Subversion Repositories Kolibri OS

Rev

Rev 6936 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
5270 serge 1
/*
2
 * Read-Copy Update mechanism for mutual exclusion
3
 *
4
 * This program is free software; you can redistribute it and/or modify
5
 * it under the terms of the GNU General Public License as published by
6
 * the Free Software Foundation; either version 2 of the License, or
7
 * (at your option) any later version.
8
 *
9
 * This program is distributed in the hope that it will be useful,
10
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12
 * GNU General Public License for more details.
13
 *
14
 * You should have received a copy of the GNU General Public License
15
 * along with this program; if not, you can access it online at
16
 * http://www.gnu.org/licenses/gpl-2.0.html.
17
 *
18
 * Copyright IBM Corporation, 2001
19
 *
20
 * Author: Dipankar Sarma 
21
 *
22
 * Based on the original work by Paul McKenney 
23
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24
 * Papers:
25
 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26
 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27
 *
28
 * For detailed explanation of Read-Copy Update mechanism see -
29
 *		http://lse.sourceforge.net/locking/rcupdate.html
30
 *
31
 */
32
 
33
#ifndef __LINUX_RCUPDATE_H
34
#define __LINUX_RCUPDATE_H
35
 
36
#include 
37
#include 
38
#include 
39
#include 
40
//#include 
41
#include 
42
#include 
43
#include 
44
//#include 
45
#include 
46
#include 
6082 serge 47
#include 
48
 
5270 serge 49
#include 
50
 
6936 serge 51
#ifndef CONFIG_TINY_RCU
5270 serge 52
extern int rcu_expedited; /* for sysctl */
6936 serge 53
extern int rcu_normal;    /* also for sysctl */
54
#endif /* #ifndef CONFIG_TINY_RCU */
5270 serge 55
 
6082 serge 56
#ifdef CONFIG_TINY_RCU
57
/* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
6936 serge 58
static inline bool rcu_gp_is_normal(void)  /* Internal RCU use. */
59
{
60
	return true;
61
}
6082 serge 62
static inline bool rcu_gp_is_expedited(void)  /* Internal RCU use. */
63
{
64
	return false;
65
}
66
 
67
static inline void rcu_expedite_gp(void)
68
{
69
}
70
 
71
static inline void rcu_unexpedite_gp(void)
72
{
73
}
74
#else /* #ifdef CONFIG_TINY_RCU */
6936 serge 75
bool rcu_gp_is_normal(void);     /* Internal RCU use. */
6082 serge 76
bool rcu_gp_is_expedited(void);  /* Internal RCU use. */
77
void rcu_expedite_gp(void);
78
void rcu_unexpedite_gp(void);
79
#endif /* #else #ifdef CONFIG_TINY_RCU */
80
 
5270 serge 81
enum rcutorture_type {
82
	RCU_FLAVOR,
83
	RCU_BH_FLAVOR,
84
	RCU_SCHED_FLAVOR,
85
	RCU_TASKS_FLAVOR,
86
	SRCU_FLAVOR,
87
	INVALID_RCU_FLAVOR
88
};
89
 
90
#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
91
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
92
			    unsigned long *gpnum, unsigned long *completed);
93
void rcutorture_record_test_transition(void);
94
void rcutorture_record_progress(unsigned long vernum);
95
void do_trace_rcu_torture_read(const char *rcutorturename,
96
			       struct rcu_head *rhp,
97
			       unsigned long secs,
98
			       unsigned long c_old,
99
			       unsigned long c);
100
#else
101
static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
102
					  int *flags,
103
					  unsigned long *gpnum,
104
					  unsigned long *completed)
105
{
106
	*flags = 0;
107
	*gpnum = 0;
108
	*completed = 0;
109
}
110
static inline void rcutorture_record_test_transition(void)
111
{
112
}
113
static inline void rcutorture_record_progress(unsigned long vernum)
114
{
115
}
116
#ifdef CONFIG_RCU_TRACE
117
void do_trace_rcu_torture_read(const char *rcutorturename,
118
			       struct rcu_head *rhp,
119
			       unsigned long secs,
120
			       unsigned long c_old,
121
			       unsigned long c);
122
#else
123
#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
124
	do { } while (0)
125
#endif
126
#endif
127
 
128
#define UINT_CMP_GE(a, b)	(UINT_MAX / 2 >= (a) - (b))
129
#define UINT_CMP_LT(a, b)	(UINT_MAX / 2 < (a) - (b))
130
#define ULONG_CMP_GE(a, b)	(ULONG_MAX / 2 >= (a) - (b))
131
#define ULONG_CMP_LT(a, b)	(ULONG_MAX / 2 < (a) - (b))
132
#define ulong2long(a)		(*(long *)(&(a)))
133
 
