Subversion Repositories Kolibri OS

Rev

Rev 3192 | Rev 3746 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1123 serge 1
/*
2
 * Copyright (c) 2006 Luc Verhaegen (quirks list)
3
 * Copyright (c) 2007-2008 Intel Corporation
4
 *   Jesse Barnes 
1963 serge 5
 * Copyright 2010 Red Hat, Inc.
1123 serge 6
 *
7
 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8
 * FB layer.
9
 *   Copyright (C) 2006 Dennis Munsie 
10
 *
11
 * Permission is hereby granted, free of charge, to any person obtaining a
12
 * copy of this software and associated documentation files (the "Software"),
13
 * to deal in the Software without restriction, including without limitation
14
 * the rights to use, copy, modify, merge, publish, distribute, sub license,
15
 * and/or sell copies of the Software, and to permit persons to whom the
16
 * Software is furnished to do so, subject to the following conditions:
17
 *
18
 * The above copyright notice and this permission notice (including the
19
 * next paragraph) shall be included in all copies or substantial portions
20
 * of the Software.
21
 *
22
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24
 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28
 * DEALINGS IN THE SOFTWARE.
29
 */
1221 serge 30
#include 
1963 serge 31
#include 
3480 Serge 32
#include 
1125 serge 33
#include 
3031 serge 34
#include 
35
#include 
36
#include 
1123 serge 37
 
1963 serge 38
#define version_greater(edid, maj, min) \
39
	(((edid)->version > (maj)) || \
40
	 ((edid)->version == (maj) && (edid)->revision > (min)))
1123 serge 41
 
1963 serge 42
#define EDID_EST_TIMINGS 16
43
#define EDID_STD_TIMINGS 8
44
#define EDID_DETAILED_TIMINGS 4
45
 
1123 serge 46
/*
47
 * EDID blocks out in the wild have a variety of bugs, try to collect
48
 * them here (note that userspace may work around broken monitors first,
49
 * but fixes should make their way here so that the kernel "just works"
50
 * on as many displays as possible).
51
 */
52
 
53
/* First detailed mode wrong, use largest 60Hz mode */
54
#define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
55
/* Reported 135MHz pixel clock is too high, needs adjustment */
56
#define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
57
/* Prefer the largest mode at 75 Hz */
58
#define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
59
/* Detail timing is in cm not mm */
60
#define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
61
/* Detailed timing descriptors have bogus size values, so just take the
62
 * maximum size and use that.
63
 */
64
#define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
65
/* Monitor forgot to set the first detailed is preferred bit. */
66
#define EDID_QUIRK_FIRST_DETAILED_PREFERRED	(1 << 5)
67
/* use +hsync +vsync for detailed mode */
68
#define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
3031 serge 69
/* Force reduced-blanking timings for detailed modes */
70
#define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
1123 serge 71
 
1963 serge 72
struct detailed_mode_closure {
73
	struct drm_connector *connector;
74
	struct edid *edid;
75
	bool preferred;
76
	u32 quirks;
77
	int modes;
78
};
1430 serge 79
 
1179 serge 80
#define LEVEL_DMT	0
81
#define LEVEL_GTF	1
1963 serge 82
#define LEVEL_GTF2	2
83
#define LEVEL_CVT	3
1179 serge 84
 
1123 serge 85
static struct edid_quirk {
3031 serge 86
	char vendor[4];
1123 serge 87
	int product_id;
88
	u32 quirks;
89
} edid_quirk_list[] = {
90
	/* Acer AL1706 */
91
	{ "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
92
	/* Acer F51 */
93
	{ "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
94
	/* Unknown Acer */
95
	{ "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
96
 
97
	/* Belinea 10 15 55 */
98
	{ "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
99
	{ "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
100
 
101
	/* Envision Peripherals, Inc. EN-7100e */
102
	{ "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
1963 serge 103
	/* Envision EN2028 */
104
	{ "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
1123 serge 105
 
106
	/* Funai Electronics PM36B */
107
	{ "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
108
	  EDID_QUIRK_DETAILED_IN_CM },
109
 
110
	/* LG Philips LCD LP154W01-A5 */
111
	{ "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
112
	{ "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
113
 
114
	/* Philips 107p5 CRT */
115
	{ "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
116
 
117
	/* Proview AY765C */
118
	{ "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
119
 
120
	/* Samsung SyncMaster 205BW.  Note: irony */
121
	{ "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
122
	/* Samsung SyncMaster 22[5-6]BW */
123
	{ "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
124
	{ "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
3031 serge 125
 
126
	/* ViewSonic VA2026w */
127
	{ "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
1123 serge 128
};
129
 
3480 Serge 130
/*
131
 * Autogenerated from the DMT spec.
132
 * This table is copied from xfree86/modes/xf86EdidModes.c.
133
 */
134
static const struct drm_display_mode drm_dmt_modes[] = {
135
	/* 640x350@85Hz */
136
	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
137
		   736, 832, 0, 350, 382, 385, 445, 0,
138
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
139
	/* 640x400@85Hz */
140
	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
141
		   736, 832, 0, 400, 401, 404, 445, 0,
142
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
143
	/* 720x400@85Hz */
144
	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
145
		   828, 936, 0, 400, 401, 404, 446, 0,
146
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
147
	/* 640x480@60Hz */
148
	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
149
		   752, 800, 0, 480, 489, 492, 525, 0,
150
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
151
	/* 640x480@72Hz */
152
	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
153
		   704, 832, 0, 480, 489, 492, 520, 0,
154
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
155
	/* 640x480@75Hz */
156
	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
157
		   720, 840, 0, 480, 481, 484, 500, 0,
158
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
159
	/* 640x480@85Hz */
160
	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
161
		   752, 832, 0, 480, 481, 484, 509, 0,
162
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
163
	/* 800x600@56Hz */
164
	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
165
		   896, 1024, 0, 600, 601, 603, 625, 0,
166
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
167
	/* 800x600@60Hz */
168
	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
169
		   968, 1056, 0, 600, 601, 605, 628, 0,
170
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
171
	/* 800x600@72Hz */
172
	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
173
		   976, 1040, 0, 600, 637, 643, 666, 0,
174
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
175
	/* 800x600@75Hz */
176
	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
177
		   896, 1056, 0, 600, 601, 604, 625, 0,
178
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
179
	/* 800x600@85Hz */
180
	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
181
		   896, 1048, 0, 600, 601, 604, 631, 0,
182
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
183
	/* 800x600@120Hz RB */
184
	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
185
		   880, 960, 0, 600, 603, 607, 636, 0,
186
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
187
	/* 848x480@60Hz */
188
	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
189
		   976, 1088, 0, 480, 486, 494, 517, 0,
190
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
191
	/* 1024x768@43Hz, interlace */
192
	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
193
		   1208, 1264, 0, 768, 768, 772, 817, 0,
194
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
195
			DRM_MODE_FLAG_INTERLACE) },
196
	/* 1024x768@60Hz */
197
	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
198
		   1184, 1344, 0, 768, 771, 777, 806, 0,
199
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
200
	/* 1024x768@70Hz */
201
	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
202
		   1184, 1328, 0, 768, 771, 777, 806, 0,
203
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
204
	/* 1024x768@75Hz */
205
	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
206
		   1136, 1312, 0, 768, 769, 772, 800, 0,
207
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
208
	/* 1024x768@85Hz */
209
	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
210
		   1168, 1376, 0, 768, 769, 772, 808, 0,
211
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
212
	/* 1024x768@120Hz RB */
213
	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
214
		   1104, 1184, 0, 768, 771, 775, 813, 0,
215
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
216
	/* 1152x864@75Hz */
217
	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
218
		   1344, 1600, 0, 864, 865, 868, 900, 0,
219
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
220
	/* 1280x768@60Hz RB */
221
	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
222
		   1360, 1440, 0, 768, 771, 778, 790, 0,
223
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
224
	/* 1280x768@60Hz */
225
	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
226
		   1472, 1664, 0, 768, 771, 778, 798, 0,
227
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
228
	/* 1280x768@75Hz */
229
	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
230
		   1488, 1696, 0, 768, 771, 778, 805, 0,
231
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
232
	/* 1280x768@85Hz */
233
	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
234
		   1496, 1712, 0, 768, 771, 778, 809, 0,
235
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
236
	/* 1280x768@120Hz RB */
237
	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
238
		   1360, 1440, 0, 768, 771, 778, 813, 0,
239
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
240
	/* 1280x800@60Hz RB */
241
	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
242
		   1360, 1440, 0, 800, 803, 809, 823, 0,
243
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
244
	/* 1280x800@60Hz */
245
	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
246
		   1480, 1680, 0, 800, 803, 809, 831, 0,
247
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
248
	/* 1280x800@75Hz */
249
	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
250
		   1488, 1696, 0, 800, 803, 809, 838, 0,
251
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
252
	/* 1280x800@85Hz */
253
	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
254
		   1496, 1712, 0, 800, 803, 809, 843, 0,
255
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
256
	/* 1280x800@120Hz RB */
257
	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
258
		   1360, 1440, 0, 800, 803, 809, 847, 0,
259
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
260
	/* 1280x960@60Hz */
261
	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
262
		   1488, 1800, 0, 960, 961, 964, 1000, 0,
263
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
264
	/* 1280x960@85Hz */
265
	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
266
		   1504, 1728, 0, 960, 961, 964, 1011, 0,
267
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
268
	/* 1280x960@120Hz RB */
269
	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
270
		   1360, 1440, 0, 960, 963, 967, 1017, 0,
271
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
272
	/* 1280x1024@60Hz */
273
	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
274
		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
275
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
276
	/* 1280x1024@75Hz */
277
	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
278
		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
279
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
280
	/* 1280x1024@85Hz */
281
	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
282
		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
283
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
284
	/* 1280x1024@120Hz RB */
285
	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
286
		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
287
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
288
	/* 1360x768@60Hz */
289
	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
290
		   1536, 1792, 0, 768, 771, 777, 795, 0,
291
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
292
	/* 1360x768@120Hz RB */
293
	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
294
		   1440, 1520, 0, 768, 771, 776, 813, 0,
295
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
296
	/* 1400x1050@60Hz RB */
297
	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
298
		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
299
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
300
	/* 1400x1050@60Hz */
301
	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
302
		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
303
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
304
	/* 1400x1050@75Hz */
305
	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
306
		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
307
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
308
	/* 1400x1050@85Hz */
309
	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
310
		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
311
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
312
	/* 1400x1050@120Hz RB */
313
	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
314
		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
315
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
316
	/* 1440x900@60Hz RB */
317
	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
318
		   1520, 1600, 0, 900, 903, 909, 926, 0,
319
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
320
	/* 1440x900@60Hz */
321
	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
322
		   1672, 1904, 0, 900, 903, 909, 934, 0,
323
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
324
	/* 1440x900@75Hz */
325
	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
326
		   1688, 1936, 0, 900, 903, 909, 942, 0,
327
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
328
	/* 1440x900@85Hz */
329
	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
330
		   1696, 1952, 0, 900, 903, 909, 948, 0,
331
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
332
	/* 1440x900@120Hz RB */
333
	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
334
		   1520, 1600, 0, 900, 903, 909, 953, 0,
335
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
336
	/* 1600x1200@60Hz */
337
	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
338
		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
339
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
340
	/* 1600x1200@65Hz */
341
	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
342
		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
343
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
344
	/* 1600x1200@70Hz */
345
	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
346
		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
347
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
348
	/* 1600x1200@75Hz */
349
	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
350
		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
351
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
352
	/* 1600x1200@85Hz */
353
	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
354
		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
355
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
356
	/* 1600x1200@120Hz RB */
357
	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
358
		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
359
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
360
	/* 1680x1050@60Hz RB */
361
	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
362
		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
363
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
364
	/* 1680x1050@60Hz */
365
	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
366
		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
367
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
368
	/* 1680x1050@75Hz */
369
	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
370
		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
371
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
372
	/* 1680x1050@85Hz */
373
	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
374
		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
375
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
376
	/* 1680x1050@120Hz RB */
377
	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
378
		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
379
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
380
	/* 1792x1344@60Hz */
381
	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
382
		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
383
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
384
	/* 1792x1344@75Hz */
385
	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
386
		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
387
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
388
	/* 1792x1344@120Hz RB */
389
	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
390
		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
391
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
392
	/* 1856x1392@60Hz */
393
	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
394
		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
395
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
396
	/* 1856x1392@75Hz */
397
	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
398
		   2208, 2560, 0, 1392, 1395, 1399, 1500, 0,
399
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
400
	/* 1856x1392@120Hz RB */
401
	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
402
		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
403
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
404
	/* 1920x1200@60Hz RB */
405
	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
406
		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
407
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
408
	/* 1920x1200@60Hz */
409
	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
410
		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
411
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
412
	/* 1920x1200@75Hz */
413
	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
414
		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
415
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
416
	/* 1920x1200@85Hz */
417
	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
418
		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
419
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
420
	/* 1920x1200@120Hz RB */
421
	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
422
		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
423
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
424
	/* 1920x1440@60Hz */
425
	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
426
		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
427
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
428
	/* 1920x1440@75Hz */
429
	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
430
		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
431
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
432
	/* 1920x1440@120Hz RB */
433
	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
434
		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
435
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
436
	/* 2560x1600@60Hz RB */
437
	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
438
		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
439
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
440
	/* 2560x1600@60Hz */
441
	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
442
		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
443
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
444
	/* 2560x1600@75HZ */
445
	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
446
		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
447
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
448
	/* 2560x1600@85HZ */
449
	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
450
		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
451
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
452
	/* 2560x1600@120Hz RB */
453
	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
454
		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
455
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
456
};
457
 
