18.Find the ideal blanking duty cycle from blanking duty cycle */
426
	ideal_duty_cycle = GTF_C_PRIME * 1000 -
427
				(GTF_M_PRIME * 1000000 / hfreq_est);
428
	/* 19.Find the number of pixels in the blanking time to the nearest
429
	 * double character cell: */
430
	hblank = total_active_pixels * ideal_duty_cycle /
431
			(100000 - ideal_duty_cycle);
432
	hblank = (hblank + GTF_CELL_GRAN) / (2 * GTF_CELL_GRAN);
433
	hblank = hblank * 2 * GTF_CELL_GRAN;
434
	/* 20.Find total number of pixels: */
435
	total_pixels = total_active_pixels + hblank;
436
	/* 21.Find pixel clock frequency: */
437
	pixel_freq = total_pixels * hfreq_est / 1000;
438
	/* Stage 1 computations are now complete; I should really pass
439
	 * the results to another function and do the Stage 2 computations,
440
	 * but I only need a few more values so I'll just append the
441
	 * computations here for now */
442
	/* 17. Find the number of pixels in the horizontal sync period: */
443
	hsync = H_SYNC_PERCENT * total_pixels / 100;
444
	hsync = (hsync + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
445
	hsync = hsync * GTF_CELL_GRAN;
446
	/* 18. Find the number of pixels in horizontal front porch period */
447
	hfront_porch = hblank / 2 - hsync;
448
	/*  36. Find the number of lines in the odd front porch period: */
449
	vodd_front_porch_lines = GTF_MIN_V_PORCH ;
450
 
451
	/* finally, pack the results in the mode struct */
452
	drm_mode->hdisplay = hdisplay_rnd;
453
	drm_mode->hsync_start = hdisplay_rnd + hfront_porch;
454
	drm_mode->hsync_end = drm_mode->hsync_start + hsync;
455
	drm_mode->htotal = total_pixels;
456
	drm_mode->vdisplay = vdisplay_rnd;
457
	drm_mode->vsync_start = vdisplay_rnd + vodd_front_porch_lines;
458
	drm_mode->vsync_end = drm_mode->vsync_start + V_SYNC_RQD;
459
	drm_mode->vtotal = vtotal_lines;
460
 
461
	drm_mode->clock = pixel_freq;
462
 
463
	drm_mode_set_name(drm_mode);
464
	drm_mode->flags = DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC;
465
 
466
	if (interlaced) {
467
		drm_mode->vtotal *= 2;
468
		drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
469
	}
470
 
471
	return drm_mode;
472
}
473
EXPORT_SYMBOL(drm_gtf_mode);
474
/**
1123 serge 475
 * drm_mode_set_name - set the name on a mode
476
 * @mode: name will be set in this mode
477
 *
478
 * LOCKING:
479
 * None.
480
 *
481
 * Set the name of @mode to a standard format.
482
 */
483
void drm_mode_set_name(struct drm_display_mode *mode)
484
{
485
	snprintf(mode->name, DRM_DISPLAY_MODE_LEN, "%dx%d", mode->hdisplay,
486
		 mode->vdisplay);
487
}
488
EXPORT_SYMBOL(drm_mode_set_name);
489
 
490
/**
491
 * drm_mode_list_concat - move modes from one list to another
492
 * @head: source list
493
 * @new: dst list
494
 *
495
 * LOCKING:
496
 * Caller must ensure both lists are locked.
497
 *
498
 * Move all the modes from @head to @new.
499
 */
500
void drm_mode_list_concat(struct list_head *head, struct list_head *new)
501
{
502
 
503
	struct list_head *entry, *tmp;
504
 
505
	list_for_each_safe(entry, tmp, head) {
506
		list_move_tail(entry, new);
507
	}
508
}
509
EXPORT_SYMBOL(drm_mode_list_concat);
510
 
