Subversion Repositories Kolibri OS

Rev

Rev 4065 | Rev 5056 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2967 Serge 1
#ifndef _LINUX_JIFFIES_H
2
#define _LINUX_JIFFIES_H
3
 
4103 Serge 4
#include 
2967 Serge 5
#include 
6
#include 
4103 Serge 7
#include 
2967 Serge 8
//#include 
9
//#include          /* for HZ */
10
 
11
 
12
#define HZ              100
13
#define CLOCK_TICK_RATE 1193182ul
14
 
15
/*
16
 * The following defines establish the engineering parameters of the PLL
17
 * model. The HZ variable establishes the timer interrupt frequency, 100 Hz
18
 * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
19
 * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
20
 * nearest power of two in order to avoid hardware multiply operations.
21
 */
22
#if HZ >= 12 && HZ < 24
23
# define SHIFT_HZ	4
24
#elif HZ >= 24 && HZ < 48
25
# define SHIFT_HZ	5
26
#elif HZ >= 48 && HZ < 96
27
# define SHIFT_HZ	6
28
#elif HZ >= 96 && HZ < 192
29
# define SHIFT_HZ	7
30
#elif HZ >= 192 && HZ < 384
31
# define SHIFT_HZ	8
32
#elif HZ >= 384 && HZ < 768
33
# define SHIFT_HZ	9
34
#elif HZ >= 768 && HZ < 1536
35
# define SHIFT_HZ	10
36
#elif HZ >= 1536 && HZ < 3072
37
# define SHIFT_HZ	11
38
#elif HZ >= 3072 && HZ < 6144
39
# define SHIFT_HZ	12
40
#elif HZ >= 6144 && HZ < 12288
41
# define SHIFT_HZ	13
42
#else
43
# error Invalid value of HZ.
44
#endif
45
 
46
/* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can
47
 * improve accuracy by shifting LSH bits, hence calculating:
48
 *     (NOM << LSH) / DEN
49
 * This however means trouble for large NOM, because (NOM << LSH) may no
50
 * longer fit in 32 bits. The following way of calculating this gives us
51
 * some slack, under the following conditions:
52
 *   - (NOM / DEN) fits in (32 - LSH) bits.
53
 *   - (NOM % DEN) fits in (32 - LSH) bits.
54
 */
55
#define SH_DIV(NOM,DEN,LSH) (   (((NOM) / (DEN)) << (LSH))              \
56
                             + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
57
 
4103 Serge 58
/* LATCH is used in the interval timer and ftape setup. */
59
#define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ)	/* For divider */
2967 Serge 60
 
4103 Serge 61
extern int register_refined_jiffies(long clock_tick_rate);
2967 Serge 62
 
4103 Serge 63
/* TICK_NSEC is the time between ticks in nsec assuming SHIFTED_HZ */
64
#define TICK_NSEC ((NSEC_PER_SEC+HZ/2)/HZ)
65
 
2967 Serge 66
/* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
67
#define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
68
 
4103 Serge 69
/* some arch's have a small-data section that can be accessed register-relative
70
 * but that can only take up to, say, 4-byte variables. jiffies being part of
71
 * an 8-byte variable may not be correctly accessed unless we force the issue
72
 */
73
#define __jiffy_data  __attribute__((section(".data")))
2967 Serge 74
 
4103 Serge 75
/*
76
 * The 64-bit value is not atomic - you MUST NOT read it
77
 * without sampling the sequence number in jiffies_lock.
78
 * get_jiffies_64() will do this for you as appropriate.
2967 Serge 79
static inline u64 get_jiffies_64(void)
80
{
3031 serge 81
    return (u64)GetTimerTicks();
2967 Serge 82
}
83
 
84
/*
85
 *	These inlines deal with timer wrapping correctly. You are
86
 *	strongly encouraged to use them
87
 *	1. Because people otherwise forget
88
 *	2. Because if the timer wrap changes in future you won't have to
89
 *	   alter your driver code.
90
 *
91
 * time_after(a,b) returns true if the time a is after time b.
92
 *
93
 * Do this with "<0" and ">=0" to only test the sign of the result. A
94
 * good compiler would generate better code (and a really good compiler
95
 * wouldn't care). Gcc is currently neither.
96
 */
97
#define time_after(a,b)		\
98
	(typecheck(unsigned long, a) && \
99
	 typecheck(unsigned long, b) && \
4103 Serge 100
	 ((long)((b) - (a)) < 0))
2967 Serge 101
#define time_before(a,b)	time_after(b,a)
102
 