458
static const struct drm_display_mode edid_est_modes[] = {
459
	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
460
		   968, 1056, 0, 600, 601, 605, 628, 0,
461
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
462
	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
463
		   896, 1024, 0, 600, 601, 603,  625, 0,
464
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
465
	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
466
		   720, 840, 0, 480, 481, 484, 500, 0,
467
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
468
	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
469
		   704,  832, 0, 480, 489, 491, 520, 0,
470
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
471
	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
472
		   768,  864, 0, 480, 483, 486, 525, 0,
473
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
474
	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25200, 640, 656,
475
		   752, 800, 0, 480, 490, 492, 525, 0,
476
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
477
	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
478
		   846, 900, 0, 400, 421, 423,  449, 0,
479
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
480
	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
481
		   846,  900, 0, 400, 412, 414, 449, 0,
482
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
483
	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
484
		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
485
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
486
	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78800, 1024, 1040,
487
		   1136, 1312, 0,  768, 769, 772, 800, 0,
488
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
489
	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
490
		   1184, 1328, 0,  768, 771, 777, 806, 0,
491
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
492
	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
493
		   1184, 1344, 0,  768, 771, 777, 806, 0,
494
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
495
	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
496
		   1208, 1264, 0, 768, 768, 776, 817, 0,
497
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
498
	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
499
		   928, 1152, 0, 624, 625, 628, 667, 0,
500
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
501
	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
502
		   896, 1056, 0, 600, 601, 604,  625, 0,
503
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
504
	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
505
		   976, 1040, 0, 600, 637, 643, 666, 0,
506
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
507
	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
508
		   1344, 1600, 0,  864, 865, 868, 900, 0,
509
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
510
};
511
 
512
struct minimode {
513
	short w;
514
	short h;
515
	short r;
516
	short rb;
517
};
518
 
519
static const struct minimode est3_modes[] = {
520
	/* byte 6 */
521
	{ 640, 350, 85, 0 },
522
	{ 640, 400, 85, 0 },
523
	{ 720, 400, 85, 0 },
524
	{ 640, 480, 85, 0 },
525
	{ 848, 480, 60, 0 },
526
	{ 800, 600, 85, 0 },
527
	{ 1024, 768, 85, 0 },
528
	{ 1152, 864, 75, 0 },
529
	/* byte 7 */
530
	{ 1280, 768, 60, 1 },
531
	{ 1280, 768, 60, 0 },
532
	{ 1280, 768, 75, 0 },
533
	{ 1280, 768, 85, 0 },
534
	{ 1280, 960, 60, 0 },
535
	{ 1280, 960, 85, 0 },
536
	{ 1280, 1024, 60, 0 },
537
	{ 1280, 1024, 85, 0 },
538
	/* byte 8 */
539
	{ 1360, 768, 60, 0 },
540
	{ 1440, 900, 60, 1 },
541
	{ 1440, 900, 60, 0 },
542
	{ 1440, 900, 75, 0 },
543
	{ 1440, 900, 85, 0 },
544
	{ 1400, 1050, 60, 1 },
545
	{ 1400, 1050, 60, 0 },
546
	{ 1400, 1050, 75, 0 },
547
	/* byte 9 */
548
	{ 1400, 1050, 85, 0 },
549
	{ 1680, 1050, 60, 1 },
550
	{ 1680, 1050, 60, 0 },
551
	{ 1680, 1050, 75, 0 },
552
	{ 1680, 1050, 85, 0 },
553
	{ 1600, 1200, 60, 0 },
554
	{ 1600, 1200, 65, 0 },
555
	{ 1600, 1200, 70, 0 },
556
	/* byte 10 */
557
	{ 1600, 1200, 75, 0 },
558
	{ 1600, 1200, 85, 0 },
559
	{ 1792, 1344, 60, 0 },
560
	{ 1792, 1344, 85, 0 },
561
	{ 1856, 1392, 60, 0 },
562
	{ 1856, 1392, 75, 0 },
563
	{ 1920, 1200, 60, 1 },
564
	{ 1920, 1200, 60, 0 },
565
	/* byte 11 */
566
	{ 1920, 1200, 75, 0 },
567
	{ 1920, 1200, 85, 0 },
568
	{ 1920, 1440, 60, 0 },
569
	{ 1920, 1440, 75, 0 },
570
};
571
 
572
static const struct minimode extra_modes[] = {
573
	{ 1024, 576,  60, 0 },
574
	{ 1366, 768,  60, 0 },
575
	{ 1600, 900,  60, 0 },
576
	{ 1680, 945,  60, 0 },
577
	{ 1920, 1080, 60, 0 },
578
	{ 2048, 1152, 60, 0 },
579
	{ 2048, 1536, 60, 0 },
580
};
581
 
582
/*
583
 * Probably taken from CEA-861 spec.
584
 * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
585
 */
586
static const struct drm_display_mode edid_cea_modes[] = {
587
	/* 1 - 640x480@60Hz */
588
	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
589
		   752, 800, 0, 480, 490, 492, 525, 0,
590
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
591
	/* 2 - 720x480@60Hz */
592
	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
593
		   798, 858, 0, 480, 489, 495, 525, 0,
594
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
595
	/* 3 - 720x480@60Hz */
596
	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
597
		   798, 858, 0, 480, 489, 495, 525, 0,
598
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
599
	/* 4 - 1280x720@60Hz */
600
	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
601
		   1430, 1650, 0, 720, 725, 730, 750, 0,
602
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
603
	/* 5 - 1920x1080i@60Hz */
604
	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
605
		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
606
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
607
			DRM_MODE_FLAG_INTERLACE) },
608
	/* 6 - 1440x480i@60Hz */
609
	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
610
		   1602, 1716, 0, 480, 488, 494, 525, 0,
611
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
612
			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
613
	/* 7 - 1440x480i@60Hz */
614
	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
615
		   1602, 1716, 0, 480, 488, 494, 525, 0,
616
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
617
			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
618
	/* 8 - 1440x240@60Hz */
619
	{ DRM_MODE("1440x240", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
620
		   1602, 1716, 0, 240, 244, 247, 262, 0,
621
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
622
			DRM_MODE_FLAG_DBLCLK) },
623
	/* 9 - 1440x240@60Hz */
624
	{ DRM_MODE("1440x240", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
625
		   1602, 1716, 0, 240, 244, 247, 262, 0,
626
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
627
			DRM_MODE_FLAG_DBLCLK) },
628
	/* 10 - 2880x480i@60Hz */
629
	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
630
		   3204, 3432, 0, 480, 488, 494, 525, 0,
631
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
632
			DRM_MODE_FLAG_INTERLACE) },
633
	/* 11 - 2880x480i@60Hz */
634
	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
635
		   3204, 3432, 0, 480, 488, 494, 525, 0,
636
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
637
			DRM_MODE_FLAG_INTERLACE) },
638
	/* 12 - 2880x240@60Hz */
639
	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
640
		   3204, 3432, 0, 240, 244, 247, 262, 0,
641
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
642
	/* 13 - 2880x240@60Hz */
643
	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
644
		   3204, 3432, 0, 240, 244, 247, 262, 0,
645
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
646
	/* 14 - 1440x480@60Hz */
647
	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
648
		   1596, 1716, 0, 480, 489, 495, 525, 0,
649
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
650
	/* 15 - 1440x480@60Hz */
651
	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
652
		   1596, 1716, 0, 480, 489, 495, 525, 0,
653
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
654
	/* 16 - 1920x1080@60Hz */
655
	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
656
		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
657
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
658
	/* 17 - 720x576@50Hz */
659
	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
660
		   796, 864, 0, 576, 581, 586, 625, 0,
661
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
662
	/* 18 - 720x576@50Hz */
663
	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
664
		   796, 864, 0, 576, 581, 586, 625, 0,
665
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
666
	/* 19 - 1280x720@50Hz */
667
	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
668
		   1760, 1980, 0, 720, 725, 730, 750, 0,
669
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
670
	/* 20 - 1920x1080i@50Hz */
671
	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
672
		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
673
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
674
			DRM_MODE_FLAG_INTERLACE) },
675
	/* 21 - 1440x576i@50Hz */
676
	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
677
		   1590, 1728, 0, 576, 580, 586, 625, 0,
678
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
679
			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
680
	/* 22 - 1440x576i@50Hz */
681
	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
682
		   1590, 1728, 0, 576, 580, 586, 625, 0,
683
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
684
			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
685
	/* 23 - 1440x288@50Hz */
686
	{ DRM_MODE("1440x288", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
687
		   1590, 1728, 0, 288, 290, 293, 312, 0,
688
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
689
			DRM_MODE_FLAG_DBLCLK) },
690
	/* 24 - 1440x288@50Hz */
691
	{ DRM_MODE("1440x288", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
692
		   1590, 1728, 0, 288, 290, 293, 312, 0,
693
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
694
			DRM_MODE_FLAG_DBLCLK) },
695
	/* 25 - 2880x576i@50Hz */
696
	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
697
		   3180, 3456, 0, 576, 580, 586, 625, 0,
698
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
699
			DRM_MODE_FLAG_INTERLACE) },
700
	/* 26 - 2880x576i@50Hz */
701
	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
702
		   3180, 3456, 0, 576, 580, 586, 625, 0,
703
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
704
			DRM_MODE_FLAG_INTERLACE) },
705
	/* 27 - 2880x288@50Hz */
706
	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
707
		   3180, 3456, 0, 288, 290, 293, 312, 0,
708
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
709
	/* 28 - 2880x288@50Hz */
710
	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
711
		   3180, 3456, 0, 288, 290, 293, 312, 0,
712
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
713
	/* 29 - 1440x576@50Hz */
714
	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
715
		   1592, 1728, 0, 576, 581, 586, 625, 0,
716
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
717
	/* 30 - 1440x576@50Hz */
718
	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
719
		   1592, 1728, 0, 576, 581, 586, 625, 0,
720
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
721
	/* 31 - 1920x1080@50Hz */
722
	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
723
		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
724
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
725
	/* 32 - 1920x1080@24Hz */
726
	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
727
		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
728
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
729
	/* 33 - 1920x1080@25Hz */
730
	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
731
		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
732
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
733
	/* 34 - 1920x1080@30Hz */
734
	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
735
		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
736
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
737
	/* 35 - 2880x480@60Hz */
738
	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
739
		   3192, 3432, 0, 480, 489, 495, 525, 0,
740
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
741
	/* 36 - 2880x480@60Hz */
742
	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
743
		   3192, 3432, 0, 480, 489, 495, 525, 0,
744
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
745
	/* 37 - 2880x576@50Hz */
746
	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
747
		   3184, 3456, 0, 576, 581, 586, 625, 0,
748
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
749
	/* 38 - 2880x576@50Hz */
750
	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
751
		   3184, 3456, 0, 576, 581, 586, 625, 0,
752
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
753
	/* 39 - 1920x1080i@50Hz */
754
	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
755
		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
756
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
757
			DRM_MODE_FLAG_INTERLACE) },
758
	/* 40 - 1920x1080i@100Hz */
759
	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
760
		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
761
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
762
			DRM_MODE_FLAG_INTERLACE) },
763
	/* 41 - 1280x720@100Hz */
764
	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
765
		   1760, 1980, 0, 720, 725, 730, 750, 0,
766
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
767
	/* 42 - 720x576@100Hz */
768
	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
769
		   796, 864, 0, 576, 581, 586, 625, 0,
770
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
771
	/* 43 - 720x576@100Hz */
772
	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
773
		   796, 864, 0, 576, 581, 586, 625, 0,
774
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
775
	/* 44 - 1440x576i@100Hz */
776
	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
777
		   1590, 1728, 0, 576, 580, 586, 625, 0,
778
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
779
			DRM_MODE_FLAG_DBLCLK) },
780
	/* 45 - 1440x576i@100Hz */
781
	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
782
		   1590, 1728, 0, 576, 580, 586, 625, 0,
783
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
784
			DRM_MODE_FLAG_DBLCLK) },
785
	/* 46 - 1920x1080i@120Hz */
786
	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
787
		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
788
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
789
			DRM_MODE_FLAG_INTERLACE) },
790
	/* 47 - 1280x720@120Hz */
791
	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
792
		   1430, 1650, 0, 720, 725, 730, 750, 0,
793
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
794
	/* 48 - 720x480@120Hz */
795
	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
796
		   798, 858, 0, 480, 489, 495, 525, 0,
797
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
798
	/* 49 - 720x480@120Hz */
799
	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
800
		   798, 858, 0, 480, 489, 495, 525, 0,
801
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
802
	/* 50 - 1440x480i@120Hz */
803
	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1478,
804
		   1602, 1716, 0, 480, 488, 494, 525, 0,
805
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
806
			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
807
	/* 51 - 1440x480i@120Hz */
808
	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1478,
809
		   1602, 1716, 0, 480, 488, 494, 525, 0,
810
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
811
			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
812
	/* 52 - 720x576@200Hz */
813
	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
814
		   796, 864, 0, 576, 581, 586, 625, 0,
815
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
816
	/* 53 - 720x576@200Hz */
817
	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
818
		   796, 864, 0, 576, 581, 586, 625, 0,
819
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
820
	/* 54 - 1440x576i@200Hz */
821
	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1464,
822
		   1590, 1728, 0, 576, 580, 586, 625, 0,
823
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
824
			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
825
	/* 55 - 1440x576i@200Hz */
826
	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1464,
827
		   1590, 1728, 0, 576, 580, 586, 625, 0,
828
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
829
			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
830
	/* 56 - 720x480@240Hz */
831
	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
832
		   798, 858, 0, 480, 489, 495, 525, 0,
833
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
834
	/* 57 - 720x480@240Hz */
835
	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
836
		   798, 858, 0, 480, 489, 495, 525, 0,
837
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
838
	/* 58 - 1440x480i@240 */
839
	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1478,
840
		   1602, 1716, 0, 480, 488, 494, 525, 0,
841
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
842
			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
843
	/* 59 - 1440x480i@240 */
844
	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1478,
845
		   1602, 1716, 0, 480, 488, 494, 525, 0,
846
		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
847
			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
848
	/* 60 - 1280x720@24Hz */
849
	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
850
		   3080, 3300, 0, 720, 725, 730, 750, 0,
851
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
852
	/* 61 - 1280x720@25Hz */
853
	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
854
		   3740, 3960, 0, 720, 725, 730, 750, 0,
855
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
856
	/* 62 - 1280x720@30Hz */
857
	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
858
		   3080, 3300, 0, 720, 725, 730, 750, 0,
859
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
860
	/* 63 - 1920x1080@120Hz */
861
	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
862
		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
863
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
864
	/* 64 - 1920x1080@100Hz */
865
	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
866
		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
867
		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
868
};
869
 
