Subversion Repositories Kolibri OS

Rev

Rev 1221 | Rev 1404 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1123 serge 1
/*
2
 * The list_sort function is (presumably) licensed under the GPL (see the
3
 * top level "COPYING" file for details).
4
 *
5
 * The remainder of this file is:
6
 *
7
 * Copyright © 1997-2003 by The XFree86 Project, Inc.
8
 * Copyright © 2007 Dave Airlie
9
 * Copyright © 2007-2008 Intel Corporation
10
 *   Jesse Barnes 
1179 serge 11
 * Copyright 2005-2006 Luc Verhaegen
12
 * Copyright (c) 2001, Andy Ritger  aritger@nvidia.com
1123 serge 13
 *
14
 * Permission is hereby granted, free of charge, to any person obtaining a
15
 * copy of this software and associated documentation files (the "Software"),
16
 * to deal in the Software without restriction, including without limitation
17
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
18
 * and/or sell copies of the Software, and to permit persons to whom the
19
 * Software is furnished to do so, subject to the following conditions:
20
 *
21
 * The above copyright notice and this permission notice shall be included in
22
 * all copies or substantial portions of the Software.
23
 *
24
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
25
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
27
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
28
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
29
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
30
 * OTHER DEALINGS IN THE SOFTWARE.
31
 *
32
 * Except as contained in this notice, the name of the copyright holder(s)
33
 * and author(s) shall not be used in advertising or otherwise to promote
34
 * the sale, use or other dealings in this Software without prior written
35
 * authorization from the copyright holder(s) and author(s).
36
 */
37
 
1179 serge 38
#include 
1123 serge 39
#include "drmP.h"
40
#include "drm.h"
41
#include "drm_crtc.h"
42
 
43
/**
44
 * drm_mode_debug_printmodeline - debug print a mode
45
 * @dev: DRM device
46
 * @mode: mode to print
47
 *
48
 * LOCKING:
49
 * None.
50
 *
51
 * Describe @mode using DRM_DEBUG.
52
 */
53
void drm_mode_debug_printmodeline(struct drm_display_mode *mode)
54
{
1179 serge 55
	DRM_DEBUG_KMS("Modeline %d:\"%s\" %d %d %d %d %d %d %d %d %d %d "
56
			"0x%x 0x%x\n",
1123 serge 57
		mode->base.id, mode->name, mode->vrefresh, mode->clock,
58
		mode->hdisplay, mode->hsync_start,
59
		mode->hsync_end, mode->htotal,
60
		mode->vdisplay, mode->vsync_start,
61
		mode->vsync_end, mode->vtotal, mode->type, mode->flags);
62
}
63
EXPORT_SYMBOL(drm_mode_debug_printmodeline);
64
 
65
/**
1179 serge 66
 * drm_cvt_mode -create a modeline based on CVT algorithm
67
 * @dev: DRM device
68
 * @hdisplay: hdisplay size
69
 * @vdisplay: vdisplay size
70
 * @vrefresh  : vrefresh rate
71
 * @reduced : Whether the GTF calculation is simplified
72
 * @interlaced:Whether the interlace is supported
73
 *
74
 * LOCKING:
75
 * none.
76
 *
77
 * return the modeline based on CVT algorithm
78
 *
79
 * This function is called to generate the modeline based on CVT algorithm
80
 * according to the hdisplay, vdisplay, vrefresh.
81
 * It is based from the VESA(TM) Coordinated Video Timing Generator by
82
 * Graham Loveridge April 9, 2003 available at
83
 * http://www.vesa.org/public/CVT/CVTd6r1.xls
84
 *
85
 * And it is copied from xf86CVTmode in xserver/hw/xfree86/modes/xf86cvt.c.
86
 * What I have done is to translate it by using integer calculation.
87
 */
88
#define HV_FACTOR			1000
89
struct drm_display_mode *drm_cvt_mode(struct drm_device *dev, int hdisplay,
90
				      int vdisplay, int vrefresh,
1221 serge 91
				      bool reduced, bool interlaced, bool margins)
1179 serge 92
{
93
	/* 1) top/bottom margin size (% of height) - default: 1.8, */
94
#define	CVT_MARGIN_PERCENTAGE		18
95
	/* 2) character cell horizontal granularity (pixels) - default 8 */
96
#define	CVT_H_GRANULARITY		8
97
	/* 3) Minimum vertical porch (lines) - default 3 */
98
#define	CVT_MIN_V_PORCH			3
99
	/* 4) Minimum number of vertical back porch lines - default 6 */
100
#define	CVT_MIN_V_BPORCH		6
101
	/* Pixel Clock step (kHz) */
102
#define CVT_CLOCK_STEP			250
103
	struct drm_display_mode *drm_mode;
104
	unsigned int vfieldrate, hperiod;
105
	int hdisplay_rnd, hmargin, vdisplay_rnd, vmargin, vsync;
106
	int interlace;
107
 
108
	/* allocate the drm_display_mode structure. If failure, we will
109
	 * return directly
110
	 */
111
	drm_mode = drm_mode_create(dev);
112
	if (!drm_mode)
113
		return NULL;
114
 
115
	/* the CVT default refresh rate is 60Hz */
116
	if (!vrefresh)
117
		vrefresh = 60;
118
 
119
	/* the required field fresh rate */
120
	if (interlaced)
121
		vfieldrate = vrefresh * 2;
122
	else
123
		vfieldrate = vrefresh;
124
 