134
/* Exported common interfaces */
135
 
136
#ifdef CONFIG_PREEMPT_RCU
137
 
138
/**
139
 * call_rcu() - Queue an RCU callback for invocation after a grace period.
140
 * @head: structure to be used for queueing the RCU updates.
141
 * @func: actual callback function to be invoked after the grace period
142
 *
143
 * The callback function will be invoked some time after a full grace
144
 * period elapses, in other words after all pre-existing RCU read-side
145
 * critical sections have completed.  However, the callback function
146
 * might well execute concurrently with RCU read-side critical sections
147
 * that started after call_rcu() was invoked.  RCU read-side critical
148
 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
149
 * and may be nested.
150
 *
151
 * Note that all CPUs must agree that the grace period extended beyond
152
 * all pre-existing RCU read-side critical section.  On systems with more
153
 * than one CPU, this means that when "func()" is invoked, each CPU is
154
 * guaranteed to have executed a full memory barrier since the end of its
155
 * last RCU read-side critical section whose beginning preceded the call
156
 * to call_rcu().  It also means that each CPU executing an RCU read-side
157
 * critical section that continues beyond the start of "func()" must have
158
 * executed a memory barrier after the call_rcu() but before the beginning
159
 * of that RCU read-side critical section.  Note that these guarantees
160
 * include CPUs that are offline, idle, or executing in user mode, as
161
 * well as CPUs that are executing in the kernel.
162
 *
163
 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
164
 * resulting RCU callback function "func()", then both CPU A and CPU B are
165
 * guaranteed to execute a full memory barrier during the time interval
166
 * between the call to call_rcu() and the invocation of "func()" -- even
167
 * if CPU A and CPU B are the same CPU (but again only if the system has
168
 * more than one CPU).
169
 */
170
void call_rcu(struct rcu_head *head,
6082 serge 171
	      rcu_callback_t func);
5270 serge 172
 
173
#else /* #ifdef CONFIG_PREEMPT_RCU */
174
 
175
/* In classic RCU, call_rcu() is just call_rcu_sched(). */
176
#define	call_rcu	call_rcu_sched
177
 
178
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
179
 
180
/**
181
 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
182
 * @head: structure to be used for queueing the RCU updates.
183
 * @func: actual callback function to be invoked after the grace period
184
 *
185
 * The callback function will be invoked some time after a full grace
186
 * period elapses, in other words after all currently executing RCU
187
 * read-side critical sections have completed. call_rcu_bh() assumes
188
 * that the read-side critical sections end on completion of a softirq
189
 * handler. This means that read-side critical sections in process
190
 * context must not be interrupted by softirqs. This interface is to be
191
 * used when most of the read-side critical sections are in softirq context.
192
 * RCU read-side critical sections are delimited by :
193
 *  - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context.
194
 *  OR
195
 *  - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
196
 *  These may be nested.
197
 *
198
 * See the description of call_rcu() for more detailed information on
199
 * memory ordering guarantees.
200
 */
201
void call_rcu_bh(struct rcu_head *head,
6082 serge 202
		 rcu_callback_t func);
5270 serge 203
 
204
/**
205
 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
206
 * @head: structure to be used for queueing the RCU updates.
207
 * @func: actual callback function to be invoked after the grace period
208
 *
209
 * The callback function will be invoked some time after a full grace
210
 * period elapses, in other words after all currently executing RCU
211
 * read-side critical sections have completed. call_rcu_sched() assumes
212
 * that the read-side critical sections end on enabling of preemption
213
 * or on voluntary preemption.
214
 * RCU read-side critical sections are delimited by :
215
 *  - rcu_read_lock_sched() and  rcu_read_unlock_sched(),
216
 *  OR
217
 *  anything that disables preemption.
218
 *  These may be nested.
219
 *
220
 * See the description of call_rcu() for more detailed information on
221
 * memory ordering guarantees.
222
 */
223
void call_rcu_sched(struct rcu_head *head,
6082 serge 224
		    rcu_callback_t func);
5270 serge 225
 
226
void synchronize_sched(void);
227
 
6588 serge 228
#define wait_rcu_gp(...)
5270 serge 229
/**
230
 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
231
 * @head: structure to be used for queueing the RCU updates.
232
 * @func: actual callback function to be invoked after the grace period
233
 *
234
 * The callback function will be invoked some time after a full grace
235
 * period elapses, in other words after all currently executing RCU
236
 * read-side critical sections have completed. call_rcu_tasks() assumes
237
 * that the read-side critical sections end at a voluntary context
238
 * switch (not a preemption!), entry into idle, or transition to usermode
239
 * execution.  As such, there are no read-side primitives analogous to
240
 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
241
 * to determine that all tasks have passed through a safe state, not so
242
 * much for data-strcuture synchronization.
243
 *
244
 * See the description of call_rcu() for more detailed information on
245
 * memory ordering guarantees.
246
 */
6082 serge 247
void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
5270 serge 248
void synchronize_rcu_tasks(void);
249
void rcu_barrier_tasks(void);
250
 
251
#ifdef CONFIG_PREEMPT_RCU
252
 
253
void __rcu_read_lock(void);
254
void __rcu_read_unlock(void);
255
void rcu_read_unlock_special(struct task_struct *t);
256
void synchronize_rcu(void);
257
 
258
/*
259
 * Defined as a macro as it is a very low level header included from
260
 * areas that don't even know about current.  This gives the rcu_read_lock()
261
 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
262
 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
263
 */
264
#define rcu_preempt_depth() (current->rcu_read_lock_nesting)
265
 
266
#else /* #ifdef CONFIG_PREEMPT_RCU */
267
 
268
static inline void __rcu_read_lock(void)
269
{
6082 serge 270
	if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
271
		preempt_disable();
5270 serge 272
}
273
 
274
static inline void __rcu_read_unlock(void)
275
{
6082 serge 276
	if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
277
		preempt_enable();
5270 serge 278
}
279
 
280
static inline void synchronize_rcu(void)
281
{
282
	synchronize_sched();
283
}
284
 