1963 serge 870
/*** DDC fetch and block validation ***/
1123 serge 871
 
1221 serge 872
static const u8 edid_header[] = {
873
	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
874
};
1123 serge 875
 
2160 serge 876
 /*
877
 * Sanity check the header of the base EDID block.  Return 8 if the header
878
 * is perfect, down to 0 if it's totally wrong.
879
 */
880
int drm_edid_header_is_valid(const u8 *raw_edid)
881
{
882
	int i, score = 0;
883
 
884
	for (i = 0; i < sizeof(edid_header); i++)
885
		if (raw_edid[i] == edid_header[i])
886
			score++;
887
 
888
	return score;
889
}
890
EXPORT_SYMBOL(drm_edid_header_is_valid);
891
 
3031 serge 892
static int edid_fixup __read_mostly = 6;
3480 Serge 893
module_param_named(edid_fixup, edid_fixup, int, 0400);
894
MODULE_PARM_DESC(edid_fixup,
895
		 "Minimum number of valid EDID header bytes (0-8, default 6)");
2160 serge 896
 
1963 serge 897
/*
898
 * Sanity check the EDID block (base or extension).  Return 0 if the block
899
 * doesn't check out, or 1 if it's valid.
1123 serge 900
 */
3031 serge 901
bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid)
1123 serge 902
{
1963 serge 903
	int i;
1123 serge 904
	u8 csum = 0;
1963 serge 905
	struct edid *edid = (struct edid *)raw_edid;
1123 serge 906
 
3031 serge 907
	if (edid_fixup > 8 || edid_fixup < 0)
908
		edid_fixup = 6;
909
 
910
	if (block == 0) {
2160 serge 911
		int score = drm_edid_header_is_valid(raw_edid);
1321 serge 912
	if (score == 8) ;
3031 serge 913
		else if (score >= edid_fixup) {
1321 serge 914
		DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
915
		memcpy(raw_edid, edid_header, sizeof(edid_header));
1963 serge 916
		} else {
1123 serge 917
		goto bad;
1963 serge 918
		}
919
	}
1123 serge 920
 
921
	for (i = 0; i < EDID_LENGTH; i++)
922
		csum += raw_edid[i];
923
	if (csum) {
3120 serge 924
		if (print_bad_edid) {
1123 serge 925
		DRM_ERROR("EDID checksum is invalid, remainder is %d\n", csum);
3120 serge 926
		}
1963 serge 927
 
928
		/* allow CEA to slide through, switches mangle this */
929
		if (raw_edid[0] != 0x02)
1123 serge 930
		goto bad;
931
	}
932
 
1963 serge 933
	/* per-block-type checks */
934
	switch (raw_edid[0]) {
935
	case 0: /* base */
1321 serge 936
	if (edid->version != 1) {
937
		DRM_ERROR("EDID has major version %d, instead of 1\n", edid->version);
938
		goto bad;
939
	}
940
 
941
	if (edid->revision > 4)
942
		DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
1963 serge 943
		break;
1321 serge 944
 
1963 serge 945
	default:
946
		break;
947
	}
948
 
1123 serge 949
	return 1;
950
 
951
bad:
3120 serge 952
	if (raw_edid && print_bad_edid) {
2004 serge 953
		printk(KERN_ERR "Raw EDID:\n");
3480 Serge 954
		print_hex_dump(KERN_ERR, " \t", DUMP_PREFIX_NONE, 16, 1,
955
			       raw_edid, EDID_LENGTH, false);
1123 serge 956
	}
957
	return 0;
958
}
3031 serge 959
EXPORT_SYMBOL(drm_edid_block_valid);
1963 serge 960
 
961
/**
962
 * drm_edid_is_valid - sanity check EDID data
963
 * @edid: EDID data
964
 *
965
 * Sanity-check an entire EDID record (including extensions)
966
 */
967
bool drm_edid_is_valid(struct edid *edid)
968
{
969
	int i;
970
	u8 *raw = (u8 *)edid;
971
 
972
	if (!edid)
973
		return false;
974
 
975
	for (i = 0; i <= edid->extensions; i++)
3031 serge 976
		if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true))
1963 serge 977
			return false;
978
 
979
	return true;
980
}
1430 serge 981
EXPORT_SYMBOL(drm_edid_is_valid);
1123 serge 982
 
1963 serge 983
#define DDC_SEGMENT_ADDR 0x30
1123 serge 984
/**
1963 serge 985
 * Get EDID information via I2C.
986
 *
987
 * \param adapter : i2c device adaptor
988
 * \param buf     : EDID data buffer to be filled
989
 * \param len     : EDID data buffer length
990
 * \return 0 on success or -1 on failure.
991
 *
992
 * Try to fetch EDID information by calling i2c driver function.
993
 */
994
static int
995
drm_do_probe_ddc_edid(struct i2c_adapter *adapter, unsigned char *buf,
996
		      int block, int len)
997
{
998
	unsigned char start = block * EDID_LENGTH;
3031 serge 999
	unsigned char segment = block >> 1;
1000
	unsigned char xfers = segment ? 3 : 2;
1963 serge 1001
	int ret, retries = 5;
1002
 
1003
	/* The core i2c driver will automatically retry the transfer if the
1004
	 * adapter reports EAGAIN. However, we find that bit-banging transfers
1005
	 * are susceptible to errors under a heavily loaded machine and
1006
	 * generate spurious NAKs and timeouts. Retrying the transfer
1007
	 * of the individual block a few times seems to overcome this.
1008
	 */
1009
	do {
1010
	struct i2c_msg msgs[] = {
1011
		{
3031 serge 1012
				.addr	= DDC_SEGMENT_ADDR,
1013
				.flags	= 0,
1014
				.len	= 1,
1015
				.buf	= &segment,
1016
			}, {
1963 serge 1017
			.addr	= DDC_ADDR,
1018
			.flags	= 0,
1019
			.len	= 1,
1020
			.buf	= &start,
1021
		}, {
1022
			.addr	= DDC_ADDR,
1023
			.flags	= I2C_M_RD,
1024
			.len	= len,
1025
			.buf	= buf,
1026
		}
1027
	};
1028
 
3031 serge 1029
	/*
1030
	 * Avoid sending the segment addr to not upset non-compliant ddc
1031
	 * monitors.
1032
	 */
1033
		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
1034
 
1035
		if (ret == -ENXIO) {
1036
			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
1037
					adapter->name);
1038
			break;
1039
		}
1040
	} while (ret != xfers && --retries);
1041
 
1042
	return ret == xfers ? 0 : -1;
1963 serge 1043
}
1044
 
2004 serge 1045
static bool drm_edid_is_zero(u8 *in_edid, int length)
1046
{
3480 Serge 1047
	if (memchr_inv(in_edid, 0, length))
1048
		return false;
2004 serge 1049
 
1050
	return true;
1051
}
1052
 
1963 serge 1053
static u8 *
1054
drm_do_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
1055
{
1056
	int i, j = 0, valid_extensions = 0;
1057
	u8 *block, *new;
3031 serge 1058
	bool print_bad_edid = !connector->bad_edid_counter || (drm_debug & DRM_UT_KMS);
1963 serge 1059
 
1060
	if ((block = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
1061
		return NULL;
1062
 
1063
	/* base block fetch */
1064
	for (i = 0; i < 4; i++) {
1065
		if (drm_do_probe_ddc_edid(adapter, block, 0, EDID_LENGTH))
1066
			goto out;
3031 serge 1067
		if (drm_edid_block_valid(block, 0, print_bad_edid))
1963 serge 1068
			break;
2004 serge 1069
		if (i == 0 && drm_edid_is_zero(block, EDID_LENGTH)) {
1070
			connector->null_edid_counter++;
1071
			goto carp;
1072
		}
1963 serge 1073
	}
1074
	if (i == 4)
1075
		goto carp;
1076
 
1077
	/* if there's no extensions, we're done */
1078
	if (block[0x7e] == 0)
1079
		return block;
1080
 
3480 Serge 1081
	new = krealloc(block, (block[0x7e] + 1) * EDID_LENGTH, GFP_KERNEL);
1963 serge 1082
	if (!new)
1083
		goto out;
1084
	block = new;
1085
 
1086
	for (j = 1; j <= block[0x7e]; j++) {
1087
		for (i = 0; i < 4; i++) {
1088
			if (drm_do_probe_ddc_edid(adapter,
1089
				  block + (valid_extensions + 1) * EDID_LENGTH,
1090
				  j, EDID_LENGTH))
1091
				goto out;
3031 serge 1092
			if (drm_edid_block_valid(block + (valid_extensions + 1) * EDID_LENGTH, j, print_bad_edid)) {
1963 serge 1093
				valid_extensions++;
1094
				break;
1095
		}
1096
		}
3480 Serge 1097
 
1098
		if (i == 4 && print_bad_edid) {
1963 serge 1099
			dev_warn(connector->dev->dev,
1100
			 "%s: Ignoring invalid EDID block %d.\n",
1101
			 drm_get_connector_name(connector), j);
3480 Serge 1102
 
1103
			connector->bad_edid_counter++;
1104
		}
1963 serge 1105
	}
1106
 
1107
	if (valid_extensions != block[0x7e]) {
1108
		block[EDID_LENGTH-1] += block[0x7e] - valid_extensions;
1109
		block[0x7e] = valid_extensions;
3480 Serge 1110
		new = krealloc(block, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1963 serge 1111
        if (!new)
1112
			goto out;
1113
		block = new;
1114
	}
1115
 
1116
	return block;
1117
 
1118
carp:
3031 serge 1119
	if (print_bad_edid) {
1963 serge 1120
	dev_warn(connector->dev->dev, "%s: EDID block %d invalid.\n",
1121
		 drm_get_connector_name(connector), j);
3031 serge 1122
	}
1123
	connector->bad_edid_counter++;
1963 serge 1124
 