125
	/* horizontal pixels */
126
	hdisplay_rnd = hdisplay - (hdisplay % CVT_H_GRANULARITY);
127
 
128
	/* determine the left&right borders */
129
	hmargin = 0;
130
	if (margins) {
131
		hmargin = hdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
132
		hmargin -= hmargin % CVT_H_GRANULARITY;
133
	}
134
	/* find the total active pixels */
135
	drm_mode->hdisplay = hdisplay_rnd + 2 * hmargin;
136
 
137
	/* find the number of lines per field */
138
	if (interlaced)
139
		vdisplay_rnd = vdisplay / 2;
140
	else
141
		vdisplay_rnd = vdisplay;
142
 
143
	/* find the top & bottom borders */
144
	vmargin = 0;
145
	if (margins)
146
		vmargin = vdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
147
 
148
	drm_mode->vdisplay = vdisplay + 2 * vmargin;
149
 
150
	/* Interlaced */
151
	if (interlaced)
152
		interlace = 1;
153
	else
154
		interlace = 0;
155
 
156
	/* Determine VSync Width from aspect ratio */
157
	if (!(vdisplay % 3) && ((vdisplay * 4 / 3) == hdisplay))
158
		vsync = 4;
159
	else if (!(vdisplay % 9) && ((vdisplay * 16 / 9) == hdisplay))
160
		vsync = 5;
161
	else if (!(vdisplay % 10) && ((vdisplay * 16 / 10) == hdisplay))
162
		vsync = 6;
163
	else if (!(vdisplay % 4) && ((vdisplay * 5 / 4) == hdisplay))
164
		vsync = 7;
165
	else if (!(vdisplay % 9) && ((vdisplay * 15 / 9) == hdisplay))
166
		vsync = 7;
167
	else /* custom */
168
		vsync = 10;
169
 
170
	if (!reduced) {
171
		/* simplify the GTF calculation */
172
		/* 4) Minimum time of vertical sync + back porch interval (µs)
173
		 * default 550.0
174
		 */
175
		int tmp1, tmp2;
176
#define CVT_MIN_VSYNC_BP	550
177
		/* 3) Nominal HSync width (% of line period) - default 8 */
178
#define CVT_HSYNC_PERCENTAGE	8
179
		unsigned int hblank_percentage;
180
		int vsyncandback_porch, vback_porch, hblank;
181
 
182
		/* estimated the horizontal period */
183
		tmp1 = HV_FACTOR * 1000000  -
184
				CVT_MIN_VSYNC_BP * HV_FACTOR * vfieldrate;
185
		tmp2 = (vdisplay_rnd + 2 * vmargin + CVT_MIN_V_PORCH) * 2 +
186
				interlace;
187
		hperiod = tmp1 * 2 / (tmp2 * vfieldrate);
188
 