511
/**
512
 * drm_mode_width - get the width of a mode
513
 * @mode: mode
514
 *
515
 * LOCKING:
516
 * None.
517
 *
518
 * Return @mode's width (hdisplay) value.
519
 *
520
 * FIXME: is this needed?
521
 *
522
 * RETURNS:
523
 * @mode->hdisplay
524
 */
525
int drm_mode_width(struct drm_display_mode *mode)
526
{
527
	return mode->hdisplay;
528
 
529
}
530
EXPORT_SYMBOL(drm_mode_width);
531
 
532
/**
533
 * drm_mode_height - get the height of a mode
534
 * @mode: mode
535
 *
536
 * LOCKING:
537
 * None.
538
 *
539
 * Return @mode's height (vdisplay) value.
540
 *
541
 * FIXME: is this needed?
542
 *
543
 * RETURNS:
544
 * @mode->vdisplay
545
 */
546
int drm_mode_height(struct drm_display_mode *mode)
547
{
548
	return mode->vdisplay;
549
}
550
EXPORT_SYMBOL(drm_mode_height);
551
 
1321 serge 552
/** drm_mode_hsync - get the hsync of a mode
553
 * @mode: mode
554
 *
555
 * LOCKING:
556
 * None.
557
 *
558
 * Return @modes's hsync rate in kHz, rounded to the nearest int.
559
 */
560
int drm_mode_hsync(struct drm_display_mode *mode)
561
{
562
	unsigned int calc_val;
563
 
564
	if (mode->hsync)
565
		return mode->hsync;
566
 
567
	if (mode->htotal < 0)
568
		return 0;
569
 
570
	calc_val = (mode->clock * 1000) / mode->htotal; /* hsync in Hz */
571
	calc_val += 500;				/* round to 1000Hz */
572
	calc_val /= 1000;				/* truncate to kHz */
573
 
574
	return calc_val;
575
}
576
EXPORT_SYMBOL(drm_mode_hsync);
577
 
1123 serge 578
/**
579
 * drm_mode_vrefresh - get the vrefresh of a mode
580
 * @mode: mode
581
 *
582
 * LOCKING:
583
 * None.
584
 *
1321 serge 585
 * Return @mode's vrefresh rate in Hz or calculate it if necessary.
1123 serge 586
 *
587
 * FIXME: why is this needed?  shouldn't vrefresh be set already?
588
 *
589
 * RETURNS:
1179 serge 590
 * Vertical refresh rate. It will be the result of actual value plus 0.5.
591
 * If it is 70.288, it will return 70Hz.
592
 * If it is 59.6, it will return 60Hz.
1123 serge 593
 */
594
int drm_mode_vrefresh(struct drm_display_mode *mode)
595
{
596
	int refresh = 0;
597
	unsigned int calc_val;
598
 
599
	if (mode->vrefresh > 0)
600
		refresh = mode->vrefresh;
601
	else if (mode->htotal > 0 && mode->vtotal > 0) {
1179 serge 602
		int vtotal;
603
		vtotal = mode->vtotal;
1123 serge 604
		/* work out vrefresh the value will be x1000 */
605
		calc_val = (mode->clock * 1000);
606
		calc_val /= mode->htotal;
1179 serge 607
		refresh = (calc_val + vtotal / 2) / vtotal;
1123 serge 608
 
609
		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
610
			refresh *= 2;
611
		if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
612
			refresh /= 2;
613
		if (mode->vscan > 1)
614
			refresh /= mode->vscan;
615
	}
616
	return refresh;
617
}
618
EXPORT_SYMBOL(drm_mode_vrefresh);
619
 
620
/**
621
 * drm_mode_set_crtcinfo - set CRTC modesetting parameters
622
 * @p: mode
623
 * @adjust_flags: unused? (FIXME)
624
 *
625
 * LOCKING:
626
 * None.
627
 *
628
 * Setup the CRTC modesetting parameters for @p, adjusting if necessary.
629
 */
630
void drm_mode_set_crtcinfo(struct drm_display_mode *p, int adjust_flags)
631
{
632
	if ((p == NULL) || ((p->type & DRM_MODE_TYPE_CRTC_C) == DRM_MODE_TYPE_BUILTIN))
633
		return;
634
 