1125
out:
1126
	kfree(block);
1127
	return NULL;
1128
}
1129
 
1130
/**
1131
 * Probe DDC presence.
1132
 *
1133
 * \param adapter : i2c device adaptor
1134
 * \return 1 on success
1135
 */
3031 serge 1136
bool
1963 serge 1137
drm_probe_ddc(struct i2c_adapter *adapter)
1138
{
1139
	unsigned char out;
1140
 
1141
	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
1142
}
3031 serge 1143
EXPORT_SYMBOL(drm_probe_ddc);
1963 serge 1144
 
1145
/**
1146
 * drm_get_edid - get EDID data, if available
1147
 * @connector: connector we're probing
1148
 * @adapter: i2c adapter to use for DDC
1149
 *
1150
 * Poke the given i2c channel to grab EDID data if possible.  If found,
1151
 * attach it to the connector.
1152
 *
1153
 * Return edid data or NULL if we couldn't find any.
1154
 */
1155
struct edid *drm_get_edid(struct drm_connector *connector,
1156
			  struct i2c_adapter *adapter)
1157
{
1158
	struct edid *edid = NULL;
1159
 
1160
	if (drm_probe_ddc(adapter))
1161
		edid = (struct edid *)drm_do_get_edid(connector, adapter);
1162
 
1163
	return edid;
1164
}
1165
EXPORT_SYMBOL(drm_get_edid);
1166
 
1167
/*** EDID parsing ***/
1168
 
1169
/**
1123 serge 1170
 * edid_vendor - match a string against EDID's obfuscated vendor field
1171
 * @edid: EDID to match
1172
 * @vendor: vendor string
1173
 *
1174
 * Returns true if @vendor is in @edid, false otherwise
1175
 */
1176
static bool edid_vendor(struct edid *edid, char *vendor)
1177
{
1178
	char edid_vendor[3];
1179
 
1180
	edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1181
	edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1182
			  ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1183
	edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1184
 
1185
	return !strncmp(edid_vendor, vendor, 3);
1186
}
1187
 
1188
/**
1189
 * edid_get_quirks - return quirk flags for a given EDID
1190
 * @edid: EDID to process
1191
 *
1192
 * This tells subsequent routines what fixes they need to apply.
1193
 */
1194
static u32 edid_get_quirks(struct edid *edid)
1195
{
1196
	struct edid_quirk *quirk;
1197
	int i;
1198
 
1199
	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
1200
		quirk = &edid_quirk_list[i];
1201
 
1202
		if (edid_vendor(edid, quirk->vendor) &&
1203
		    (EDID_PRODUCT_ID(edid) == quirk->product_id))
1204
			return quirk->quirks;
1205
	}
1206
 
1207
	return 0;
1208
}
1209
 
1210
#define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
1211
#define MODE_REFRESH_DIFF(m,r) (abs((m)->vrefresh - target_refresh))
1212
 
1213
/**
1214
 * edid_fixup_preferred - set preferred modes based on quirk list
1215
 * @connector: has mode list to fix up
1216
 * @quirks: quirks list
1217
 *
1218
 * Walk the mode list for @connector, clearing the preferred status
1219
 * on existing modes and setting it anew for the right mode ala @quirks.
1220
 */
1221
static void edid_fixup_preferred(struct drm_connector *connector,
1222
				 u32 quirks)
1223
{
1224
	struct drm_display_mode *t, *cur_mode, *preferred_mode;
1225
	int target_refresh = 0;
1226
 
1227
	if (list_empty(&connector->probed_modes))
1228
		return;
1229
 
1230
	if (quirks & EDID_QUIRK_PREFER_LARGE_60)
1231
		target_refresh = 60;
1232
	if (quirks & EDID_QUIRK_PREFER_LARGE_75)
1233
		target_refresh = 75;
1234
 
1235
	preferred_mode = list_first_entry(&connector->probed_modes,
1236
					  struct drm_display_mode, head);
1237
 
1238
	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
1239
		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
1240
 
1241
		if (cur_mode == preferred_mode)
1242
			continue;
1243
 
1244
		/* Largest mode is preferred */
1245
		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
1246
			preferred_mode = cur_mode;
1247
 
1248
		/* At a given size, try to get closest to target refresh */
1249
		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
1250
		    MODE_REFRESH_DIFF(cur_mode, target_refresh) <
1251
		    MODE_REFRESH_DIFF(preferred_mode, target_refresh)) {
1252
			preferred_mode = cur_mode;
1253
		}
1254
	}
1255
 
1256
	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
1257
}
1258
 
3031 serge 1259
static bool
1260
mode_is_rb(const struct drm_display_mode *mode)
1261
{
1262
	return (mode->htotal - mode->hdisplay == 160) &&
1263
	       (mode->hsync_end - mode->hdisplay == 80) &&
1264
	       (mode->hsync_end - mode->hsync_start == 32) &&
1265
	       (mode->vsync_start - mode->vdisplay == 3);
1266
}
1267
 
1268
/*
1269
 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
1270
 * @dev: Device to duplicate against
1271
 * @hsize: Mode width
1272
 * @vsize: Mode height
1273
 * @fresh: Mode refresh rate
1274
 * @rb: Mode reduced-blanking-ness
1275
 *
1276
 * Walk the DMT mode list looking for a match for the given parameters.
1277
 * Return a newly allocated copy of the mode, or NULL if not found.
1278
 */
1963 serge 1279
struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
3031 serge 1280
					   int hsize, int vsize, int fresh,
1281
					   bool rb)
1179 serge 1282
{
1321 serge 1283
	int i;
1179 serge 1284
 
3480 Serge 1285
	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1963 serge 1286
		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
3031 serge 1287
		if (hsize != ptr->hdisplay)
1288
			continue;
1289
		if (vsize != ptr->vdisplay)
1290
			continue;
1291
		if (fresh != drm_mode_vrefresh(ptr))
1292
			continue;
1293
		if (rb != mode_is_rb(ptr))
1294
			continue;
1295
 
1296
		return drm_mode_duplicate(dev, ptr);
1179 serge 1297
		}
3031 serge 1298
 
1299
	return NULL;
1179 serge 1300
}
1963 serge 1301
EXPORT_SYMBOL(drm_mode_find_dmt);
1221 serge 1302
 
1963 serge 1303
typedef void detailed_cb(struct detailed_timing *timing, void *closure);
1304
 
1305
static void
1306
cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1307
{
1308
	int i, n = 0;
3031 serge 1309
	u8 d = ext[0x02];
1963 serge 1310
	u8 *det_base = ext + d;
1311
 
3031 serge 1312
	n = (127 - d) / 18;
1963 serge 1313
	for (i = 0; i < n; i++)
1314
		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1315
}
1316
 
1317
static void
1318
vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1319
{
1320
	unsigned int i, n = min((int)ext[0x02], 6);
1321
	u8 *det_base = ext + 5;
1322
 
1323
	if (ext[0x01] != 1)
1324
		return; /* unknown version */
1325
 
1326
	for (i = 0; i < n; i++)
1327
		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1328
}
1329
 
1330
static void
1331
drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
1332
{
1333
	int i;
1334
	struct edid *edid = (struct edid *)raw_edid;
1335
 
1336
	if (edid == NULL)
1337
		return;
1338
 
1339
	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
1340
		cb(&(edid->detailed_timings[i]), closure);
1341
 
1342
	for (i = 1; i <= raw_edid[0x7e]; i++) {
1343
		u8 *ext = raw_edid + (i * EDID_LENGTH);
1344
		switch (*ext) {
1345
		case CEA_EXT:
1346
			cea_for_each_detailed_block(ext, cb, closure);
1347
			break;
1348
		case VTB_EXT:
1349
			vtb_for_each_detailed_block(ext, cb, closure);
1350
			break;
1351
		default:
1352
			break;
1353
		}
1354
	}
1355
}
1356
 
1357
static void
1358
is_rb(struct detailed_timing *t, void *data)
1359
{
1360
	u8 *r = (u8 *)t;
1361
	if (r[3] == EDID_DETAIL_MONITOR_RANGE)
1362
		if (r[15] & 0x10)
1363
			*(bool *)data = true;
1364
}
1365
 
1366
/* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
1367
static bool
1368
drm_monitor_supports_rb(struct edid *edid)
1369
{
1370
	if (edid->revision >= 4) {
3031 serge 1371
		bool ret = false;
1963 serge 1372
		drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
1373
		return ret;
1374
	}
1375
 
1376
	return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
1377
}
1378
 
1379
static void
1380
find_gtf2(struct detailed_timing *t, void *data)
1381
{
1382
	u8 *r = (u8 *)t;
1383
	if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
1384
		*(u8 **)data = r;
1385
}
1386
 
1387
/* Secondary GTF curve kicks in above some break frequency */
1388
static int
1389
drm_gtf2_hbreak(struct edid *edid)
1390
{
1391
	u8 *r = NULL;
1392
	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1393
	return r ? (r[12] * 2) : 0;
1394
}
1395
 
1396
static int
1397
drm_gtf2_2c(struct edid *edid)
1398
{
1399
	u8 *r = NULL;
1400
	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1401
	return r ? r[13] : 0;
1402
}
1403
 
1404
static int
1405
drm_gtf2_m(struct edid *edid)
1406
{
1407
	u8 *r = NULL;
1408
	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1409
	return r ? (r[15] << 8) + r[14] : 0;
1410
}
1411
 
1412
static int
1413
drm_gtf2_k(struct edid *edid)
1414
{
1415
	u8 *r = NULL;
1416
	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1417
	return r ? r[16] : 0;
1418
}
1419
 
1420
static int
1421
drm_gtf2_2j(struct edid *edid)
1422
{
1423
	u8 *r = NULL;
1424
	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1425
	return r ? r[17] : 0;
1426
}
1427
 
1428
/**
1429
 * standard_timing_level - get std. timing level(CVT/GTF/DMT)
1430
 * @edid: EDID block to scan
1431
 */
1432
static int standard_timing_level(struct edid *edid)
1433
{
1434
	if (edid->revision >= 2) {
1435
		if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
1436
			return LEVEL_CVT;
1437
		if (drm_gtf2_hbreak(edid))
1438
			return LEVEL_GTF2;
1439
		return LEVEL_GTF;
1440
	}
1441
	return LEVEL_DMT;
1442
}
1443
 
1221 serge 1444
/*
1445
 * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
1446
 * monitors fill with ascii space (0x20) instead.
1447
 */
1448
static int
1449
bad_std_timing(u8 a, u8 b)
1450
{
1451
	return (a == 0x00 && b == 0x00) ||
1452
	       (a == 0x01 && b == 0x01) ||
1453
	       (a == 0x20 && b == 0x20);
1454
}
1455
 
1123 serge 1456
/**
1457
 * drm_mode_std - convert standard mode info (width, height, refresh) into mode
1458
 * @t: standard timing params
1221 serge 1459
 * @timing_level: standard timing level
1123 serge 1460
 *
1461
 * Take the standard timing params (in this case width, aspect, and refresh)
1221 serge 1462
 * and convert them into a real mode using CVT/GTF/DMT.
1123 serge 1463
 */
1963 serge 1464
static struct drm_display_mode *
1465
drm_mode_std(struct drm_connector *connector, struct edid *edid,
1466
	     struct std_timing *t, int revision)
1123 serge 1467
{
1963 serge 1468
	struct drm_device *dev = connector->dev;
1469
	struct drm_display_mode *m, *mode = NULL;
1179 serge 1470
	int hsize, vsize;
1471
	int vrefresh_rate;
1123 serge 1472
	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
1473
		>> EDID_TIMING_ASPECT_SHIFT;
1179 serge 1474
	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
1475
		>> EDID_TIMING_VFREQ_SHIFT;
1963 serge 1476
	int timing_level = standard_timing_level(edid);
1123 serge 1477
 
1221 serge 1478
	if (bad_std_timing(t->hsize, t->vfreq_aspect))
1479
		return NULL;
1480
 
1179 serge 1481
	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
1482
	hsize = t->hsize * 8 + 248;
1483
	/* vrefresh_rate = vfreq + 60 */
1484
	vrefresh_rate = vfreq + 60;
1485
	/* the vdisplay is calculated based on the aspect ratio */
1221 serge 1486
	if (aspect_ratio == 0) {
1487
		if (revision < 3)
1488
			vsize = hsize;
1489
		else
1123 serge 1490
		vsize = (hsize * 10) / 16;
1221 serge 1491
	} else if (aspect_ratio == 1)
1123 serge 1492
		vsize = (hsize * 3) / 4;
1493
	else if (aspect_ratio == 2)
1494
		vsize = (hsize * 4) / 5;
1495
	else
1496
		vsize = (hsize * 9) / 16;
1963 serge 1497
 