189
		tmp1 = CVT_MIN_VSYNC_BP * HV_FACTOR / hperiod + 1;
190
		/* 9. Find number of lines in sync + backporch */
191
		if (tmp1 < (vsync + CVT_MIN_V_PORCH))
192
			vsyncandback_porch = vsync + CVT_MIN_V_PORCH;
193
		else
194
			vsyncandback_porch = tmp1;
195
		/* 10. Find number of lines in back porch */
196
		vback_porch = vsyncandback_porch - vsync;
197
		drm_mode->vtotal = vdisplay_rnd + 2 * vmargin +
198
				vsyncandback_porch + CVT_MIN_V_PORCH;
199
		/* 5) Definition of Horizontal blanking time limitation */
200
		/* Gradient (%/kHz) - default 600 */
201
#define CVT_M_FACTOR	600
202
		/* Offset (%) - default 40 */
203
#define CVT_C_FACTOR	40
204
		/* Blanking time scaling factor - default 128 */
205
#define CVT_K_FACTOR	128
206
		/* Scaling factor weighting - default 20 */
207
#define CVT_J_FACTOR	20
208
#define CVT_M_PRIME	(CVT_M_FACTOR * CVT_K_FACTOR / 256)
209
#define CVT_C_PRIME	((CVT_C_FACTOR - CVT_J_FACTOR) * CVT_K_FACTOR / 256 + \
210
			 CVT_J_FACTOR)
211
		/* 12. Find ideal blanking duty cycle from formula */
212
		hblank_percentage = CVT_C_PRIME * HV_FACTOR - CVT_M_PRIME *
213
					hperiod / 1000;
214
		/* 13. Blanking time */
215
		if (hblank_percentage < 20 * HV_FACTOR)
216
			hblank_percentage = 20 * HV_FACTOR;
217
		hblank = drm_mode->hdisplay * hblank_percentage /
218
			 (100 * HV_FACTOR - hblank_percentage);
219
		hblank -= hblank % (2 * CVT_H_GRANULARITY);
220
		/* 14. find the total pixes per line */
221
		drm_mode->htotal = drm_mode->hdisplay + hblank;
222
		drm_mode->hsync_end = drm_mode->hdisplay + hblank / 2;
223
		drm_mode->hsync_start = drm_mode->hsync_end -
224
			(drm_mode->htotal * CVT_HSYNC_PERCENTAGE) / 100;
225
		drm_mode->hsync_start += CVT_H_GRANULARITY -
226
			drm_mode->hsync_start % CVT_H_GRANULARITY;
227
		/* fill the Vsync values */
228
		drm_mode->vsync_start = drm_mode->vdisplay + CVT_MIN_V_PORCH;
229
		drm_mode->vsync_end = drm_mode->vsync_start + vsync;
230
	} else {
231
		/* Reduced blanking */
232
		/* Minimum vertical blanking interval time (µs)- default 460 */
233
#define CVT_RB_MIN_VBLANK	460
234
		/* Fixed number of clocks for horizontal sync */
235
#define CVT_RB_H_SYNC		32
236
		/* Fixed number of clocks for horizontal blanking */
237
#define CVT_RB_H_BLANK		160
238
		/* Fixed number of lines for vertical front porch - default 3*/
239
#define CVT_RB_VFPORCH		3
240
		int vbilines;
241
		int tmp1, tmp2;
242
		/* 8. Estimate Horizontal period. */
243
		tmp1 = HV_FACTOR * 1000000 -
244
			CVT_RB_MIN_VBLANK * HV_FACTOR * vfieldrate;
245
		tmp2 = vdisplay_rnd + 2 * vmargin;
246
		hperiod = tmp1 / (tmp2 * vfieldrate);
247
		/* 9. Find number of lines in vertical blanking */
248
		vbilines = CVT_RB_MIN_VBLANK * HV_FACTOR / hperiod + 1;
249
		/* 10. Check if vertical blanking is sufficient */
250
		if (vbilines < (CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH))
251
			vbilines = CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH;
252
		/* 11. Find total number of lines in vertical field */
253
		drm_mode->vtotal = vdisplay_rnd + 2 * vmargin + vbilines;
254
		/* 12. Find total number of pixels in a line */
255
		drm_mode->htotal = drm_mode->hdisplay + CVT_RB_H_BLANK;
256
		/* Fill in HSync values */
257
		drm_mode->hsync_end = drm_mode->hdisplay + CVT_RB_H_BLANK / 2;
258
		drm_mode->hsync_start = drm_mode->hsync_end = CVT_RB_H_SYNC;
259
	}
260
	/* 15/13. Find pixel clock frequency (kHz for xf86) */
261
	drm_mode->clock = drm_mode->htotal * HV_FACTOR * 1000 / hperiod;
262
	drm_mode->clock -= drm_mode->clock % CVT_CLOCK_STEP;
263
	/* 18/16. Find actual vertical frame frequency */
264
	/* ignore - just set the mode flag for interlaced */
265
	if (interlaced)
266
		drm_mode->vtotal *= 2;
267
	/* Fill the mode line name */
268
	drm_mode_set_name(drm_mode);
269
	if (reduced)
270
		drm_mode->flags |= (DRM_MODE_FLAG_PHSYNC |
271
					DRM_MODE_FLAG_NVSYNC);
272
	else
273
		drm_mode->flags |= (DRM_MODE_FLAG_PVSYNC |
274
					DRM_MODE_FLAG_NHSYNC);
275
	if (interlaced)
276
		drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
277
 
278
    return drm_mode;
279
}
280
EXPORT_SYMBOL(drm_cvt_mode);
281
 
282
/**
283
 * drm_gtf_mode - create the modeline based on GTF algorithm
284
 *
285
 * @dev		:drm device
286
 * @hdisplay	:hdisplay size
287
 * @vdisplay	:vdisplay size
288
 * @vrefresh	:vrefresh rate.
289
 * @interlaced	:whether the interlace is supported
290
 * @margins	:whether the margin is supported
291
 *
292
 * LOCKING.
293
 * none.
294
 *
295
 * return the modeline based on GTF algorithm
296
 *
297
 * This function is to create the modeline based on the GTF algorithm.
298
 * Generalized Timing Formula is derived from:
299
 *	GTF Spreadsheet by Andy Morrish (1/5/97)
300
 *	available at http://www.vesa.org
301
 *
302
 * And it is copied from the file of xserver/hw/xfree86/modes/xf86gtf.c.
303
 * What I have done is to translate it by using integer calculation.
304
 * I also refer to the function of fb_get_mode in the file of
305
 * drivers/video/fbmon.c
306
 */
307
struct drm_display_mode *drm_gtf_mode(struct drm_device *dev, int hdisplay,
308
				      int vdisplay, int vrefresh,
309
				      bool interlaced, int margins)
310
{
311
	/* 1) top/bottom margin size (% of height) - default: 1.8, */
312
#define	GTF_MARGIN_PERCENTAGE		18
313
	/* 2) character cell horizontal granularity (pixels) - default 8 */
314
#define	GTF_CELL_GRAN			8
315
	/* 3) Minimum vertical porch (lines) - default 3 */
316
#define	GTF_MIN_V_PORCH			1
317
	/* width of vsync in lines */
318
#define V_SYNC_RQD			3
319
	/* width of hsync as % of total line */
320
#define H_SYNC_PERCENT			8
321
	/* min time of vsync + back porch (microsec) */
322
#define MIN_VSYNC_PLUS_BP		550
323
	/* blanking formula gradient */
324
#define GTF_M				600
325
	/* blanking formula offset */
326
#define GTF_C				40
327
	/* blanking formula scaling factor */
328
#define GTF_K				128
329
	/* blanking formula scaling factor */
330
#define GTF_J				20
331
	/* C' and M' are part of the Blanking Duty Cycle computation */
332
#define GTF_C_PRIME		(((GTF_C - GTF_J) * GTF_K / 256) + GTF_J)
333
#define GTF_M_PRIME		(GTF_K * GTF_M / 256)
334
	struct drm_display_mode *drm_mode;
335
	unsigned int hdisplay_rnd, vdisplay_rnd, vfieldrate_rqd;
336
	int top_margin, bottom_margin;
337
	int interlace;
338
	unsigned int hfreq_est;
339
	int vsync_plus_bp, vback_porch;
340
	unsigned int vtotal_lines, vfieldrate_est, hperiod;
341
	unsigned int vfield_rate, vframe_rate;
342
	int left_margin, right_margin;
343
	unsigned int total_active_pixels, ideal_duty_cycle;
344
	unsigned int hblank, total_pixels, pixel_freq;
345
	int hsync, hfront_porch, vodd_front_porch_lines;
346
	unsigned int tmp1, tmp2;
347
 