635
	p->crtc_hdisplay = p->hdisplay;
636
	p->crtc_hsync_start = p->hsync_start;
637
	p->crtc_hsync_end = p->hsync_end;
638
	p->crtc_htotal = p->htotal;
639
	p->crtc_hskew = p->hskew;
640
	p->crtc_vdisplay = p->vdisplay;
641
	p->crtc_vsync_start = p->vsync_start;
642
	p->crtc_vsync_end = p->vsync_end;
643
	p->crtc_vtotal = p->vtotal;
644
 
645
	if (p->flags & DRM_MODE_FLAG_INTERLACE) {
646
		if (adjust_flags & CRTC_INTERLACE_HALVE_V) {
647
			p->crtc_vdisplay /= 2;
648
			p->crtc_vsync_start /= 2;
649
			p->crtc_vsync_end /= 2;
650
			p->crtc_vtotal /= 2;
651
		}
652
 
653
		p->crtc_vtotal |= 1;
654
	}
655
 
656
	if (p->flags & DRM_MODE_FLAG_DBLSCAN) {
657
		p->crtc_vdisplay *= 2;
658
		p->crtc_vsync_start *= 2;
659
		p->crtc_vsync_end *= 2;
660
		p->crtc_vtotal *= 2;
661
	}
662
 
663
	if (p->vscan > 1) {
664
		p->crtc_vdisplay *= p->vscan;
665
		p->crtc_vsync_start *= p->vscan;
666
		p->crtc_vsync_end *= p->vscan;
667
		p->crtc_vtotal *= p->vscan;
668
	}
669
 
670
	p->crtc_vblank_start = min(p->crtc_vsync_start, p->crtc_vdisplay);
671
	p->crtc_vblank_end = max(p->crtc_vsync_end, p->crtc_vtotal);
672
	p->crtc_hblank_start = min(p->crtc_hsync_start, p->crtc_hdisplay);
673
	p->crtc_hblank_end = max(p->crtc_hsync_end, p->crtc_htotal);
674
 
675
	p->crtc_hadjusted = false;
676
	p->crtc_vadjusted = false;
677
}
678
EXPORT_SYMBOL(drm_mode_set_crtcinfo);
679
 
680
 
681
/**
682
 * drm_mode_duplicate - allocate and duplicate an existing mode
683
 * @m: mode to duplicate
684
 *
685
 * LOCKING:
686
 * None.
687
 *
688
 * Just allocate a new mode, copy the existing mode into it, and return
689
 * a pointer to it.  Used to create new instances of established modes.
690
 */
691
struct drm_display_mode *drm_mode_duplicate(struct drm_device *dev,
692
					    struct drm_display_mode *mode)
693
{
694
	struct drm_display_mode *nmode;
695
	int new_id;
696
 
697
	nmode = drm_mode_create(dev);
698
	if (!nmode)
699
		return NULL;
700
 
701
	new_id = nmode->base.id;
702
	*nmode = *mode;
703
	nmode->base.id = new_id;
704
	INIT_LIST_HEAD(&nmode->head);
705
	return nmode;
706
}
707
EXPORT_SYMBOL(drm_mode_duplicate);
708
 
709
/**
710
 * drm_mode_equal - test modes for equality
711
 * @mode1: first mode
712
 * @mode2: second mode
713
 *
714
 * LOCKING:
715
 * None.
716
 *
717
 * Check to see if @mode1 and @mode2 are equivalent.
718
 *
719
 * RETURNS:
720
 * True if the modes are equal, false otherwise.
721
 */
722
bool drm_mode_equal(struct drm_display_mode *mode1, struct drm_display_mode *mode2)
723
{
724
	/* do clock check convert to PICOS so fb modes get matched
725
	 * the same */
726
	if (mode1->clock && mode2->clock) {
727
		if (KHZ2PICOS(mode1->clock) != KHZ2PICOS(mode2->clock))
728
			return false;
729
	} else if (mode1->clock != mode2->clock)
730
		return false;
731
 