1498
	/* HDTV hack, part 1 */
1499
	if (vrefresh_rate == 60 &&
1500
	    ((hsize == 1360 && vsize == 765) ||
1501
	     (hsize == 1368 && vsize == 769))) {
1502
		hsize = 1366;
1503
		vsize = 768;
1504
	}
1505
 
1506
	/*
1507
	 * If this connector already has a mode for this size and refresh
1508
	 * rate (because it came from detailed or CVT info), use that
1509
	 * instead.  This way we don't have to guess at interlace or
1510
	 * reduced blanking.
1511
	 */
1512
	list_for_each_entry(m, &connector->probed_modes, head)
1513
		if (m->hdisplay == hsize && m->vdisplay == vsize &&
1514
		    drm_mode_vrefresh(m) == vrefresh_rate)
1515
			return NULL;
1516
 
1517
	/* HDTV hack, part 2 */
1518
	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
1519
		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
1221 serge 1520
				    false);
1179 serge 1521
		mode->hdisplay = 1366;
1963 serge 1522
		mode->hsync_start = mode->hsync_start - 1;
1523
		mode->hsync_end = mode->hsync_end - 1;
1179 serge 1524
		return mode;
1525
	}
1963 serge 1526
 
1179 serge 1527
	/* check whether it can be found in default mode table */
3031 serge 1528
	if (drm_monitor_supports_rb(edid)) {
1529
		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
1530
					 true);
1531
		if (mode)
1532
			return mode;
1533
	}
1534
	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
1179 serge 1535
	if (mode)
1536
		return mode;
1123 serge 1537
 
3031 serge 1538
	/* okay, generate it */
1179 serge 1539
	switch (timing_level) {
1540
	case LEVEL_DMT:
1541
		break;
1542
	case LEVEL_GTF:
1543
		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1544
		break;
1963 serge 1545
	case LEVEL_GTF2:
1546
		/*
1547
		 * This is potentially wrong if there's ever a monitor with
1548
		 * more than one ranges section, each claiming a different
1549
		 * secondary GTF curve.  Please don't do that.
1550
		 */
1551
		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3031 serge 1552
		if (!mode)
1553
			return NULL;
1963 serge 1554
		if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
3031 serge 1555
			drm_mode_destroy(dev, mode);
1963 serge 1556
			mode = drm_gtf_mode_complex(dev, hsize, vsize,
1557
						    vrefresh_rate, 0, 0,
1558
						    drm_gtf2_m(edid),
1559
						    drm_gtf2_2c(edid),
1560
						    drm_gtf2_k(edid),
1561
						    drm_gtf2_2j(edid));
1562
		}
1563
		break;
1179 serge 1564
	case LEVEL_CVT:
1221 serge 1565
		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
1566
				    false);
1179 serge 1567
		break;
1568
	}
1123 serge 1569
	return mode;
1570
}
1571
 
1428 serge 1572
/*
1573
 * EDID is delightfully ambiguous about how interlaced modes are to be
1574
 * encoded.  Our internal representation is of frame height, but some
1575
 * HDTV detailed timings are encoded as field height.
1576
 *
1577
 * The format list here is from CEA, in frame size.  Technically we
1578
 * should be checking refresh rate too.  Whatever.
1579
 */
1580
static void
1581
drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
1582
			    struct detailed_pixel_timing *pt)
1583
{
1584
	int i;
1585
	static const struct {
1586
		int w, h;
1587
	} cea_interlaced[] = {
1588
		{ 1920, 1080 },
1589
		{  720,  480 },
1590
		{ 1440,  480 },
1591
		{ 2880,  480 },
1592
		{  720,  576 },
1593
		{ 1440,  576 },
1594
		{ 2880,  576 },
1595
	};
1596
 
1597
	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
1598
		return;
1599
 
1963 serge 1600
	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
1428 serge 1601
		if ((mode->hdisplay == cea_interlaced[i].w) &&
1602
		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
1603
			mode->vdisplay *= 2;
1604
			mode->vsync_start *= 2;
1605
			mode->vsync_end *= 2;
1606
			mode->vtotal *= 2;
1607
			mode->vtotal |= 1;
1608
		}
1609
	}
1610
 
1611
	mode->flags |= DRM_MODE_FLAG_INTERLACE;
1612
}
1613
 
1123 serge 1614
/**
1615
 * drm_mode_detailed - create a new mode from an EDID detailed timing section
1616
 * @dev: DRM device (needed to create new mode)
1617
 * @edid: EDID block
1618
 * @timing: EDID detailed timing info
1619
 * @quirks: quirks to apply
1620
 *
1621
 * An EDID detailed timing block contains enough info for us to create and
1622
 * return a new struct drm_display_mode.
1623
 */
1624
static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
1625
						  struct edid *edid,
1626
						  struct detailed_timing *timing,
1627
						  u32 quirks)
1628
{
1629
	struct drm_display_mode *mode;
1630
	struct detailed_pixel_timing *pt = &timing->data.pixel_data;
1631
	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
1632
	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
1633
	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
1634
	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
1635
	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
1636
	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
3480 Serge 1637
	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
1123 serge 1638
	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
1639
 
1640
	/* ignore tiny modes */
1641
	if (hactive < 64 || vactive < 64)
1642
		return NULL;
1643
 
1644
	if (pt->misc & DRM_EDID_PT_STEREO) {
1645
		printk(KERN_WARNING "stereo mode not supported\n");
1646
		return NULL;
1647
	}
1648
	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
1404 serge 1649
		printk(KERN_WARNING "composite sync not supported\n");
1123 serge 1650
	}
1651
 
1246 serge 1652
	/* it is incorrect if hsync/vsync width is zero */
1653
	if (!hsync_pulse_width || !vsync_pulse_width) {
1654
		DRM_DEBUG_KMS("Incorrect Detailed timing. "
1655
				"Wrong Hsync/Vsync pulse width\n");
1656
		return NULL;
1657
	}
3031 serge 1658
 
1659
	if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
1660
		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
1661
		if (!mode)
1662
			return NULL;
1663
 
1664
		goto set_size;
1665
	}
1666
 
1123 serge 1667
	mode = drm_mode_create(dev);
1668
	if (!mode)
1669
		return NULL;
1670
 
1671
	if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
1672
		timing->pixel_clock = cpu_to_le16(1088);
1673
 
1674
	mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
1675
 
1676
	mode->hdisplay = hactive;
1677
	mode->hsync_start = mode->hdisplay + hsync_offset;
1678
	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
1679
	mode->htotal = mode->hdisplay + hblank;
1680
 
1681
	mode->vdisplay = vactive;
1682
	mode->vsync_start = mode->vdisplay + vsync_offset;
1683
	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
1684
	mode->vtotal = mode->vdisplay + vblank;
1685
 
1313 serge 1686
	/* Some EDIDs have bogus h/vtotal values */
1687
	if (mode->hsync_end > mode->htotal)
1688
		mode->htotal = mode->hsync_end + 1;
1689
	if (mode->vsync_end > mode->vtotal)
1690
		mode->vtotal = mode->vsync_end + 1;
1691
 
1963 serge 1692
	drm_mode_do_interlace_quirk(mode, pt);
1693
 
1123 serge 1694
	if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
1695
		pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
1696
	}
1697
 
1698
	mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
1699
		DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
1700
	mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
1701
		DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
1702
 
3031 serge 1703
set_size:
1123 serge 1704
	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
1705
	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
1706
 
1707
	if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
1708
		mode->width_mm *= 10;
1709
		mode->height_mm *= 10;
1710
	}
1711
 
1712
	if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
1713
		mode->width_mm = edid->width_cm * 10;
1714
		mode->height_mm = edid->height_cm * 10;
1715
	}
1716
 
3031 serge 1717
	mode->type = DRM_MODE_TYPE_DRIVER;
3480 Serge 1718
	mode->vrefresh = drm_mode_vrefresh(mode);
3031 serge 1719
	drm_mode_set_name(mode);
1720
 
1123 serge 1721
	return mode;
1722
}
1723
 
1963 serge 1724
static bool
1725
mode_in_hsync_range(const struct drm_display_mode *mode,
1726
		    struct edid *edid, u8 *t)
1727
{
1728
	int hsync, hmin, hmax;
1729
 
1730
	hmin = t[7];
1731
	if (edid->revision >= 4)
1732
	    hmin += ((t[4] & 0x04) ? 255 : 0);
1733
	hmax = t[8];
1734
	if (edid->revision >= 4)
1735
	    hmax += ((t[4] & 0x08) ? 255 : 0);
1736
	hsync = drm_mode_hsync(mode);
1737
 
1738
	return (hsync <= hmax && hsync >= hmin);
1739
}
1740
 
1741
static bool
1742
mode_in_vsync_range(const struct drm_display_mode *mode,
1743
		    struct edid *edid, u8 *t)
1744
{
1745
	int vsync, vmin, vmax;
1746
 
1747
	vmin = t[5];
1748
	if (edid->revision >= 4)
1749
	    vmin += ((t[4] & 0x01) ? 255 : 0);
1750
	vmax = t[6];
1751
	if (edid->revision >= 4)
1752
	    vmax += ((t[4] & 0x02) ? 255 : 0);
1753
	vsync = drm_mode_vrefresh(mode);
1754
 
1755
	return (vsync <= vmax && vsync >= vmin);
1756
}
1757
 
1758
static u32
1759
range_pixel_clock(struct edid *edid, u8 *t)
1760
{
1761
	/* unspecified */
1762
	if (t[9] == 0 || t[9] == 255)
1763
		return 0;
1764
 
1765
	/* 1.4 with CVT support gives us real precision, yay */
1766
	if (edid->revision >= 4 && t[10] == 0x04)
1767
		return (t[9] * 10000) - ((t[12] >> 2) * 250);
1768
 
1769
	/* 1.3 is pathetic, so fuzz up a bit */
1770
	return t[9] * 10000 + 5001;
1771
}
1772
 
1773
static bool
1774
mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
1775
	      struct detailed_timing *timing)
1776
{
1777
	u32 max_clock;
1778
	u8 *t = (u8 *)timing;
1779
 
1780
	if (!mode_in_hsync_range(mode, edid, t))
1781
		return false;
1782
 
1783
	if (!mode_in_vsync_range(mode, edid, t))
1784
		return false;
1785
 
1786
	if ((max_clock = range_pixel_clock(edid, t)))
1787
		if (mode->clock > max_clock)
1788
			return false;
1789
 
1790
	/* 1.4 max horizontal check */
1791
	if (edid->revision >= 4 && t[10] == 0x04)
1792
		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
1793
			return false;
1794
 
1795
	if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
1796
		return false;
1797
 
1798
	return true;
1799
}
1800
 
3031 serge 1801
static bool valid_inferred_mode(const struct drm_connector *connector,
1802
				const struct drm_display_mode *mode)
1803
{
1804
	struct drm_display_mode *m;
1805
	bool ok = false;
1806
 
1807
	list_for_each_entry(m, &connector->probed_modes, head) {
1808
		if (mode->hdisplay == m->hdisplay &&
1809
		    mode->vdisplay == m->vdisplay &&
1810
		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
1811
			return false; /* duplicated */
1812
		if (mode->hdisplay <= m->hdisplay &&
1813
		    mode->vdisplay <= m->vdisplay)
1814
			ok = true;
1815
	}
1816
	return ok;
1817
}
1818
 
1963 serge 1819
static int
3031 serge 1820
drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid,
1963 serge 1821
				   struct detailed_timing *timing)
1822
{
1823
	int i, modes = 0;
1824
	struct drm_display_mode *newmode;
1825
	struct drm_device *dev = connector->dev;
1123 serge 1826
 
3480 Serge 1827
	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3031 serge 1828
		if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
1829
		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
1963 serge 1830
			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
1831
			if (newmode) {
1832
				drm_mode_probed_add(connector, newmode);
1833
				modes++;
1834
			}
1835
		}
1836
	}
1123 serge 1837
 
1963 serge 1838
	return modes;
1839
}
1840
 
3031 serge 1841
/* fix up 1366x768 mode from 1368x768;
1842
 * GFT/CVT can't express 1366 width which isn't dividable by 8
1843
 */
1844
static void fixup_mode_1366x768(struct drm_display_mode *mode)
1845
{
1846
	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
1847
		mode->hdisplay = 1366;
1848
		mode->hsync_start--;
1849
		mode->hsync_end--;
1850
		drm_mode_set_name(mode);
1851
	}
1852
}
1853
 
1854
static int
1855
drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
1856
			struct detailed_timing *timing)
1857
{
1858
	int i, modes = 0;
1859
	struct drm_display_mode *newmode;
1860
	struct drm_device *dev = connector->dev;
1861
 
3480 Serge 1862
	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3031 serge 1863
		const struct minimode *m = &extra_modes[i];
1864
		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
1865
		if (!newmode)
1866
			return modes;
1867
 