348
	drm_mode = drm_mode_create(dev);
349
	if (!drm_mode)
350
		return NULL;
351
 
352
	/* 1. In order to give correct results, the number of horizontal
353
	 * pixels requested is first processed to ensure that it is divisible
354
	 * by the character size, by rounding it to the nearest character
355
	 * cell boundary:
356
	 */
357
	hdisplay_rnd = (hdisplay + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
358
	hdisplay_rnd = hdisplay_rnd * GTF_CELL_GRAN;
359
 
360
	/* 2. If interlace is requested, the number of vertical lines assumed
361
	 * by the calculation must be halved, as the computation calculates
362
	 * the number of vertical lines per field.
363
	 */
364
	if (interlaced)
365
		vdisplay_rnd = vdisplay / 2;
366
	else
367
		vdisplay_rnd = vdisplay;
368
 
369
	/* 3. Find the frame rate required: */
370
	if (interlaced)
371
		vfieldrate_rqd = vrefresh * 2;
372
	else
373
		vfieldrate_rqd = vrefresh;
374
 
375
	/* 4. Find number of lines in Top margin: */
376
	top_margin = 0;
377
	if (margins)
378
		top_margin = (vdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
379
				1000;
380
	/* 5. Find number of lines in bottom margin: */
381
	bottom_margin = top_margin;
382
 
383
	/* 6. If interlace is required, then set variable interlace: */
384
	if (interlaced)
385
		interlace = 1;
386
	else
387
		interlace = 0;
388
 
389
	/* 7. Estimate the Horizontal frequency */
390
	{
391
		tmp1 = (1000000  - MIN_VSYNC_PLUS_BP * vfieldrate_rqd) / 500;
392
		tmp2 = (vdisplay_rnd + 2 * top_margin + GTF_MIN_V_PORCH) *
393
				2 + interlace;
394
		hfreq_est = (tmp2 * 1000 * vfieldrate_rqd) / tmp1;
395
	}
396
 
397
	/* 8. Find the number of lines in V sync + back porch */
398
	/* [V SYNC+BP] = RINT(([MIN VSYNC+BP] * hfreq_est / 1000000)) */
399
	vsync_plus_bp = MIN_VSYNC_PLUS_BP * hfreq_est / 1000;
400
	vsync_plus_bp = (vsync_plus_bp + 500) / 1000;
401
	/*  9. Find the number of lines in V back porch alone: */
402
	vback_porch = vsync_plus_bp - V_SYNC_RQD;
403
	/*  10. Find the total number of lines in Vertical field period: */
404
	vtotal_lines = vdisplay_rnd + top_margin + bottom_margin +
405
			vsync_plus_bp + GTF_MIN_V_PORCH;
406
	/*  11. Estimate the Vertical field frequency: */
407
	vfieldrate_est = hfreq_est / vtotal_lines;
408
	/*  12. Find the actual horizontal period: */
409
	hperiod = 1000000 / (vfieldrate_rqd * vtotal_lines);
410
 
411
	/*  13. Find the actual Vertical field frequency: */
412
	vfield_rate = hfreq_est / vtotal_lines;
413
	/*  14. Find the Vertical frame frequency: */
414
	if (interlaced)
415
		vframe_rate = vfield_rate / 2;
416
	else
417
		vframe_rate = vfield_rate;
418
	/*  15. Find number of pixels in left margin: */
419
	if (margins)
420
		left_margin = (hdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
421
				1000;
422
	else
423
		left_margin = 0;
424
 
425
	/* 16.Find number of pixels in right margin: */
426
	right_margin = left_margin;
427
	/* 17.Find total number of active pixels in image and left and right */
428
	total_active_pixels = hdisplay_rnd + left_margin + right_margin;
429
	/* 18.Find the ideal blanking duty cycle from blanking duty cycle */
430
	ideal_duty_cycle = GTF_C_PRIME * 1000 -
431
				(GTF_M_PRIME * 1000000 / hfreq_est);
432
	/* 19.Find the number of pixels in the blanking time to the nearest
433
	 * double character cell: */
434
	hblank = total_active_pixels * ideal_duty_cycle /
435
			(100000 - ideal_duty_cycle);
436
	hblank = (hblank + GTF_CELL_GRAN) / (2 * GTF_CELL_GRAN);
437
	hblank = hblank * 2 * GTF_CELL_GRAN;
438
	/* 20.Find total number of pixels: */
439
	total_pixels = total_active_pixels + hblank;
440
	/* 21.Find pixel clock frequency: */
441
	pixel_freq = total_pixels * hfreq_est / 1000;
442
	/* Stage 1 computations are now complete; I should really pass
443
	 * the results to another function and do the Stage 2 computations,
444
	 * but I only need a few more values so I'll just append the
445
	 * computations here for now */
446
	/* 17. Find the number of pixels in the horizontal sync period: */
447
	hsync = H_SYNC_PERCENT * total_pixels / 100;
448
	hsync = (hsync + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
449
	hsync = hsync * GTF_CELL_GRAN;
450
	/* 18. Find the number of pixels in horizontal front porch period */
451
	hfront_porch = hblank / 2 - hsync;
452
	/*  36. Find the number of lines in the odd front porch period: */
453
	vodd_front_porch_lines = GTF_MIN_V_PORCH ;
454
 