285
static inline int rcu_preempt_depth(void)
286
{
287
	return 0;
288
}
289
 
290
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
291
 
292
/* Internal to kernel */
293
void rcu_init(void);
294
void rcu_sched_qs(void);
295
void rcu_bh_qs(void);
296
void rcu_check_callbacks(int user);
7143 serge 297
void rcu_report_dead(unsigned int cpu);
5270 serge 298
 
6936 serge 299
#ifndef CONFIG_TINY_RCU
300
void rcu_end_inkernel_boot(void);
301
#else /* #ifndef CONFIG_TINY_RCU */
302
static inline void rcu_end_inkernel_boot(void) { }
303
#endif /* #ifndef CONFIG_TINY_RCU */
304
 
5270 serge 305
#ifdef CONFIG_RCU_STALL_COMMON
306
void rcu_sysrq_start(void);
307
void rcu_sysrq_end(void);
308
#else /* #ifdef CONFIG_RCU_STALL_COMMON */
309
static inline void rcu_sysrq_start(void)
310
{
311
}
312
static inline void rcu_sysrq_end(void)
313
{
314
}
315
#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
316
 
6082 serge 317
#ifdef CONFIG_NO_HZ_FULL
5270 serge 318
void rcu_user_enter(void);
319
void rcu_user_exit(void);
320
#else
321
static inline void rcu_user_enter(void) { }
322
static inline void rcu_user_exit(void) { }
6082 serge 323
#endif /* CONFIG_NO_HZ_FULL */
5270 serge 324
 
325
#ifdef CONFIG_RCU_NOCB_CPU
326
void rcu_init_nohz(void);
327
#else /* #ifdef CONFIG_RCU_NOCB_CPU */
328
static inline void rcu_init_nohz(void)
329
{
330
}
331
#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
332
 
333
/**
334
 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
335
 * @a: Code that RCU needs to pay attention to.
336
 *
337
 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
338
 * in the inner idle loop, that is, between the rcu_idle_enter() and
339
 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
340
 * critical sections.  However, things like powertop need tracepoints
341
 * in the inner idle loop.
342
 *
343
 * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
344
 * will tell RCU that it needs to pay attending, invoke its argument
345
 * (in this example, a call to the do_something_with_RCU() function),
346
 * and then tell RCU to go back to ignoring this CPU.  It is permissible
347
 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
348
 * quite limited.  If deeper nesting is required, it will be necessary
349
 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
350
 */
351
#define RCU_NONIDLE(a) \
352
	do { \
6936 serge 353
		rcu_irq_enter_irqson(); \
5270 serge 354
		do { a; } while (0); \
6936 serge 355
		rcu_irq_exit_irqson(); \
5270 serge 356
	} while (0)
357
 
358
/*
359
 * Note a voluntary context switch for RCU-tasks benefit.  This is a
360
 * macro rather than an inline function to avoid #include hell.
361
 */
362
#ifdef CONFIG_TASKS_RCU
363
#define TASKS_RCU(x) x
364
extern struct srcu_struct tasks_rcu_exit_srcu;
365
#define rcu_note_voluntary_context_switch(t) \
366
	do { \
6082 serge 367
		rcu_all_qs(); \
368
		if (READ_ONCE((t)->rcu_tasks_holdout)) \
369
			WRITE_ONCE((t)->rcu_tasks_holdout, false); \
5270 serge 370
	} while (0)
371
#else /* #ifdef CONFIG_TASKS_RCU */
372
#define TASKS_RCU(x) do { } while (0)
6082 serge 373
#define rcu_note_voluntary_context_switch(t)	rcu_all_qs()
5270 serge 374
#endif /* #else #ifdef CONFIG_TASKS_RCU */
375
 
376
/**
377
 * cond_resched_rcu_qs - Report potential quiescent states to RCU
378
 *
379
 * This macro resembles cond_resched(), except that it is defined to
380
 * report potential quiescent states to RCU-tasks even if the cond_resched()
381
 * machinery were to be shut off, as some advocate for PREEMPT kernels.
382
 */
383
#define cond_resched_rcu_qs() \
384
do { \
385
	if (!cond_resched()) \
386
		rcu_note_voluntary_context_switch(current); \
387
} while (0)
388
 
389
#if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
390
bool __rcu_is_watching(void);
391
#endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */
392
 
393
/*
394
 * Infrastructure to implement the synchronize_() primitives in
395
 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
396
 */
397
 
398
#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
399
#include 
400
#elif defined(CONFIG_TINY_RCU)
401
#include 
402
#else
403
#error "Unknown RCU implementation specified to kernel configuration"
404
#endif
405
 
406
/*
407
 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
408
 * initialization and destruction of rcu_head on the stack. rcu_head structures
409
 * allocated dynamically in the heap or defined statically don't need any
410
 * initialization.
411
 */
412
#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
413
void init_rcu_head(struct rcu_head *head);
414
void destroy_rcu_head(struct rcu_head *head);
415
void init_rcu_head_on_stack(struct rcu_head *head);
416
void destroy_rcu_head_on_stack(struct rcu_head *head);
417
#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
418
static inline void init_rcu_head(struct rcu_head *head)
419
{
420
}
421
 
422
static inline void destroy_rcu_head(struct rcu_head *head)
423
{
424
}
425
 
426
static inline void init_rcu_head_on_stack(struct rcu_head *head)
427
{
428
}
429
 
430
static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
431
{
432
}
433
#endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
434
 