1868
		fixup_mode_1366x768(newmode);
1869
		if (!mode_in_range(newmode, edid, timing) ||
1870
		    !valid_inferred_mode(connector, newmode)) {
1871
			drm_mode_destroy(dev, newmode);
1872
			continue;
1873
		}
1874
 
1875
		drm_mode_probed_add(connector, newmode);
1876
		modes++;
1877
	}
1878
 
1879
	return modes;
1880
}
1881
 
1882
static int
1883
drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid,
1884
			struct detailed_timing *timing)
1885
{
1886
	int i, modes = 0;
1887
	struct drm_display_mode *newmode;
1888
	struct drm_device *dev = connector->dev;
1889
	bool rb = drm_monitor_supports_rb(edid);
1890
 
3480 Serge 1891
	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3031 serge 1892
		const struct minimode *m = &extra_modes[i];
1893
		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
1894
		if (!newmode)
1895
			return modes;
1896
 
1897
		fixup_mode_1366x768(newmode);
1898
		if (!mode_in_range(newmode, edid, timing) ||
1899
		    !valid_inferred_mode(connector, newmode)) {
1900
			drm_mode_destroy(dev, newmode);
1901
			continue;
1902
		}
1903
 
1904
		drm_mode_probed_add(connector, newmode);
1905
		modes++;
1906
	}
1907
 
1908
	return modes;
1909
}
1910
 
1963 serge 1911
static void
1912
do_inferred_modes(struct detailed_timing *timing, void *c)
1913
{
1914
	struct detailed_mode_closure *closure = c;
1915
	struct detailed_non_pixel *data = &timing->data.other_data;
3031 serge 1916
	struct detailed_data_monitor_range *range = &data->data.range;
1963 serge 1917
 
3031 serge 1918
	if (data->type != EDID_DETAIL_MONITOR_RANGE)
1919
		return;
1920
 
1921
	closure->modes += drm_dmt_modes_for_range(closure->connector,
1922
						  closure->edid,
1923
						  timing);
1924
 
1925
	if (!version_greater(closure->edid, 1, 1))
1926
		return; /* GTF not defined yet */
1927
 
1928
	switch (range->flags) {
1929
	case 0x02: /* secondary gtf, XXX could do more */
1930
	case 0x00: /* default gtf */
1963 serge 1931
		closure->modes += drm_gtf_modes_for_range(closure->connector,
1932
							  closure->edid,
1933
							  timing);
3031 serge 1934
		break;
1935
	case 0x04: /* cvt, only in 1.4+ */
1936
		if (!version_greater(closure->edid, 1, 3))
1937
			break;
1938
 
1939
		closure->modes += drm_cvt_modes_for_range(closure->connector,
1940
							  closure->edid,
1941
							  timing);
1942
		break;
1943
	case 0x01: /* just the ranges, no formula */
1944
	default:
1945
		break;
1946
	}
1963 serge 1947
}
1948
 
1949
static int
1950
add_inferred_modes(struct drm_connector *connector, struct edid *edid)
1951
{
1952
	struct detailed_mode_closure closure = {
1953
		connector, edid, 0, 0, 0
1954
	};
1955
 
1956
	if (version_greater(edid, 1, 0))
1957
		drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
1958
					    &closure);
1959
 
1960
	return closure.modes;
1961
}
1962
 
1963
static int
1964
drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
1965
{
1966
	int i, j, m, modes = 0;
1967
	struct drm_display_mode *mode;
1968
	u8 *est = ((u8 *)timing) + 5;
1969
 
1970
	for (i = 0; i < 6; i++) {
1971
		for (j = 7; j > 0; j--) {
1972
			m = (i * 8) + (7 - j);
1973
			if (m >= ARRAY_SIZE(est3_modes))
1974
				break;
1975
			if (est[i] & (1 << j)) {
1976
				mode = drm_mode_find_dmt(connector->dev,
1977
							 est3_modes[m].w,
1978
							 est3_modes[m].h,
3031 serge 1979
							 est3_modes[m].r,
1980
							 est3_modes[m].rb);
1963 serge 1981
				if (mode) {
1982
					drm_mode_probed_add(connector, mode);
1983
					modes++;
1984
				}
1985
			}
1986
		}
1987
	}
1988
 
1989
	return modes;
1990
}
1991
 
1992
static void
1993
do_established_modes(struct detailed_timing *timing, void *c)
1994
{
1995
	struct detailed_mode_closure *closure = c;
1996
		struct detailed_non_pixel *data = &timing->data.other_data;
1997
 
1998
	if (data->type == EDID_DETAIL_EST_TIMINGS)
1999
		closure->modes += drm_est3_modes(closure->connector, timing);
2000
}
2001
 
1123 serge 2002
/**
2003
 * add_established_modes - get est. modes from EDID and add them
2004
 * @edid: EDID block to scan
2005
 *
2006
 * Each EDID block contains a bitmap of the supported "established modes" list
2007
 * (defined above).  Tease them out and add them to the global modes list.
2008
 */
1963 serge 2009
static int
2010
add_established_modes(struct drm_connector *connector, struct edid *edid)
1123 serge 2011
{
2012
	struct drm_device *dev = connector->dev;
2013
	unsigned long est_bits = edid->established_timings.t1 |
2014
		(edid->established_timings.t2 << 8) |
2015
		((edid->established_timings.mfg_rsvd & 0x80) << 9);
2016
	int i, modes = 0;
1963 serge 2017
	struct detailed_mode_closure closure = {
2018
		connector, edid, 0, 0, 0
2019
	};
1123 serge 2020
 
1963 serge 2021
	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
1123 serge 2022
		if (est_bits & (1<
2023
			struct drm_display_mode *newmode;
2024
			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
2025
			if (newmode) {
1963 serge 2026
		drm_mode_probed_add(connector, newmode);
1123 serge 2027
				modes++;
2028
			}
2029
		}
1963 serge 2030
	}
1123 serge 2031
 
1963 serge 2032
	if (version_greater(edid, 1, 0))
2033
		    drm_for_each_detailed_block((u8 *)edid,
2034
						do_established_modes, &closure);
2035
 
2036
	return modes + closure.modes;
1123 serge 2037
}
1963 serge 2038
 
2039
static void
2040
do_standard_modes(struct detailed_timing *timing, void *c)
1179 serge 2041
{
1963 serge 2042
	struct detailed_mode_closure *closure = c;
2043
	struct detailed_non_pixel *data = &timing->data.other_data;
2044
	struct drm_connector *connector = closure->connector;
2045
	struct edid *edid = closure->edid;
2046
 
2047
	if (data->type == EDID_DETAIL_STD_MODES) {
2048
		int i;
2049
		for (i = 0; i < 6; i++) {
2050
				struct std_timing *std;
2051
				struct drm_display_mode *newmode;
2052
 
2053
			std = &data->data.timings[i];
2054
			newmode = drm_mode_std(connector, edid, std,
2055
					       edid->revision);
2056
				if (newmode) {
2057
					drm_mode_probed_add(connector, newmode);
2058
				closure->modes++;
2059
				}
2060
			}
2061
		}
1179 serge 2062
}
1123 serge 2063
 
2064
/**
2065
 * add_standard_modes - get std. modes from EDID and add them
2066
 * @edid: EDID block to scan
2067
 *
1963 serge 2068
 * Standard modes can be calculated using the appropriate standard (DMT,
2069
 * GTF or CVT. Grab them from @edid and add them to the list.
1123 serge 2070
 */
1963 serge 2071
static int
2072
add_standard_modes(struct drm_connector *connector, struct edid *edid)
1123 serge 2073
{
2074
	int i, modes = 0;
1963 serge 2075
	struct detailed_mode_closure closure = {
2076
		connector, edid, 0, 0, 0
2077
	};
1123 serge 2078
 
2079
	for (i = 0; i < EDID_STD_TIMINGS; i++) {
2080
		struct drm_display_mode *newmode;
2081
 
1963 serge 2082
		newmode = drm_mode_std(connector, edid,
2083
				       &edid->standard_timings[i],
2084
				       edid->revision);
1123 serge 2085
		if (newmode) {
2086
			drm_mode_probed_add(connector, newmode);
2087
			modes++;
2088
		}
2089
	}
2090
 
1963 serge 2091
	if (version_greater(edid, 1, 0))
2092
		drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
2093
					    &closure);
1123 serge 2094
 
1963 serge 2095
	/* XXX should also look for standard codes in VTB blocks */
1321 serge 2096
 
1963 serge 2097
	return modes + closure.modes;
1321 serge 2098
}
2099
 
2100
static int drm_cvt_modes(struct drm_connector *connector,
2101
			 struct detailed_timing *timing)
2102
{
1123 serge 2103
	int i, j, modes = 0;
1321 serge 2104
	struct drm_display_mode *newmode;
2105
	struct drm_device *dev = connector->dev;
2106
	struct cvt_timing *cvt;
2107
	const int rates[] = { 60, 85, 75, 60, 50 };
1404 serge 2108
	const u8 empty[3] = { 0, 0, 0 };
1123 serge 2109
 
1321 serge 2110
	for (i = 0; i < 4; i++) {
1404 serge 2111
		int uninitialized_var(width), height;
1321 serge 2112
		cvt = &(timing->data.other_data.data.cvt[i]);
1179 serge 2113
 
1404 serge 2114
		if (!memcmp(cvt->code, empty, 3))
1963 serge 2115
				continue;
1404 serge 2116
 
2117
		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
2118
		switch (cvt->code[1] & 0x0c) {
1321 serge 2119
		case 0x00:
2120
			width = height * 4 / 3;
2121
			break;
1404 serge 2122
		case 0x04:
1321 serge 2123
			width = height * 16 / 9;
2124
			break;
1404 serge 2125
		case 0x08:
1321 serge 2126
			width = height * 16 / 10;
2127
			break;
1404 serge 2128
		case 0x0c:
1321 serge 2129
			width = height * 15 / 9;
2130
			break;
2131
		}
2132
 
2133
		for (j = 1; j < 5; j++) {
2134
			if (cvt->code[2] & (1 << j)) {
2135
				newmode = drm_cvt_mode(dev, width, height,
2136
						       rates[j], j == 0,
2137
						       false, false);
2138
				if (newmode) {
2139
					drm_mode_probed_add(connector, newmode);
2140
					modes++;
2141
				}
2142
			}
2143
		}
1963 serge 2144
		}
1321 serge 2145
 
2146
	return modes;
2147
}
2148
 
1963 serge 2149
static void
2150
do_cvt_mode(struct detailed_timing *timing, void *c)
1321 serge 2151
{
1963 serge 2152
	struct detailed_mode_closure *closure = c;
2153
	struct detailed_non_pixel *data = &timing->data.other_data;
1123 serge 2154
 
1963 serge 2155
	if (data->type == EDID_DETAIL_CVT_3BYTE)
2156
		closure->modes += drm_cvt_modes(closure->connector, timing);
2157
}
1321 serge 2158
 
1963 serge 2159
static int
2160
add_cvt_modes(struct drm_connector *connector, struct edid *edid)
2161
{
2162
	struct detailed_mode_closure closure = {
2163
		connector, edid, 0, 0, 0
2164
	};
1321 serge 2165
 
1963 serge 2166
	if (version_greater(edid, 1, 2))
2167
		drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
1321 serge 2168
 
1963 serge 2169
	/* XXX should also look for CVT codes in VTB blocks */
1123 serge 2170
 
1963 serge 2171
	return closure.modes;
1321 serge 2172
}
2173
 
1963 serge 2174
static void
2175
do_detailed_mode(struct detailed_timing *timing, void *c)
1321 serge 2176
{
1963 serge 2177
	struct detailed_mode_closure *closure = c;
2178
	struct drm_display_mode *newmode;
1321 serge 2179
 
1963 serge 2180
	if (timing->pixel_clock) {
2181
		newmode = drm_mode_detailed(closure->connector->dev,
2182
					    closure->edid, timing,
2183
					    closure->quirks);
2184
		if (!newmode)
2185
			return;
1321 serge 2186
 
1963 serge 2187
		if (closure->preferred)
2188
			newmode->type |= DRM_MODE_TYPE_PREFERRED;
1123 serge 2189
 
1963 serge 2190
		drm_mode_probed_add(closure->connector, newmode);
2191
		closure->modes++;
2192
		closure->preferred = 0;
2193
	}
1179 serge 2194
}
1321 serge 2195
 
1963 serge 2196
/*
2197
 * add_detailed_modes - Add modes from detailed timings
1179 serge 2198
 * @connector: attached connector
1963 serge 2199
 * @edid: EDID block to scan
1179 serge 2200
 * @quirks: quirks to apply
2201
 */
1963 serge 2202
static int
2203
add_detailed_modes(struct drm_connector *connector, struct edid *edid,
2204
		   u32 quirks)
1179 serge 2205
{
1963 serge 2206
	struct detailed_mode_closure closure = {
2207
		connector,
2208
		edid,
2209
		1,
2210
		quirks,
2211
 