455
	/* finally, pack the results in the mode struct */
456
	drm_mode->hdisplay = hdisplay_rnd;
457
	drm_mode->hsync_start = hdisplay_rnd + hfront_porch;
458
	drm_mode->hsync_end = drm_mode->hsync_start + hsync;
459
	drm_mode->htotal = total_pixels;
460
	drm_mode->vdisplay = vdisplay_rnd;
461
	drm_mode->vsync_start = vdisplay_rnd + vodd_front_porch_lines;
462
	drm_mode->vsync_end = drm_mode->vsync_start + V_SYNC_RQD;
463
	drm_mode->vtotal = vtotal_lines;
464
 
465
	drm_mode->clock = pixel_freq;
466
 
467
	drm_mode_set_name(drm_mode);
468
	drm_mode->flags = DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC;
469
 
470
	if (interlaced) {
471
		drm_mode->vtotal *= 2;
472
		drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
473
	}
474
 
475
	return drm_mode;
476
}
477
EXPORT_SYMBOL(drm_gtf_mode);
478
/**
1123 serge 479
 * drm_mode_set_name - set the name on a mode
480
 * @mode: name will be set in this mode
481
 *
482
 * LOCKING:
483
 * None.
484
 *
485
 * Set the name of @mode to a standard format.
486
 */
487
void drm_mode_set_name(struct drm_display_mode *mode)
488
{
489
	snprintf(mode->name, DRM_DISPLAY_MODE_LEN, "%dx%d", mode->hdisplay,
490
		 mode->vdisplay);
491
}
492
EXPORT_SYMBOL(drm_mode_set_name);
493
 
494
/**
495
 * drm_mode_list_concat - move modes from one list to another
496
 * @head: source list
497
 * @new: dst list
498
 *
499
 * LOCKING:
500
 * Caller must ensure both lists are locked.
501
 *
502
 * Move all the modes from @head to @new.
503
 */
504
void drm_mode_list_concat(struct list_head *head, struct list_head *new)
505
{
506
 
507
	struct list_head *entry, *tmp;
508
 
509
	list_for_each_safe(entry, tmp, head) {
510
		list_move_tail(entry, new);
511
	}
512
}
513
EXPORT_SYMBOL(drm_mode_list_concat);
514
 
515
/**
516
 * drm_mode_width - get the width of a mode
517
 * @mode: mode
518
 *
519
 * LOCKING:
520
 * None.
521
 *
522
 * Return @mode's width (hdisplay) value.
523
 *
524
 * FIXME: is this needed?
525
 *
526
 * RETURNS:
527
 * @mode->hdisplay
528
 */
529
int drm_mode_width(struct drm_display_mode *mode)
530
{
531
	return mode->hdisplay;
532
 
533
}
534
EXPORT_SYMBOL(drm_mode_width);
535
 
536
/**
537
 * drm_mode_height - get the height of a mode
538
 * @mode: mode
539
 *
540
 * LOCKING:
541
 * None.
542
 *
543
 * Return @mode's height (vdisplay) value.
544
 *
545
 * FIXME: is this needed?
546
 *
547
 * RETURNS:
548
 * @mode->vdisplay
549
 */
550
int drm_mode_height(struct drm_display_mode *mode)
551
{
552
	return mode->vdisplay;
553
}
554
EXPORT_SYMBOL(drm_mode_height);
555
 
1321 serge 556
/** drm_mode_hsync - get the hsync of a mode
557
 * @mode: mode
558
 *
559
 * LOCKING:
560
 * None.
561
 *
562
 * Return @modes's hsync rate in kHz, rounded to the nearest int.
563
 */
564
int drm_mode_hsync(struct drm_display_mode *mode)
565
{
566
	unsigned int calc_val;
567
 
568
	if (mode->hsync)
569
		return mode->hsync;
570
 
571
	if (mode->htotal < 0)
572
		return 0;
573
 
574
	calc_val = (mode->clock * 1000) / mode->htotal; /* hsync in Hz */
575
	calc_val += 500;				/* round to 1000Hz */
576
	calc_val /= 1000;				/* truncate to kHz */
577
 
578
	return calc_val;
579
}
580
EXPORT_SYMBOL(drm_mode_hsync);
581
 
1123 serge 582
/**
583
 * drm_mode_vrefresh - get the vrefresh of a mode
584
 * @mode: mode
585
 *
586
 * LOCKING:
587
 * None.
588
 *
1321 serge 589
 * Return @mode's vrefresh rate in Hz or calculate it if necessary.
1123 serge 590
 *
591
 * FIXME: why is this needed?  shouldn't vrefresh be set already?
592
 *
593
 * RETURNS:
1179 serge 594
 * Vertical refresh rate. It will be the result of actual value plus 0.5.
595
 * If it is 70.288, it will return 70Hz.
596
 * If it is 59.6, it will return 60Hz.
1123 serge 597
 */
598
int drm_mode_vrefresh(struct drm_display_mode *mode)
599
{
600
	int refresh = 0;
601
	unsigned int calc_val;
602
 