435
#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
436
bool rcu_lockdep_current_cpu_online(void);
437
#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
438
static inline bool rcu_lockdep_current_cpu_online(void)
439
{
440
	return true;
441
}
442
#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
443
 
444
#ifdef CONFIG_DEBUG_LOCK_ALLOC
445
 
446
static inline void rcu_lock_acquire(struct lockdep_map *map)
447
{
448
	lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
449
}
450
 
451
static inline void rcu_lock_release(struct lockdep_map *map)
452
{
453
	lock_release(map, 1, _THIS_IP_);
454
}
455
 
456
extern struct lockdep_map rcu_lock_map;
457
extern struct lockdep_map rcu_bh_lock_map;
458
extern struct lockdep_map rcu_sched_lock_map;
459
extern struct lockdep_map rcu_callback_map;
460
int debug_lockdep_rcu_enabled(void);
461
 
462
int rcu_read_lock_held(void);
463
int rcu_read_lock_bh_held(void);
464
 
465
/**
466
 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
467
 *
468
 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
469
 * RCU-sched read-side critical section.  In absence of
470
 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
6295 serge 471
 * critical section unless it can prove otherwise.
5270 serge 472
 */
473
#ifdef CONFIG_PREEMPT_COUNT
6295 serge 474
int rcu_read_lock_sched_held(void);
5270 serge 475
#else /* #ifdef CONFIG_PREEMPT_COUNT */
476
static inline int rcu_read_lock_sched_held(void)
477
{
478
	return 1;
479
}
480
#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
481
 
482
#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
483
 
484
# define rcu_lock_acquire(a)		do { } while (0)
485
# define rcu_lock_release(a)		do { } while (0)
486
 
487
static inline int rcu_read_lock_held(void)
488
{
489
	return 1;
490
}
491
 
492
static inline int rcu_read_lock_bh_held(void)
493
{
494
	return 1;
495
}
496
 
497
#ifdef CONFIG_PREEMPT_COUNT
498
static inline int rcu_read_lock_sched_held(void)
499
{
500
	return preempt_count() != 0 || irqs_disabled();
501
}
502
#else /* #ifdef CONFIG_PREEMPT_COUNT */
503
static inline int rcu_read_lock_sched_held(void)
504
{
505
	return 1;
506
}
507
#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
508
 
509
#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
510
 
511
#ifdef CONFIG_PROVE_RCU
512
 
513
/**
6295 serge 514
 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
5270 serge 515
 * @c: condition to check
516
 * @s: informative message
517
 */
6295 serge 518
#define RCU_LOCKDEP_WARN(c, s)						\
5270 serge 519
	do {								\
520
		static bool __section(.data.unlikely) __warned;		\
6295 serge 521
		if (debug_lockdep_rcu_enabled() && !__warned && (c)) {	\
5270 serge 522
			__warned = true;				\
523
			lockdep_rcu_suspicious(__FILE__, __LINE__, s);	\
524
		}							\
525
	} while (0)
526
 
527
#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
528
static inline void rcu_preempt_sleep_check(void)
529
{
6295 serge 530
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
7143 serge 531
			 "Illegal context switch in RCU read-side critical section");
5270 serge 532
}
533
#else /* #ifdef CONFIG_PROVE_RCU */
534
static inline void rcu_preempt_sleep_check(void)
535
{
536
}
537
#endif /* #else #ifdef CONFIG_PROVE_RCU */
538
 
539
#define rcu_sleep_check()						\
540
	do {								\
541
		rcu_preempt_sleep_check();				\
6295 serge 542
		RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),	\
7143 serge 543
				 "Illegal context switch in RCU-bh read-side critical section"); \
6295 serge 544
		RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),	\
7143 serge 545
				 "Illegal context switch in RCU-sched read-side critical section"); \
5270 serge 546
	} while (0)
547
 
548
#else /* #ifdef CONFIG_PROVE_RCU */
549
 
6295 serge 550
#define RCU_LOCKDEP_WARN(c, s) do { } while (0)
5270 serge 551
#define rcu_sleep_check() do { } while (0)
552
 
553
#endif /* #else #ifdef CONFIG_PROVE_RCU */
554
 
555
/*
556
 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
557
 * and rcu_assign_pointer().  Some of these could be folded into their
558
 * callers, but they are left separate in order to ease introduction of
559
 * multiple flavors of pointers to match the multiple flavors of RCU
560
 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
561
 * the future.
562
 */
563
 
564
#ifdef __CHECKER__
565
#define rcu_dereference_sparse(p, space) \
566
	((void)(((typeof(*p) space *)p) == p))
567
#else /* #ifdef __CHECKER__ */
568
#define rcu_dereference_sparse(p, space)
569
#endif /* #else #ifdef __CHECKER__ */
570
 
571
#define __rcu_access_pointer(p, space) \
572
({ \
6082 serge 573
	typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
5270 serge 574
	rcu_dereference_sparse(p, space); \
575
	((typeof(*p) __force __kernel *)(_________p1)); \
576
})
577
#define __rcu_dereference_check(p, c, space) \
578
({ \
6082 serge 579
	/* Dependency order vs. p above. */ \
580
	typeof(*p) *________p1 = (typeof(*p) *__force)lockless_dereference(p); \
6295 serge 581
	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
5270 serge 582
	rcu_dereference_sparse(p, space); \
6082 serge 583
	((typeof(*p) __force __kernel *)(________p1)); \
5270 serge 584
})
585
#define __rcu_dereference_protected(p, c, space) \
586
({ \
6295 serge 587
	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
5270 serge 588
	rcu_dereference_sparse(p, space); \
589
	((typeof(*p) __force __kernel *)(p)); \
590
})
591
 