2212
	};
1179 serge 2213
 
1963 serge 2214
	if (closure.preferred && !version_greater(edid, 1, 3))
2215
		closure.preferred =
2216
		    (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
1179 serge 2217
 
1963 serge 2218
	drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
1179 serge 2219
 
1963 serge 2220
	return closure.modes;
2221
}
1179 serge 2222
 
1963 serge 2223
#define HDMI_IDENTIFIER 0x000C03
2224
#define AUDIO_BLOCK	0x01
3031 serge 2225
#define VIDEO_BLOCK     0x02
1963 serge 2226
#define VENDOR_BLOCK    0x03
3031 serge 2227
#define SPEAKER_BLOCK	0x04
3480 Serge 2228
#define VIDEO_CAPABILITY_BLOCK	0x07
1963 serge 2229
#define EDID_BASIC_AUDIO	(1 << 6)
3031 serge 2230
#define EDID_CEA_YCRCB444	(1 << 5)
2231
#define EDID_CEA_YCRCB422	(1 << 4)
3480 Serge 2232
#define EDID_CEA_VCDB_QS	(1 << 6)
1179 serge 2233
 
1123 serge 2234
/**
1963 serge 2235
 * Search EDID for CEA extension block.
1123 serge 2236
 */
1963 serge 2237
u8 *drm_find_cea_extension(struct edid *edid)
1123 serge 2238
{
1963 serge 2239
	u8 *edid_ext = NULL;
1321 serge 2240
	int i;
1123 serge 2241
 
1963 serge 2242
	/* No EDID or EDID extensions */
2243
	if (edid == NULL || edid->extensions == 0)
2244
		return NULL;
1321 serge 2245
 
1963 serge 2246
	/* Find CEA extension */
2247
	for (i = 0; i < edid->extensions; i++) {
2248
		edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
2249
		if (edid_ext[0] == CEA_EXT)
2250
			break;
1123 serge 2251
	}
2252
 
1963 serge 2253
	if (i == edid->extensions)
2254
		return NULL;
1123 serge 2255
 
1963 serge 2256
	return edid_ext;
1123 serge 2257
}
1963 serge 2258
EXPORT_SYMBOL(drm_find_cea_extension);
1123 serge 2259
 
3480 Serge 2260
/**
2261
 * drm_match_cea_mode - look for a CEA mode matching given mode
2262
 * @to_match: display mode
2263
 *
2264
 * Returns the CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
2265
 * mode.
3192 Serge 2266
 */
3480 Serge 2267
u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
3192 Serge 2268
{
2269
	struct drm_display_mode *cea_mode;
2270
	u8 mode;
2271
 
3480 Serge 2272
	for (mode = 0; mode < ARRAY_SIZE(edid_cea_modes); mode++) {
3192 Serge 2273
		cea_mode = (struct drm_display_mode *)&edid_cea_modes[mode];
2274
 
2275
		if (drm_mode_equal(to_match, cea_mode))
2276
			return mode + 1;
2277
	}
2278
	return 0;
2279
}
2280
EXPORT_SYMBOL(drm_match_cea_mode);
2281
 
2282
 
3031 serge 2283
static int
2284
do_cea_modes (struct drm_connector *connector, u8 *db, u8 len)
2285
{
2286
	struct drm_device *dev = connector->dev;
2287
	u8 * mode, cea_mode;
2288
	int modes = 0;
2289
 
2290
	for (mode = db; mode < db + len; mode++) {
2291
		cea_mode = (*mode & 127) - 1; /* CEA modes are numbered 1..127 */
3480 Serge 2292
		if (cea_mode < ARRAY_SIZE(edid_cea_modes)) {
3031 serge 2293
			struct drm_display_mode *newmode;
2294
			newmode = drm_mode_duplicate(dev,
2295
						     &edid_cea_modes[cea_mode]);
2296
			if (newmode) {
2297
				drm_mode_probed_add(connector, newmode);
2298
				modes++;
2299
			}
2300
		}
2301
	}
2302
 
2303
	return modes;
2304
}
2305
 
2306
static int
2307
cea_db_payload_len(const u8 *db)
2308
{
2309
	return db[0] & 0x1f;
2310
}
2311
 
2312
static int
2313
cea_db_tag(const u8 *db)
2314
{
2315
	return db[0] >> 5;
2316
}
2317
 
2318
static int
2319
cea_revision(const u8 *cea)
2320
{
2321
	return cea[1];
2322
}
2323
 
2324
static int
2325
cea_db_offsets(const u8 *cea, int *start, int *end)
2326
{
2327
	/* Data block offset in CEA extension block */
2328
	*start = 4;
2329
	*end = cea[2];
2330
	if (*end == 0)
2331
		*end = 127;
2332
	if (*end < 4 || *end > 127)
2333
		return -ERANGE;
2334
	return 0;
2335
}
2336
 
2337
#define for_each_cea_db(cea, i, start, end) \
2338
	for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
2339
 
2340
static int
2341
add_cea_modes(struct drm_connector *connector, struct edid *edid)
2342
{
2343
	u8 * cea = drm_find_cea_extension(edid);
2344
	u8 * db, dbl;
2345
	int modes = 0;
2346
 
2347
	if (cea && cea_revision(cea) >= 3) {
2348
		int i, start, end;
2349
 
2350
		if (cea_db_offsets(cea, &start, &end))
2351
			return 0;
2352
 
2353
		for_each_cea_db(cea, i, start, end) {
2354
			db = &cea[i];
2355
			dbl = cea_db_payload_len(db);
2356
 
2357
			if (cea_db_tag(db) == VIDEO_BLOCK)
2358
				modes += do_cea_modes (connector, db+1, dbl);
2359
		}
2360
	}
2361
 
2362
	return modes;
2363
}
2364
 
2365
static void
2366
parse_hdmi_vsdb(struct drm_connector *connector, const u8 *db)
2367
{
2368
	u8 len = cea_db_payload_len(db);
2369
 
2370
	if (len >= 6) {
2371
	connector->eld[5] |= (db[6] >> 7) << 1;  /* Supports_AI */
2372
	connector->dvi_dual = db[6] & 1;
2373
	}
2374
	if (len >= 7)
2375
	connector->max_tmds_clock = db[7] * 5;
2376
	if (len >= 8) {
2377
	connector->latency_present[0] = db[8] >> 7;
2378
	connector->latency_present[1] = (db[8] >> 6) & 1;
2379
	}
2380
	if (len >= 9)
2381
	connector->video_latency[0] = db[9];
2382
	if (len >= 10)
2383
	connector->audio_latency[0] = db[10];
2384
	if (len >= 11)
2385
	connector->video_latency[1] = db[11];
2386
	if (len >= 12)
2387
	connector->audio_latency[1] = db[12];
2388
 
3192 Serge 2389
	DRM_DEBUG_KMS("HDMI: DVI dual %d, "
3031 serge 2390
		    "max TMDS clock %d, "
2391
		    "latency present %d %d, "
2392
		    "video latency %d %d, "
2393
		    "audio latency %d %d\n",
2394
		    connector->dvi_dual,
2395
		    connector->max_tmds_clock,
2396
	      (int) connector->latency_present[0],
2397
	      (int) connector->latency_present[1],
2398
		    connector->video_latency[0],
2399
		    connector->video_latency[1],
2400
		    connector->audio_latency[0],
2401
		    connector->audio_latency[1]);
2402
}
2403
 
2404
static void
2405
monitor_name(struct detailed_timing *t, void *data)
2406
{
2407
	if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME)
2408
		*(u8 **)data = t->data.other_data.data.str.str;
2409
}
2410
 
2411
static bool cea_db_is_hdmi_vsdb(const u8 *db)
2412
{
2413
	int hdmi_id;
2414
 
2415
	if (cea_db_tag(db) != VENDOR_BLOCK)
2416
		return false;
2417
 
2418
	if (cea_db_payload_len(db) < 5)
2419
		return false;
2420
 
2421
	hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
2422
 
2423
	return hdmi_id == HDMI_IDENTIFIER;
2424
}
2425
 
1123 serge 2426
/**
3031 serge 2427
 * drm_edid_to_eld - build ELD from EDID
2428
 * @connector: connector corresponding to the HDMI/DP sink
2429
 * @edid: EDID to parse
2430
 *
2431
 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver.
2432
 * Some ELD fields are left to the graphics driver caller:
2433
 * - Conn_Type
2434
 * - HDCP
2435
 * - Port_ID
2436
 */
2437
void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
2438
{
2439
	uint8_t *eld = connector->eld;
2440
	u8 *cea;
2441
	u8 *name;
2442
	u8 *db;
2443
	int sad_count = 0;
2444
	int mnl;
2445
	int dbl;
2446
 
2447
	memset(eld, 0, sizeof(connector->eld));
2448
 
2449
	cea = drm_find_cea_extension(edid);
2450
	if (!cea) {
2451
		DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
2452
		return;
2453
	}
2454
 
2455
	name = NULL;
2456
	drm_for_each_detailed_block((u8 *)edid, monitor_name, &name);
2457
	for (mnl = 0; name && mnl < 13; mnl++) {
2458
		if (name[mnl] == 0x0a)
2459
			break;
2460
		eld[20 + mnl] = name[mnl];
2461
	}
2462
	eld[4] = (cea[1] << 5) | mnl;
2463
	DRM_DEBUG_KMS("ELD monitor %s\n", eld + 20);
2464
 
2465
	eld[0] = 2 << 3;		/* ELD version: 2 */
2466
 
2467
	eld[16] = edid->mfg_id[0];
2468
	eld[17] = edid->mfg_id[1];
2469
	eld[18] = edid->prod_code[0];
2470
	eld[19] = edid->prod_code[1];
2471
 
2472
	if (cea_revision(cea) >= 3) {
2473
		int i, start, end;
2474
 
2475
		if (cea_db_offsets(cea, &start, &end)) {
2476
			start = 0;
2477
			end = 0;
2478
		}
2479
 
2480
		for_each_cea_db(cea, i, start, end) {
2481
			db = &cea[i];
2482
			dbl = cea_db_payload_len(db);
2483
 
2484
			switch (cea_db_tag(db)) {
2485
			case AUDIO_BLOCK:
2486
				/* Audio Data Block, contains SADs */
2487
				sad_count = dbl / 3;
2488
				if (dbl >= 1)
2489
				memcpy(eld + 20 + mnl, &db[1], dbl);
2490
				break;
2491
			case SPEAKER_BLOCK:
2492
                                /* Speaker Allocation Data Block */
2493
				if (dbl >= 1)
2494
				eld[7] = db[1];
2495
				break;
2496
			case VENDOR_BLOCK:
2497
				/* HDMI Vendor-Specific Data Block */
2498
				if (cea_db_is_hdmi_vsdb(db))
2499
					parse_hdmi_vsdb(connector, db);
2500
				break;
2501
			default:
2502
				break;
2503
			}
2504
		}
2505
	}
2506
	eld[5] |= sad_count << 4;
2507
	eld[2] = (20 + mnl + sad_count * 3 + 3) / 4;
2508
 
2509
	DRM_DEBUG_KMS("ELD size %d, SAD count %d\n", (int)eld[2], sad_count);
2510
}
2511
EXPORT_SYMBOL(drm_edid_to_eld);
2512
 
2513
/**
2514
 * drm_av_sync_delay - HDMI/DP sink audio-video sync delay in millisecond
2515
 * @connector: connector associated with the HDMI/DP sink
2516
 * @mode: the display mode
2517
 */
2518
int drm_av_sync_delay(struct drm_connector *connector,
2519
		      struct drm_display_mode *mode)
2520
{
2521
	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
2522
	int a, v;
2523
 
2524
	if (!connector->latency_present[0])
2525
		return 0;
2526
	if (!connector->latency_present[1])
2527
		i = 0;
2528
 
2529
	a = connector->audio_latency[i];
2530
	v = connector->video_latency[i];
2531
 
2532
	/*
2533
	 * HDMI/DP sink doesn't support audio or video?
2534
	 */
2535
	if (a == 255 || v == 255)
2536
		return 0;
2537
 
2538
	/*
2539
	 * Convert raw EDID values to millisecond.
2540
	 * Treat unknown latency as 0ms.
2541
	 */
2542
	if (a)
2543
		a = min(2 * (a - 1), 500);
2544
	if (v)
2545
		v = min(2 * (v - 1), 500);
2546
 