603
	if (mode->vrefresh > 0)
604
		refresh = mode->vrefresh;
605
	else if (mode->htotal > 0 && mode->vtotal > 0) {
1179 serge 606
		int vtotal;
607
		vtotal = mode->vtotal;
1123 serge 608
		/* work out vrefresh the value will be x1000 */
609
		calc_val = (mode->clock * 1000);
610
		calc_val /= mode->htotal;
1179 serge 611
		refresh = (calc_val + vtotal / 2) / vtotal;
1123 serge 612
 
613
		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
614
			refresh *= 2;
615
		if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
616
			refresh /= 2;
617
		if (mode->vscan > 1)
618
			refresh /= mode->vscan;
619
	}
620
	return refresh;
621
}
622
EXPORT_SYMBOL(drm_mode_vrefresh);
623
 
624
/**
625
 * drm_mode_set_crtcinfo - set CRTC modesetting parameters
626
 * @p: mode
627
 * @adjust_flags: unused? (FIXME)
628
 *
629
 * LOCKING:
630
 * None.
631
 *
632
 * Setup the CRTC modesetting parameters for @p, adjusting if necessary.
633
 */
634
void drm_mode_set_crtcinfo(struct drm_display_mode *p, int adjust_flags)
635
{
636
	if ((p == NULL) || ((p->type & DRM_MODE_TYPE_CRTC_C) == DRM_MODE_TYPE_BUILTIN))
637
		return;
638
 
639
	p->crtc_hdisplay = p->hdisplay;
640
	p->crtc_hsync_start = p->hsync_start;
641
	p->crtc_hsync_end = p->hsync_end;
642
	p->crtc_htotal = p->htotal;
643
	p->crtc_hskew = p->hskew;
644
	p->crtc_vdisplay = p->vdisplay;
645
	p->crtc_vsync_start = p->vsync_start;
646
	p->crtc_vsync_end = p->vsync_end;
647
	p->crtc_vtotal = p->vtotal;
648
 
649
	if (p->flags & DRM_MODE_FLAG_INTERLACE) {
650
		if (adjust_flags & CRTC_INTERLACE_HALVE_V) {
651
			p->crtc_vdisplay /= 2;
652
			p->crtc_vsync_start /= 2;
653
			p->crtc_vsync_end /= 2;
654
			p->crtc_vtotal /= 2;
655
		}
656
 
657
		p->crtc_vtotal |= 1;
658
	}
659
 
660
	if (p->flags & DRM_MODE_FLAG_DBLSCAN) {
661
		p->crtc_vdisplay *= 2;
662
		p->crtc_vsync_start *= 2;
663
		p->crtc_vsync_end *= 2;
664
		p->crtc_vtotal *= 2;
665
	}
666
 
667
	if (p->vscan > 1) {
668
		p->crtc_vdisplay *= p->vscan;
669
		p->crtc_vsync_start *= p->vscan;
670
		p->crtc_vsync_end *= p->vscan;
671
		p->crtc_vtotal *= p->vscan;
672
	}
673
 
674
	p->crtc_vblank_start = min(p->crtc_vsync_start, p->crtc_vdisplay);
675
	p->crtc_vblank_end = max(p->crtc_vsync_end, p->crtc_vtotal);
676
	p->crtc_hblank_start = min(p->crtc_hsync_start, p->crtc_hdisplay);
677
	p->crtc_hblank_end = max(p->crtc_hsync_end, p->crtc_htotal);
678
 
679
	p->crtc_hadjusted = false;
680
	p->crtc_vadjusted = false;
681
}
682
EXPORT_SYMBOL(drm_mode_set_crtcinfo);
683
 
684
 
685
/**
686
 * drm_mode_duplicate - allocate and duplicate an existing mode
687
 * @m: mode to duplicate
688
 *
689
 * LOCKING:
690
 * None.
691
 *
692
 * Just allocate a new mode, copy the existing mode into it, and return
693
 * a pointer to it.  Used to create new instances of established modes.
694
 */
695
struct drm_display_mode *drm_mode_duplicate(struct drm_device *dev,
696
					    struct drm_display_mode *mode)
697
{
698
	struct drm_display_mode *nmode;
699
	int new_id;
700
 
701
	nmode = drm_mode_create(dev);
702
	if (!nmode)
703
		return NULL;
704
 
705
	new_id = nmode->base.id;
706
	*nmode = *mode;
707
	nmode->base.id = new_id;
708
	INIT_LIST_HEAD(&nmode->head);
709
	return nmode;
710
}
711
EXPORT_SYMBOL(drm_mode_duplicate);
712
 