592
/**
593
 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
594
 * @v: The value to statically initialize with.
595
 */
596
#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
597
 
598
/**
599
 * rcu_assign_pointer() - assign to RCU-protected pointer
600
 * @p: pointer to assign to
601
 * @v: value to assign (publish)
602
 *
603
 * Assigns the specified value to the specified RCU-protected
604
 * pointer, ensuring that any concurrent RCU readers will see
605
 * any prior initialization.
606
 *
607
 * Inserts memory barriers on architectures that require them
608
 * (which is most of them), and also prevents the compiler from
609
 * reordering the code that initializes the structure after the pointer
610
 * assignment.  More importantly, this call documents which pointers
611
 * will be dereferenced by RCU read-side code.
612
 *
613
 * In some special cases, you may use RCU_INIT_POINTER() instead
614
 * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
615
 * to the fact that it does not constrain either the CPU or the compiler.
616
 * That said, using RCU_INIT_POINTER() when you should have used
617
 * rcu_assign_pointer() is a very bad thing that results in
618
 * impossible-to-diagnose memory corruption.  So please be careful.
619
 * See the RCU_INIT_POINTER() comment header for details.
620
 *
621
 * Note that rcu_assign_pointer() evaluates each of its arguments only
622
 * once, appearances notwithstanding.  One of the "extra" evaluations
623
 * is in typeof() and the other visible only to sparse (__CHECKER__),
624
 * neither of which actually execute the argument.  As with most cpp
625
 * macros, this execute-arguments-only-once property is important, so
626
 * please be careful when making changes to rcu_assign_pointer() and the
627
 * other macros that it invokes.
628
 */
629
#define rcu_assign_pointer(p, v) smp_store_release(&p, RCU_INITIALIZER(v))
630
 
631
/**
632
 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
633
 * @p: The pointer to read
634
 *
635
 * Return the value of the specified RCU-protected pointer, but omit the
6082 serge 636
 * smp_read_barrier_depends() and keep the READ_ONCE().  This is useful
5270 serge 637
 * when the value of this pointer is accessed, but the pointer is not
638
 * dereferenced, for example, when testing an RCU-protected pointer against
639
 * NULL.  Although rcu_access_pointer() may also be used in cases where
640
 * update-side locks prevent the value of the pointer from changing, you
641
 * should instead use rcu_dereference_protected() for this use case.
642
 *
643
 * It is also permissible to use rcu_access_pointer() when read-side
644
 * access to the pointer was removed at least one grace period ago, as
645
 * is the case in the context of the RCU callback that is freeing up
646
 * the data, or after a synchronize_rcu() returns.  This can be useful
647
 * when tearing down multi-linked structures after a grace period
648
 * has elapsed.
649
 */
650
#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
651
 
652
/**
653
 * rcu_dereference_check() - rcu_dereference with debug checking
654
 * @p: The pointer to read, prior to dereferencing
655
 * @c: The conditions under which the dereference will take place
656
 *
657
 * Do an rcu_dereference(), but check that the conditions under which the
658
 * dereference will take place are correct.  Typically the conditions
659
 * indicate the various locking conditions that should be held at that
660
 * point.  The check should return true if the conditions are satisfied.
661
 * An implicit check for being in an RCU read-side critical section
662
 * (rcu_read_lock()) is included.
663
 *
664
 * For example:
665
 *
666
 *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
667
 *
668
 * could be used to indicate to lockdep that foo->bar may only be dereferenced
669
 * if either rcu_read_lock() is held, or that the lock required to replace
670
 * the bar struct at foo->bar is held.
671
 *
672
 * Note that the list of conditions may also include indications of when a lock
673
 * need not be held, for example during initialisation or destruction of the
674
 * target struct:
675
 *
676
 *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
677
 *					      atomic_read(&foo->usage) == 0);
678
 *
679
 * Inserts memory barriers on architectures that require them
680
 * (currently only the Alpha), prevents the compiler from refetching
681
 * (and from merging fetches), and, more importantly, documents exactly
682
 * which pointers are protected by RCU and checks that the pointer is
683
 * annotated as __rcu.
684
 */
685
#define rcu_dereference_check(p, c) \
6082 serge 686
	__rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
5270 serge 687
 
688
/**
689
 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
690
 * @p: The pointer to read, prior to dereferencing
691
 * @c: The conditions under which the dereference will take place
692
 *
693
 * This is the RCU-bh counterpart to rcu_dereference_check().
694
 */
695
#define rcu_dereference_bh_check(p, c) \
6082 serge 696
	__rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
5270 serge 697
 
698
/**
699
 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
700
 * @p: The pointer to read, prior to dereferencing
701
 * @c: The conditions under which the dereference will take place
702
 *
703
 * This is the RCU-sched counterpart to rcu_dereference_check().
704
 */
705
#define rcu_dereference_sched_check(p, c) \
6082 serge 706
	__rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
5270 serge 707
				__rcu)
708
 