732
	if (mode1->hdisplay == mode2->hdisplay &&
733
	    mode1->hsync_start == mode2->hsync_start &&
734
	    mode1->hsync_end == mode2->hsync_end &&
735
	    mode1->htotal == mode2->htotal &&
736
	    mode1->hskew == mode2->hskew &&
737
	    mode1->vdisplay == mode2->vdisplay &&
738
	    mode1->vsync_start == mode2->vsync_start &&
739
	    mode1->vsync_end == mode2->vsync_end &&
740
	    mode1->vtotal == mode2->vtotal &&
741
	    mode1->vscan == mode2->vscan &&
742
	    mode1->flags == mode2->flags)
743
		return true;
744
 
745
	return false;
746
}
747
EXPORT_SYMBOL(drm_mode_equal);
748
 
749
/**
750
 * drm_mode_validate_size - make sure modes adhere to size constraints
751
 * @dev: DRM device
752
 * @mode_list: list of modes to check
753
 * @maxX: maximum width
754
 * @maxY: maximum height
755
 * @maxPitch: max pitch
756
 *
757
 * LOCKING:
758
 * Caller must hold a lock protecting @mode_list.
759
 *
760
 * The DRM device (@dev) has size and pitch limits.  Here we validate the
761
 * modes we probed for @dev against those limits and set their status as
762
 * necessary.
763
 */
764
void drm_mode_validate_size(struct drm_device *dev,
765
			    struct list_head *mode_list,
766
			    int maxX, int maxY, int maxPitch)
767
{
768
	struct drm_display_mode *mode;
769
 
770
	list_for_each_entry(mode, mode_list, head) {
771
		if (maxPitch > 0 && mode->hdisplay > maxPitch)
772
			mode->status = MODE_BAD_WIDTH;
773
 
774
		if (maxX > 0 && mode->hdisplay > maxX)
775
			mode->status = MODE_VIRTUAL_X;
776
 
777
		if (maxY > 0 && mode->vdisplay > maxY)
778
			mode->status = MODE_VIRTUAL_Y;
779
	}
780
}
781
EXPORT_SYMBOL(drm_mode_validate_size);
782
 
783
/**
784
 * drm_mode_validate_clocks - validate modes against clock limits
785
 * @dev: DRM device
786
 * @mode_list: list of modes to check
787
 * @min: minimum clock rate array
788
 * @max: maximum clock rate array
789
 * @n_ranges: number of clock ranges (size of arrays)
790
 *
791
 * LOCKING:
792
 * Caller must hold a lock protecting @mode_list.
793
 *
794
 * Some code may need to check a mode list against the clock limits of the
795
 * device in question.  This function walks the mode list, testing to make
796
 * sure each mode falls within a given range (defined by @min and @max
797
 * arrays) and sets @mode->status as needed.
798
 */
799
void drm_mode_validate_clocks(struct drm_device *dev,
800
			      struct list_head *mode_list,
801
			      int *min, int *max, int n_ranges)
802
{
803
	struct drm_display_mode *mode;
804
	int i;
805
 
806
	list_for_each_entry(mode, mode_list, head) {
807
		bool good = false;
808
		for (i = 0; i < n_ranges; i++) {
809
			if (mode->clock >= min[i] && mode->clock <= max[i]) {
810
				good = true;
811
				break;
812
			}
813
		}
814
		if (!good)
815
			mode->status = MODE_CLOCK_RANGE;
816
	}
817
}
818
EXPORT_SYMBOL(drm_mode_validate_clocks);
819
 
820
/**
821
 * drm_mode_prune_invalid - remove invalid modes from mode list
822
 * @dev: DRM device
823
 * @mode_list: list of modes to check
824
 * @verbose: be verbose about it
825
 *
826
 * LOCKING:
827
 * Caller must hold a lock protecting @mode_list.
828
 *
829
 * Once mode list generation is complete, a caller can use this routine to
830
 * remove invalid modes from a mode list.  If any of the modes have a
831
 * status other than %MODE_OK, they are removed from @mode_list and freed.
832
 */
833
void drm_mode_prune_invalid(struct drm_device *dev,
834
			    struct list_head *mode_list, bool verbose)
835
{
836
	struct drm_display_mode *mode, *t;
837
 