713
/**
714
 * drm_mode_equal - test modes for equality
715
 * @mode1: first mode
716
 * @mode2: second mode
717
 *
718
 * LOCKING:
719
 * None.
720
 *
721
 * Check to see if @mode1 and @mode2 are equivalent.
722
 *
723
 * RETURNS:
724
 * True if the modes are equal, false otherwise.
725
 */
726
bool drm_mode_equal(struct drm_display_mode *mode1, struct drm_display_mode *mode2)
727
{
728
	/* do clock check convert to PICOS so fb modes get matched
729
	 * the same */
730
	if (mode1->clock && mode2->clock) {
731
		if (KHZ2PICOS(mode1->clock) != KHZ2PICOS(mode2->clock))
732
			return false;
733
	} else if (mode1->clock != mode2->clock)
734
		return false;
735
 
736
	if (mode1->hdisplay == mode2->hdisplay &&
737
	    mode1->hsync_start == mode2->hsync_start &&
738
	    mode1->hsync_end == mode2->hsync_end &&
739
	    mode1->htotal == mode2->htotal &&
740
	    mode1->hskew == mode2->hskew &&
741
	    mode1->vdisplay == mode2->vdisplay &&
742
	    mode1->vsync_start == mode2->vsync_start &&
743
	    mode1->vsync_end == mode2->vsync_end &&
744
	    mode1->vtotal == mode2->vtotal &&
745
	    mode1->vscan == mode2->vscan &&
746
	    mode1->flags == mode2->flags)
747
		return true;
748
 
749
	return false;
750
}
751
EXPORT_SYMBOL(drm_mode_equal);
752
 
753
/**
754
 * drm_mode_validate_size - make sure modes adhere to size constraints
755
 * @dev: DRM device
756
 * @mode_list: list of modes to check
757
 * @maxX: maximum width
758
 * @maxY: maximum height
759
 * @maxPitch: max pitch
760
 *
761
 * LOCKING:
762
 * Caller must hold a lock protecting @mode_list.
763
 *
764
 * The DRM device (@dev) has size and pitch limits.  Here we validate the
765
 * modes we probed for @dev against those limits and set their status as
766
 * necessary.
767
 */
768
void drm_mode_validate_size(struct drm_device *dev,
769
			    struct list_head *mode_list,
770
			    int maxX, int maxY, int maxPitch)
771
{
772
	struct drm_display_mode *mode;
773
 
774
	list_for_each_entry(mode, mode_list, head) {
775
		if (maxPitch > 0 && mode->hdisplay > maxPitch)
776
			mode->status = MODE_BAD_WIDTH;
777
 
778
		if (maxX > 0 && mode->hdisplay > maxX)
779
			mode->status = MODE_VIRTUAL_X;
780
 
781
		if (maxY > 0 && mode->vdisplay > maxY)
782
			mode->status = MODE_VIRTUAL_Y;
783
	}
784
}
785
EXPORT_SYMBOL(drm_mode_validate_size);
786
 
787
/**
788
 * drm_mode_validate_clocks - validate modes against clock limits
789
 * @dev: DRM device
790
 * @mode_list: list of modes to check
791
 * @min: minimum clock rate array
792
 * @max: maximum clock rate array
793
 * @n_ranges: number of clock ranges (size of arrays)
794
 *
795
 * LOCKING:
796
 * Caller must hold a lock protecting @mode_list.
797
 *
798
 * Some code may need to check a mode list against the clock limits of the
799
 * device in question.  This function walks the mode list, testing to make
800
 * sure each mode falls within a given range (defined by @min and @max
801
 * arrays) and sets @mode->status as needed.
802
 */
803
void drm_mode_validate_clocks(struct drm_device *dev,
804
			      struct list_head *mode_list,
805
			      int *min, int *max, int n_ranges)
806
{
807
	struct drm_display_mode *mode;
808
	int i;
809
 
810
	list_for_each_entry(mode, mode_list, head) {
811
		bool good = false;
812
		for (i = 0; i < n_ranges; i++) {
813
			if (mode->clock >= min[i] && mode->clock <= max[i]) {
814
				good = true;
815
				break;
816
			}
817
		}
818
		if (!good)
819
			mode->status = MODE_CLOCK_RANGE;
820
	}
821
}
822
EXPORT_SYMBOL(drm_mode_validate_clocks);
823
 
824
/**
825
 * drm_mode_prune_invalid - remove invalid modes from mode list
826
 * @dev: DRM device
827
 * @mode_list: list of modes to check
828
 * @verbose: be verbose about it
829
 *
830
 * LOCKING:
831
 * Caller must hold a lock protecting @mode_list.
832
 *
833
 * Once mode list generation is complete, a caller can use this routine to
834
 * remove invalid modes from a mode list.  If any of the modes have a
835
 * status other than %MODE_OK, they are removed from @mode_list and freed.
836
 */
837
void drm_mode_prune_invalid(struct drm_device *dev,
838
			    struct list_head *mode_list, bool verbose)
839
{
840
	struct drm_display_mode *mode, *t;
841
 
842
	list_for_each_entry_safe(mode, t, mode_list, head) {
843
		if (mode->status != MODE_OK) {
844
			list_del(&mode->head);
845
			if (verbose) {
846
				drm_mode_debug_printmodeline(mode);
1179 serge 847
				DRM_DEBUG_KMS("Not using %s mode %d\n",
1123 serge 848
					mode->name, mode->status);
849
			}
850
			drm_mode_destroy(dev, mode);
851
		}
852
	}
853
}
854
EXPORT_SYMBOL(drm_mode_prune_invalid);
855
 