709
#define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
710
 
711
/*
712
 * The tracing infrastructure traces RCU (we want that), but unfortunately
713
 * some of the RCU checks causes tracing to lock up the system.
714
 *
6936 serge 715
 * The no-tracing version of rcu_dereference_raw() must not call
5270 serge 716
 * rcu_read_lock_held().
717
 */
718
#define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
719
 
720
/**
721
 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
722
 * @p: The pointer to read, prior to dereferencing
723
 * @c: The conditions under which the dereference will take place
724
 *
725
 * Return the value of the specified RCU-protected pointer, but omit
6082 serge 726
 * both the smp_read_barrier_depends() and the READ_ONCE().  This
5270 serge 727
 * is useful in cases where update-side locks prevent the value of the
728
 * pointer from changing.  Please note that this primitive does -not-
729
 * prevent the compiler from repeating this reference or combining it
730
 * with other references, so it should not be used without protection
731
 * of appropriate locks.
732
 *
733
 * This function is only for update-side use.  Using this function
734
 * when protected only by rcu_read_lock() will result in infrequent
735
 * but very ugly failures.
736
 */
737
#define rcu_dereference_protected(p, c) \
738
	__rcu_dereference_protected((p), (c), __rcu)
739
 
740
 
741
/**
742
 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
743
 * @p: The pointer to read, prior to dereferencing
744
 *
745
 * This is a simple wrapper around rcu_dereference_check().
746
 */
747
#define rcu_dereference(p) rcu_dereference_check(p, 0)
748
 
749
/**
750
 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
751
 * @p: The pointer to read, prior to dereferencing
752
 *
753
 * Makes rcu_dereference_check() do the dirty work.
754
 */
755
#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
756
 
757
/**
758
 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
759
 * @p: The pointer to read, prior to dereferencing
760
 *
761
 * Makes rcu_dereference_check() do the dirty work.
762
 */
763
#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
764
 
765
/**
6936 serge 766
 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
767
 * @p: The pointer to hand off
768
 *
769
 * This is simply an identity function, but it documents where a pointer
770
 * is handed off from RCU to some other synchronization mechanism, for
771
 * example, reference counting or locking.  In C11, it would map to
772
 * kill_dependency().  It could be used as follows:
773
 *
774
 *	rcu_read_lock();
775
 *	p = rcu_dereference(gp);
776
 *	long_lived = is_long_lived(p);
777
 *	if (long_lived) {
778
 *		if (!atomic_inc_not_zero(p->refcnt))
779
 *			long_lived = false;
780
 *		else
781
 *			p = rcu_pointer_handoff(p);
782
 *	}
783
 *	rcu_read_unlock();
784
 */
785
#define rcu_pointer_handoff(p) (p)
786
 
787
/**
5270 serge 788
 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
789
 *
790
 * When synchronize_rcu() is invoked on one CPU while other CPUs
791
 * are within RCU read-side critical sections, then the
792
 * synchronize_rcu() is guaranteed to block until after all the other
793
 * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
794
 * on one CPU while other CPUs are within RCU read-side critical
795
 * sections, invocation of the corresponding RCU callback is deferred
796
 * until after the all the other CPUs exit their critical sections.
797
 *
798
 * Note, however, that RCU callbacks are permitted to run concurrently
799
 * with new RCU read-side critical sections.  One way that this can happen
800
 * is via the following sequence of events: (1) CPU 0 enters an RCU
801
 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
802
 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
803
 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
804
 * callback is invoked.  This is legal, because the RCU read-side critical
805
 * section that was running concurrently with the call_rcu() (and which
806
 * therefore might be referencing something that the corresponding RCU
807
 * callback would free up) has completed before the corresponding
808
 * RCU callback is invoked.
809
 *
810
 * RCU read-side critical sections may be nested.  Any deferred actions
811
 * will be deferred until the outermost RCU read-side critical section
812
 * completes.
813
 *
814
 * You can avoid reading and understanding the next paragraph by
815
 * following this rule: don't put anything in an rcu_read_lock() RCU
816
 * read-side critical section that would block in a !PREEMPT kernel.
817
 * But if you want the full story, read on!
818
 *
819
 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
820
 * it is illegal to block while in an RCU read-side critical section.
821
 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
822
 * kernel builds, RCU read-side critical sections may be preempted,
823
 * but explicit blocking is illegal.  Finally, in preemptible RCU
824
 * implementations in real-time (with -rt patchset) kernel builds, RCU
825
 * read-side critical sections may be preempted and they may also block, but
826
 * only when acquiring spinlocks that are subject to priority inheritance.
827
 */
828
static inline void rcu_read_lock(void)
829
{
830
	__rcu_read_lock();
831
	__acquire(RCU);
832
	rcu_lock_acquire(&rcu_lock_map);
6295 serge 833
	RCU_LOCKDEP_WARN(!rcu_is_watching(),
7143 serge 834
			 "rcu_read_lock() used illegally while idle");
5270 serge 835
}
836
 
837
/*
838
 * So where is rcu_write_lock()?  It does not exist, as there is no
839
 * way for writers to lock out RCU readers.  This is a feature, not
840
 * a bug -- this property is what provides RCU's performance benefits.
841
 * Of course, writers must coordinate with each other.  The normal
842
 * spinlock primitives work well for this, but any other technique may be
843
 * used as well.  RCU does not care how the writers keep out of each
844
 * others' way, as long as they do so.
845
 */
846
 