838
	list_for_each_entry_safe(mode, t, mode_list, head) {
839
		if (mode->status != MODE_OK) {
840
			list_del(&mode->head);
841
			if (verbose) {
842
				drm_mode_debug_printmodeline(mode);
1179 serge 843
				DRM_DEBUG_KMS("Not using %s mode %d\n",
1123 serge 844
					mode->name, mode->status);
845
			}
846
			drm_mode_destroy(dev, mode);
847
		}
848
	}
849
}
850
EXPORT_SYMBOL(drm_mode_prune_invalid);
851
 
852
/**
853
 * drm_mode_compare - compare modes for favorability
1404 serge 854
 * @priv: unused
1123 serge 855
 * @lh_a: list_head for first mode
856
 * @lh_b: list_head for second mode
857
 *
858
 * LOCKING:
859
 * None.
860
 *
861
 * Compare two modes, given by @lh_a and @lh_b, returning a value indicating
862
 * which is better.
863
 *
864
 * RETURNS:
865
 * Negative if @lh_a is better than @lh_b, zero if they're equivalent, or
866
 * positive if @lh_b is better than @lh_a.
867
 */
1404 serge 868
static int drm_mode_compare(void *priv, struct list_head *lh_a, struct list_head *lh_b)
1123 serge 869
{
870
	struct drm_display_mode *a = list_entry(lh_a, struct drm_display_mode, head);
871
	struct drm_display_mode *b = list_entry(lh_b, struct drm_display_mode, head);
872
	int diff;
873
 
874
	diff = ((b->type & DRM_MODE_TYPE_PREFERRED) != 0) -
875
		((a->type & DRM_MODE_TYPE_PREFERRED) != 0);
876
	if (diff)
877
		return diff;
878
	diff = b->hdisplay * b->vdisplay - a->hdisplay * a->vdisplay;
879
	if (diff)
880
		return diff;
881
	diff = b->clock - a->clock;
882
	return diff;
883
}
884
 
885
/**
886
 * drm_mode_sort - sort mode list
887
 * @mode_list: list to sort
888
 *
889
 * LOCKING:
890
 * Caller must hold a lock protecting @mode_list.
891
 *
892
 * Sort @mode_list by favorability, putting good modes first.
893
 */
894
void drm_mode_sort(struct list_head *mode_list)
895
{
1404 serge 896
	list_sort(NULL, mode_list, drm_mode_compare);
1123 serge 897
}
898
EXPORT_SYMBOL(drm_mode_sort);
899
 
900
/**
901
 * drm_mode_connector_list_update - update the mode list for the connector
902
 * @connector: the connector to update
903
 *
904
 * LOCKING:
905
 * Caller must hold a lock protecting @mode_list.
906
 *
907
 * This moves the modes from the @connector probed_modes list
908
 * to the actual mode list. It compares the probed mode against the current
909
 * list and only adds different modes. All modes unverified after this point
910
 * will be removed by the prune invalid modes.
911
 */
912
void drm_mode_connector_list_update(struct drm_connector *connector)
913
{
914
	struct drm_display_mode *mode;
915
	struct drm_display_mode *pmode, *pt;
916
	int found_it;
917
 
918
	list_for_each_entry_safe(pmode, pt, &connector->probed_modes,
919
				 head) {
920
		found_it = 0;
921
		/* go through current modes checking for the new probed mode */
922
		list_for_each_entry(mode, &connector->modes, head) {
923
			if (drm_mode_equal(pmode, mode)) {
924
				found_it = 1;
925
				/* if equal delete the probed mode */
926
				mode->status = pmode->status;
1179 serge 927
				/* Merge type bits together */
928
				mode->type |= pmode->type;
1123 serge 929
				list_del(&pmode->head);
930
				drm_mode_destroy(connector->dev, pmode);
931
				break;
932
			}
933
		}
934
 
935
		if (!found_it) {
936
			list_move_tail(&pmode->head, &connector->modes);
937
		}
938
	}
939
}
940
EXPORT_SYMBOL(drm_mode_connector_list_update);