856
/**
857
 * drm_mode_compare - compare modes for favorability
858
 * @lh_a: list_head for first mode
859
 * @lh_b: list_head for second mode
860
 *
861
 * LOCKING:
862
 * None.
863
 *
864
 * Compare two modes, given by @lh_a and @lh_b, returning a value indicating
865
 * which is better.
866
 *
867
 * RETURNS:
868
 * Negative if @lh_a is better than @lh_b, zero if they're equivalent, or
869
 * positive if @lh_b is better than @lh_a.
870
 */
871
static int drm_mode_compare(struct list_head *lh_a, struct list_head *lh_b)
872
{
873
	struct drm_display_mode *a = list_entry(lh_a, struct drm_display_mode, head);
874
	struct drm_display_mode *b = list_entry(lh_b, struct drm_display_mode, head);
875
	int diff;
876
 
877
	diff = ((b->type & DRM_MODE_TYPE_PREFERRED) != 0) -
878
		((a->type & DRM_MODE_TYPE_PREFERRED) != 0);
879
	if (diff)
880
		return diff;
881
	diff = b->hdisplay * b->vdisplay - a->hdisplay * a->vdisplay;
882
	if (diff)
883
		return diff;
884
	diff = b->clock - a->clock;
885
	return diff;
886
}
887
 
888
/* FIXME: what we don't have a list sort function? */
889
/* list sort from Mark J Roberts (mjr@znex.org) */
890
void list_sort(struct list_head *head,
891
	       int (*cmp)(struct list_head *a, struct list_head *b))
892
{
893
	struct list_head *p, *q, *e, *list, *tail, *oldhead;
894
	int insize, nmerges, psize, qsize, i;
895
 
896
	list = head->next;
897
	list_del(head);
898
	insize = 1;
899
	for (;;) {
900
		p = oldhead = list;
901
		list = tail = NULL;
902
		nmerges = 0;
903
 
904
		while (p) {
905
			nmerges++;
906
			q = p;
907
			psize = 0;
908
			for (i = 0; i < insize; i++) {
909
				psize++;
910
				q = q->next == oldhead ? NULL : q->next;
911
				if (!q)
912
					break;
913
			}
914
 
915
			qsize = insize;
916
			while (psize > 0 || (qsize > 0 && q)) {
917
				if (!psize) {
918
					e = q;
919
					q = q->next;
920
					qsize--;
921
					if (q == oldhead)
922
						q = NULL;
923
				} else if (!qsize || !q) {
924
					e = p;
925
					p = p->next;
926
					psize--;
927
					if (p == oldhead)
928
						p = NULL;
929
				} else if (cmp(p, q) <= 0) {
930
					e = p;
931
					p = p->next;
932
					psize--;
933
					if (p == oldhead)
934
						p = NULL;
935
				} else {
936
					e = q;
937
					q = q->next;
938
					qsize--;
939
					if (q == oldhead)
940
						q = NULL;
941
				}
942
				if (tail)
943
					tail->next = e;
944
				else
945
					list = e;
946
				e->prev = tail;
947
				tail = e;
948
			}
949
			p = q;
950
		}
951
 
952
		tail->next = list;
953
		list->prev = tail;
954
 
955
		if (nmerges <= 1)
956
			break;
957
 
958
		insize *= 2;
959
	}
960
 
961
	head->next = list;
962
	head->prev = list->prev;
963
	list->prev->next = head;
964
	list->prev = head;
965
}
966
 
967
/**
968
 * drm_mode_sort - sort mode list
969
 * @mode_list: list to sort
970
 *
971
 * LOCKING:
972
 * Caller must hold a lock protecting @mode_list.
973
 *
974
 * Sort @mode_list by favorability, putting good modes first.
975
 */
976
void drm_mode_sort(struct list_head *mode_list)
977
{
978
	list_sort(mode_list, drm_mode_compare);
979
}
980
EXPORT_SYMBOL(drm_mode_sort);
981
 
982
/**
983
 * drm_mode_connector_list_update - update the mode list for the connector
984
 * @connector: the connector to update
985
 *
986
 * LOCKING:
987
 * Caller must hold a lock protecting @mode_list.
988
 *
989
 * This moves the modes from the @connector probed_modes list
990
 * to the actual mode list. It compares the probed mode against the current
991
 * list and only adds different modes. All modes unverified after this point
992
 * will be removed by the prune invalid modes.
993
 */
994
void drm_mode_connector_list_update(struct drm_connector *connector)
995
{
996
	struct drm_display_mode *mode;
997
	struct drm_display_mode *pmode, *pt;
998
	int found_it;
999
 
1000
	list_for_each_entry_safe(pmode, pt, &connector->probed_modes,
1001
				 head) {
1002
		found_it = 0;
1003
		/* go through current modes checking for the new probed mode */
1004
		list_for_each_entry(mode, &connector->modes, head) {
1005
			if (drm_mode_equal(pmode, mode)) {
1006
				found_it = 1;
1007
				/* if equal delete the probed mode */
1008
				mode->status = pmode->status;
1179 serge 1009
				/* Merge type bits together */
1010
				mode->type |= pmode->type;
1123 serge 1011
				list_del(&pmode->head);
1012
				drm_mode_destroy(connector->dev, pmode);
1013
				break;
1014
			}
1015
		}
1016
 
1017
		if (!found_it) {
1018
			list_move_tail(&pmode->head, &connector->modes);
1019
		}
1020
	}
1021
}
1022
EXPORT_SYMBOL(drm_mode_connector_list_update);