847
/**
848
 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
849
 *
850
 * In most situations, rcu_read_unlock() is immune from deadlock.
851
 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
852
 * is responsible for deboosting, which it does via rt_mutex_unlock().
853
 * Unfortunately, this function acquires the scheduler's runqueue and
854
 * priority-inheritance spinlocks.  This means that deadlock could result
855
 * if the caller of rcu_read_unlock() already holds one of these locks or
856
 * any lock that is ever acquired while holding them; or any lock which
857
 * can be taken from interrupt context because rcu_boost()->rt_mutex_lock()
858
 * does not disable irqs while taking ->wait_lock.
859
 *
860
 * That said, RCU readers are never priority boosted unless they were
861
 * preempted.  Therefore, one way to avoid deadlock is to make sure
862
 * that preemption never happens within any RCU read-side critical
863
 * section whose outermost rcu_read_unlock() is called with one of
864
 * rt_mutex_unlock()'s locks held.  Such preemption can be avoided in
865
 * a number of ways, for example, by invoking preempt_disable() before
866
 * critical section's outermost rcu_read_lock().
867
 *
868
 * Given that the set of locks acquired by rt_mutex_unlock() might change
869
 * at any time, a somewhat more future-proofed approach is to make sure
870
 * that that preemption never happens within any RCU read-side critical
871
 * section whose outermost rcu_read_unlock() is called with irqs disabled.
872
 * This approach relies on the fact that rt_mutex_unlock() currently only
873
 * acquires irq-disabled locks.
874
 *
875
 * The second of these two approaches is best in most situations,
876
 * however, the first approach can also be useful, at least to those
877
 * developers willing to keep abreast of the set of locks acquired by
878
 * rt_mutex_unlock().
879
 *
880
 * See rcu_read_lock() for more information.
881
 */
882
static inline void rcu_read_unlock(void)
883
{
6295 serge 884
	RCU_LOCKDEP_WARN(!rcu_is_watching(),
7143 serge 885
			 "rcu_read_unlock() used illegally while idle");
5270 serge 886
	__release(RCU);
887
	__rcu_read_unlock();
6082 serge 888
	rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
5270 serge 889
}
890
 
891
/**
892
 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
893
 *
894
 * This is equivalent of rcu_read_lock(), but to be used when updates
895
 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
896
 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
897
 * softirq handler to be a quiescent state, a process in RCU read-side
898
 * critical section must be protected by disabling softirqs. Read-side
899
 * critical sections in interrupt context can use just rcu_read_lock(),
900
 * though this should at least be commented to avoid confusing people
901
 * reading the code.
902
 *
903
 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
904
 * must occur in the same context, for example, it is illegal to invoke
905
 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
906
 * was invoked from some other task.
907
 */
908
static inline void rcu_read_lock_bh(void)
909
{
910
	local_bh_disable();
911
	__acquire(RCU_BH);
912
	rcu_lock_acquire(&rcu_bh_lock_map);
6295 serge 913
	RCU_LOCKDEP_WARN(!rcu_is_watching(),
7143 serge 914
			 "rcu_read_lock_bh() used illegally while idle");
5270 serge 915
}
916
 
917
/*
918
 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
919
 *
920
 * See rcu_read_lock_bh() for more information.
921
 */
922
static inline void rcu_read_unlock_bh(void)
923
{
6295 serge 924
	RCU_LOCKDEP_WARN(!rcu_is_watching(),
7143 serge 925
			 "rcu_read_unlock_bh() used illegally while idle");
5270 serge 926
	rcu_lock_release(&rcu_bh_lock_map);
927
	__release(RCU_BH);
928
	local_bh_enable();
929
}
930
 
931
/**
932
 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
933
 *
934
 * This is equivalent of rcu_read_lock(), but to be used when updates
935
 * are being done using call_rcu_sched() or synchronize_rcu_sched().
936
 * Read-side critical sections can also be introduced by anything that
937
 * disables preemption, including local_irq_disable() and friends.
938
 *
939
 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
940
 * must occur in the same context, for example, it is illegal to invoke
941
 * rcu_read_unlock_sched() from process context if the matching
942
 * rcu_read_lock_sched() was invoked from an NMI handler.
943
 */
944
static inline void rcu_read_lock_sched(void)
945
{
946
	preempt_disable();
947
	__acquire(RCU_SCHED);
948
	rcu_lock_acquire(&rcu_sched_lock_map);
6295 serge 949
	RCU_LOCKDEP_WARN(!rcu_is_watching(),
7143 serge 950
			 "rcu_read_lock_sched() used illegally while idle");
5270 serge 951
}
952
 
953
/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
954
static inline notrace void rcu_read_lock_sched_notrace(void)
955
{
956
	preempt_disable_notrace();
957
	__acquire(RCU_SCHED);
958
}
959
 
960
/*
961
 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
962
 *
963
 * See rcu_read_lock_sched for more information.
964
 */
965
static inline void rcu_read_unlock_sched(void)
966
{
6295 serge 967
	RCU_LOCKDEP_WARN(!rcu_is_watching(),
7143 serge 968
			 "rcu_read_unlock_sched() used illegally while idle");
5270 serge 969
	rcu_lock_release(&rcu_sched_lock_map);
970
	__release(RCU_SCHED);
971
	preempt_enable();
972
}
973
 
974
/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
975
static inline notrace void rcu_read_unlock_sched_notrace(void)
976
{
977
	__release(RCU_SCHED);
978
	preempt_enable_notrace();
979
}
980
 