2547
	return max(v - a, 0);
2548
}
2549
EXPORT_SYMBOL(drm_av_sync_delay);
2550
 
2551
/**
2552
 * drm_select_eld - select one ELD from multiple HDMI/DP sinks
2553
 * @encoder: the encoder just changed display mode
2554
 * @mode: the adjusted display mode
2555
 *
2556
 * It's possible for one encoder to be associated with multiple HDMI/DP sinks.
2557
 * The policy is now hard coded to simply use the first HDMI/DP sink's ELD.
2558
 */
2559
struct drm_connector *drm_select_eld(struct drm_encoder *encoder,
2560
				     struct drm_display_mode *mode)
2561
{
2562
	struct drm_connector *connector;
2563
	struct drm_device *dev = encoder->dev;
2564
 
2565
	list_for_each_entry(connector, &dev->mode_config.connector_list, head)
2566
		if (connector->encoder == encoder && connector->eld[0])
2567
			return connector;
2568
 
2569
	return NULL;
2570
}
2571
EXPORT_SYMBOL(drm_select_eld);
2572
 
2573
/**
1123 serge 2574
 * drm_detect_hdmi_monitor - detect whether monitor is hdmi.
2575
 * @edid: monitor EDID information
2576
 *
2577
 * Parse the CEA extension according to CEA-861-B.
2578
 * Return true if HDMI, false if not or unknown.
2579
 */
2580
bool drm_detect_hdmi_monitor(struct edid *edid)
2581
{
1963 serge 2582
	u8 *edid_ext;
3031 serge 2583
	int i;
1123 serge 2584
	int start_offset, end_offset;
2585
 
1963 serge 2586
	edid_ext = drm_find_cea_extension(edid);
2587
	if (!edid_ext)
3031 serge 2588
		return false;
1123 serge 2589
 
3031 serge 2590
	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
2591
		return false;
1123 serge 2592
 
2593
	/*
2594
	 * Because HDMI identifier is in Vendor Specific Block,
2595
	 * search it from all data blocks of CEA extension.
2596
	 */
3031 serge 2597
	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
2598
		if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
2599
			return true;
1123 serge 2600
	}
2601
 
3031 serge 2602
	return false;
1123 serge 2603
}
2604
EXPORT_SYMBOL(drm_detect_hdmi_monitor);
2605
 
2606
/**
1963 serge 2607
 * drm_detect_monitor_audio - check monitor audio capability
2608
 *
2609
 * Monitor should have CEA extension block.
2610
 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
2611
 * audio' only. If there is any audio extension block and supported
2612
 * audio format, assume at least 'basic audio' support, even if 'basic
2613
 * audio' is not defined in EDID.
2614
 *
2615
 */
2616
bool drm_detect_monitor_audio(struct edid *edid)
2617
{
2618
	u8 *edid_ext;
2619
	int i, j;
2620
	bool has_audio = false;
2621
	int start_offset, end_offset;
2622
 
2623
	edid_ext = drm_find_cea_extension(edid);
2624
	if (!edid_ext)
2625
		goto end;
2626
 
2627
	has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
2628
 
2629
	if (has_audio) {
2630
		DRM_DEBUG_KMS("Monitor has basic audio support\n");
2631
		goto end;
2632
	}
2633
 
3031 serge 2634
	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
2635
		goto end;
1963 serge 2636
 
3031 serge 2637
	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
2638
		if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
1963 serge 2639
			has_audio = true;
3031 serge 2640
			for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3)
1963 serge 2641
				DRM_DEBUG_KMS("CEA audio format %d\n",
2642
					      (edid_ext[i + j] >> 3) & 0xf);
2643
			goto end;
2644
		}
2645
	}
2646
end:
2647
	return has_audio;
2648
}
2649
EXPORT_SYMBOL(drm_detect_monitor_audio);
2650
 
2651
/**
3480 Serge 2652
 * drm_rgb_quant_range_selectable - is RGB quantization range selectable?
2653
 *
2654
 * Check whether the monitor reports the RGB quantization range selection
2655
 * as supported. The AVI infoframe can then be used to inform the monitor
2656
 * which quantization range (full or limited) is used.
2657
 */
2658
bool drm_rgb_quant_range_selectable(struct edid *edid)
2659
{
2660
	u8 *edid_ext;
2661
	int i, start, end;
2662
 
2663
	edid_ext = drm_find_cea_extension(edid);
2664
	if (!edid_ext)
2665
		return false;
2666
 
2667
	if (cea_db_offsets(edid_ext, &start, &end))
2668
		return false;
2669
 
2670
	for_each_cea_db(edid_ext, i, start, end) {
2671
		if (cea_db_tag(&edid_ext[i]) == VIDEO_CAPABILITY_BLOCK &&
2672
		    cea_db_payload_len(&edid_ext[i]) == 2) {
2673
			DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", edid_ext[i + 2]);
2674
			return edid_ext[i + 2] & EDID_CEA_VCDB_QS;
2675
		}
2676
	}
2677
 
2678
	return false;
2679
}
2680
EXPORT_SYMBOL(drm_rgb_quant_range_selectable);
2681
 
2682
/**
1963 serge 2683
 * drm_add_display_info - pull display info out if present
2684
 * @edid: EDID data
2685
 * @info: display info (attached to connector)
2686
 *
2687
 * Grab any available display info and stuff it into the drm_display_info
2688
 * structure that's part of the connector.  Useful for tracking bpp and
2689
 * color spaces.
2690
 */
2691
static void drm_add_display_info(struct edid *edid,
2692
				 struct drm_display_info *info)
2693
{
2160 serge 2694
	u8 *edid_ext;
2695
 
1963 serge 2696
	info->width_mm = edid->width_cm * 10;
2697
	info->height_mm = edid->height_cm * 10;
2698
 
2699
	/* driver figures it out in this case */
2700
	info->bpc = 0;
2701
	info->color_formats = 0;
2702
 
3031 serge 2703
	if (edid->revision < 3)
1963 serge 2704
		return;
2705
 
2706
	if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
2707
		return;
2708
 
3031 serge 2709
	/* Get data from CEA blocks if present */
2710
	edid_ext = drm_find_cea_extension(edid);
2711
	if (edid_ext) {
2712
		info->cea_rev = edid_ext[1];
2713
 
2714
		/* The existence of a CEA block should imply RGB support */
2715
		info->color_formats = DRM_COLOR_FORMAT_RGB444;
2716
		if (edid_ext[3] & EDID_CEA_YCRCB444)
2717
			info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
2718
		if (edid_ext[3] & EDID_CEA_YCRCB422)
2719
			info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
2720
	}
2721
 
2722
	/* Only defined for 1.4 with digital displays */
2723
	if (edid->revision < 4)
2724
		return;
2725
 
1963 serge 2726
	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
2727
	case DRM_EDID_DIGITAL_DEPTH_6:
2728
		info->bpc = 6;
2729
		break;
2730
	case DRM_EDID_DIGITAL_DEPTH_8:
2731
		info->bpc = 8;
2732
		break;
2733
	case DRM_EDID_DIGITAL_DEPTH_10:
2734
		info->bpc = 10;
2735
		break;
2736
	case DRM_EDID_DIGITAL_DEPTH_12:
2737
		info->bpc = 12;
2738
		break;
2739
	case DRM_EDID_DIGITAL_DEPTH_14:
2740
		info->bpc = 14;
2741
		break;
2742
	case DRM_EDID_DIGITAL_DEPTH_16:
2743
		info->bpc = 16;
2744
		break;
2745
	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
2746
	default:
2747
		info->bpc = 0;
2748
		break;
2749
	}
2750
 
3031 serge 2751
	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
2752
	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
2753
		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
2754
	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
2755
		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
1963 serge 2756
}
2757
 
2758
/**
1123 serge 2759
 * drm_add_edid_modes - add modes from EDID data, if available
2760
 * @connector: connector we're probing
2761
 * @edid: edid data
2762
 *
2763
 * Add the specified modes to the connector's mode list.
2764
 *
2765
 * Return number of modes added or 0 if we couldn't find any.
2766
 */
2767
int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
2768
{
2769
	int num_modes = 0;
2770
	u32 quirks;
2771
 
2772
	if (edid == NULL) {
2773
		return 0;
2774
	}
1430 serge 2775
	if (!drm_edid_is_valid(edid)) {
1963 serge 2776
		dev_warn(connector->dev->dev, "%s: EDID invalid.\n",
1246 serge 2777
			 drm_get_connector_name(connector));
1123 serge 2778
		return 0;
2779
	}
2780
 
2781
	quirks = edid_get_quirks(edid);
2782
 
1963 serge 2783
	/*
2784
	 * EDID spec says modes should be preferred in this order:
2785
	 * - preferred detailed mode
2786
	 * - other detailed modes from base block
2787
	 * - detailed modes from extension blocks
2788
	 * - CVT 3-byte code modes
2789
	 * - standard timing codes
2790
	 * - established timing codes
2791
	 * - modes inferred from GTF or CVT range information
2792
	 *
2793
	 * We get this pretty much right.
2794
	 *
2795
	 * XXX order for additional mode types in extension blocks?
2796
	 */
2797
	num_modes += add_detailed_modes(connector, edid, quirks);
2798
	num_modes += add_cvt_modes(connector, edid);
2799
	num_modes += add_standard_modes(connector, edid);
1123 serge 2800
	num_modes += add_established_modes(connector, edid);
3480 Serge 2801
	if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
1963 serge 2802
	num_modes += add_inferred_modes(connector, edid);
3031 serge 2803
	num_modes += add_cea_modes(connector, edid);
1123 serge 2804
 
2805
	if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
2806
		edid_fixup_preferred(connector, quirks);
2807
 
1963 serge 2808
	drm_add_display_info(edid, &connector->display_info);
1123 serge 2809
 
2810
	return num_modes;
2811
}
2812
EXPORT_SYMBOL(drm_add_edid_modes);
1179 serge 2813
 
2814
/**
2815
 * drm_add_modes_noedid - add modes for the connectors without EDID
2816
 * @connector: connector we're probing
2817
 * @hdisplay: the horizontal display limit
2818
 * @vdisplay: the vertical display limit
2819
 *
2820
 * Add the specified modes to the connector's mode list. Only when the
2821
 * hdisplay/vdisplay is not beyond the given limit, it will be added.
2822
 *
2823
 * Return number of modes added or 0 if we couldn't find any.
2824
 */
2825
int drm_add_modes_noedid(struct drm_connector *connector,
2826
			int hdisplay, int vdisplay)
2827
{
2828
	int i, count, num_modes = 0;
1963 serge 2829
	struct drm_display_mode *mode;
1179 serge 2830
	struct drm_device *dev = connector->dev;
2831
 
2832
	count = sizeof(drm_dmt_modes) / sizeof(struct drm_display_mode);
2833
	if (hdisplay < 0)
2834
		hdisplay = 0;
2835
	if (vdisplay < 0)
2836
		vdisplay = 0;
2837
 
2838
	for (i = 0; i < count; i++) {
1963 serge 2839
		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
1179 serge 2840
		if (hdisplay && vdisplay) {
2841
			/*
2842
			 * Only when two are valid, they will be used to check
2843
			 * whether the mode should be added to the mode list of
2844
			 * the connector.
2845
			 */
2846
			if (ptr->hdisplay > hdisplay ||
2847
					ptr->vdisplay > vdisplay)
2848
				continue;
2849
		}
1321 serge 2850
		if (drm_mode_vrefresh(ptr) > 61)
2851
			continue;
1179 serge 2852
		mode = drm_mode_duplicate(dev, ptr);
2853
		if (mode) {
2854
			drm_mode_probed_add(connector, mode);
2855
			num_modes++;
2856
		}
2857
	}
2858
	return num_modes;
2859
}
2860
EXPORT_SYMBOL(drm_add_modes_noedid);
3192 Serge 2861
 
2862
/**
3480 Serge 2863
 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
2864
 *                                              data from a DRM display mode
2865
 * @frame: HDMI AVI infoframe
2866
 * @mode: DRM display mode
3192 Serge 2867
 *
3480 Serge 2868
 * Returns 0 on success or a negative error code on failure.
3192 Serge 2869
 */
3480 Serge 2870
int
2871
drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
2872
					 const struct drm_display_mode *mode)
3192 Serge 2873
{
3480 Serge 2874
	int err;
3192 Serge 2875
 
3480 Serge 2876
	if (!frame || !mode)
2877
		return -EINVAL;
3192 Serge 2878
 
3480 Serge 2879
	err = hdmi_avi_infoframe_init(frame);
2880
	if (err < 0)
2881
		return err;
2882
 
2883
	frame->video_code = drm_match_cea_mode(mode);
2884
	if (!frame->video_code)
2885
		return 0;
2886
 
2887
	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
2888
	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
2889
 
3192 Serge 2890
	return 0;
2891
}
3480 Serge 2892
EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);