981
/**
982
 * RCU_INIT_POINTER() - initialize an RCU protected pointer
983
 *
984
 * Initialize an RCU-protected pointer in special cases where readers
985
 * do not need ordering constraints on the CPU or the compiler.  These
986
 * special cases are:
987
 *
988
 * 1.	This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
989
 * 2.	The caller has taken whatever steps are required to prevent
990
 *	RCU readers from concurrently accessing this pointer -or-
991
 * 3.	The referenced data structure has already been exposed to
992
 *	readers either at compile time or via rcu_assign_pointer() -and-
993
 *	a.	You have not made -any- reader-visible changes to
994
 *		this structure since then -or-
995
 *	b.	It is OK for readers accessing this structure from its
996
 *		new location to see the old state of the structure.  (For
997
 *		example, the changes were to statistical counters or to
998
 *		other state where exact synchronization is not required.)
999
 *
1000
 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
1001
 * result in impossible-to-diagnose memory corruption.  As in the structures
1002
 * will look OK in crash dumps, but any concurrent RCU readers might
1003
 * see pre-initialized values of the referenced data structure.  So
1004
 * please be very careful how you use RCU_INIT_POINTER()!!!
1005
 *
1006
 * If you are creating an RCU-protected linked structure that is accessed
1007
 * by a single external-to-structure RCU-protected pointer, then you may
1008
 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
1009
 * pointers, but you must use rcu_assign_pointer() to initialize the
1010
 * external-to-structure pointer -after- you have completely initialized
1011
 * the reader-accessible portions of the linked structure.
1012
 *
1013
 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
1014
 * ordering guarantees for either the CPU or the compiler.
1015
 */
1016
#define RCU_INIT_POINTER(p, v) \
1017
	do { \
1018
		rcu_dereference_sparse(p, __rcu); \
6936 serge 1019
		WRITE_ONCE(p, RCU_INITIALIZER(v)); \
5270 serge 1020
	} while (0)
1021
 
1022
/**
1023
 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
1024
 *
1025
 * GCC-style initialization for an RCU-protected pointer in a structure field.
1026
 */
1027
#define RCU_POINTER_INITIALIZER(p, v) \
1028
		.p = RCU_INITIALIZER(v)
1029
 
1030
/*
1031
 * Does the specified offset indicate that the corresponding rcu_head
1032
 * structure can be handled by kfree_rcu()?
1033
 */
1034
#define __is_kfree_rcu_offset(offset) ((offset) < 4096)
1035
 
1036
/*
1037
 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
1038
 */
1039
#define __kfree_rcu(head, offset) \
1040
	do { \
1041
		BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
1042
		kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \
1043
	} while (0)
1044
 
1045
/**
1046
 * kfree_rcu() - kfree an object after a grace period.
1047
 * @ptr:	pointer to kfree
1048
 * @rcu_head:	the name of the struct rcu_head within the type of @ptr.
1049
 *
1050
 * Many rcu callbacks functions just call kfree() on the base structure.
1051
 * These functions are trivial, but their size adds up, and furthermore
1052
 * when they are used in a kernel module, that module must invoke the
1053
 * high-latency rcu_barrier() function at module-unload time.
1054
 *
1055
 * The kfree_rcu() function handles this issue.  Rather than encoding a
1056
 * function address in the embedded rcu_head structure, kfree_rcu() instead
1057
 * encodes the offset of the rcu_head structure within the base structure.
1058
 * Because the functions are not allowed in the low-order 4096 bytes of
1059
 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1060
 * If the offset is larger than 4095 bytes, a compile-time error will
1061
 * be generated in __kfree_rcu().  If this error is triggered, you can
1062
 * either fall back to use of call_rcu() or rearrange the structure to
1063
 * position the rcu_head structure into the first 4096 bytes.
1064
 *
1065
 * Note that the allowable offset might decrease in the future, for example,
1066
 * to allow something like kmem_cache_free_rcu().
1067
 *
1068
 * The BUILD_BUG_ON check must not involve any function calls, hence the
1069
 * checks are done in macros here.
1070
 */
1071
#define kfree_rcu(ptr, rcu_head)					\
1072
	__kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1073
 
6082 serge 1074
#ifdef CONFIG_TINY_RCU
1075
static inline int rcu_needs_cpu(u64 basemono, u64 *nextevt)
5270 serge 1076
{
6082 serge 1077
	*nextevt = KTIME_MAX;
5270 serge 1078
	return 0;
1079
}
6082 serge 1080
#endif /* #ifdef CONFIG_TINY_RCU */
5270 serge 1081
 
1082
#if defined(CONFIG_RCU_NOCB_CPU_ALL)
1083
static inline bool rcu_is_nocb_cpu(int cpu) { return true; }
1084
#elif defined(CONFIG_RCU_NOCB_CPU)
1085
bool rcu_is_nocb_cpu(int cpu);
1086
#else
1087
static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
1088
#endif
1089
 
1090
 
1091
/* Only for use by adaptive-ticks code. */
1092
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
1093
bool rcu_sys_is_idle(void);
1094
void rcu_sysidle_force_exit(void);
1095
#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1096
 
1097
static inline bool rcu_sys_is_idle(void)
1098
{
1099
	return false;
1100
}
1101
 
1102
static inline void rcu_sysidle_force_exit(void)
1103
{
1104
}
1105
 
1106
#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1107
 
1108
 
1109
#endif /* __LINUX_RCUPDATE_H */