103
#define time_after_eq(a,b)	\
104
	(typecheck(unsigned long, a) && \
105
	 typecheck(unsigned long, b) && \
4103 Serge 106
	 ((long)((a) - (b)) >= 0))
2967 Serge 107
#define time_before_eq(a,b)	time_after_eq(b,a)
108
 
109
/*
110
 * Calculate whether a is in the range of [b, c].
111
 */
112
#define time_in_range(a,b,c) \
113
	(time_after_eq(a,b) && \
114
	 time_before_eq(a,c))
115
 
116
/*
117
 * Calculate whether a is in the range of [b, c).
118
 */
119
#define time_in_range_open(a,b,c) \
120
	(time_after_eq(a,b) && \
121
	 time_before(a,c))
122
 
123
/* Same as above, but does so with platform independent 64bit types.
124
 * These must be used when utilizing jiffies_64 (i.e. return value of
125
 * get_jiffies_64() */
126
#define time_after64(a,b)	\
127
	(typecheck(__u64, a) &&	\
128
	 typecheck(__u64, b) && \
4103 Serge 129
	 ((__s64)((b) - (a)) < 0))
2967 Serge 130
#define time_before64(a,b)	time_after64(b,a)
131
 
132
#define time_after_eq64(a,b)	\
133
	(typecheck(__u64, a) && \
134
	 typecheck(__u64, b) && \
4103 Serge 135
	 ((__s64)((a) - (b)) >= 0))
2967 Serge 136
#define time_before_eq64(a,b)	time_after_eq64(b,a)
137
 
4065 Serge 138
#define time_in_range64(a, b, c) \
139
	(time_after_eq64(a, b) && \
140
	 time_before_eq64(a, c))
141
 
2967 Serge 142
/*
143
 * These four macros compare jiffies and 'a' for convenience.
144
 */
145
 
146
/* time_is_before_jiffies(a) return true if a is before jiffies */
147
#define time_is_before_jiffies(a) time_after(jiffies, a)
148
 
149
/* time_is_after_jiffies(a) return true if a is after jiffies */
150
#define time_is_after_jiffies(a) time_before(jiffies, a)
151
 
152
/* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/
153
#define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a)
154
 
155
/* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/
156
#define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a)
157
 
158
/*
159
 * Have the 32 bit jiffies value wrap 5 minutes after boot
160
 * so jiffies wrap bugs show up earlier.
161
 */
162
#define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
163
 
164
/*
165
 * Change timeval to jiffies, trying to avoid the
166
 * most obvious overflows..
167
 *
168
 * And some not so obvious.
169
 *
170
 * Note that we don't want to return LONG_MAX, because
171
 * for various timeout reasons we often end up having
172
 * to wait "jiffies+1" in order to guarantee that we wait
173
 * at _least_ "jiffies" - so "jiffies+1" had better still
174
 * be positive.
175
 */
176
#define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1)
177
 
178
extern unsigned long preset_lpj;
179
 
180
/*
181
 * We want to do realistic conversions of time so we need to use the same
182
 * values the update wall clock code uses as the jiffies size.  This value
183
 * is: TICK_NSEC (which is defined in timex.h).  This
184
 * is a constant and is in nanoseconds.  We will use scaled math
185
 * with a set of scales defined here as SEC_JIFFIE_SC,  USEC_JIFFIE_SC and
186
 * NSEC_JIFFIE_SC.  Note that these defines contain nothing but
187
 * constants and so are computed at compile time.  SHIFT_HZ (computed in
188
 * timex.h) adjusts the scaling for different HZ values.
189
 
190
 * Scaled math???  What is that?
191
 *
192
 * Scaled math is a way to do integer math on values that would,
193
 * otherwise, either overflow, underflow, or cause undesired div
194
 * instructions to appear in the execution path.  In short, we "scale"
195
 * up the operands so they take more bits (more precision, less
196
 * underflow), do the desired operation and then "scale" the result back
197
 * by the same amount.  If we do the scaling by shifting we avoid the
198
 * costly mpy and the dastardly div instructions.
199
 
200
 * Suppose, for example, we want to convert from seconds to jiffies
201
 * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE.  The
202
 * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
203
 * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
204
 * might calculate at compile time, however, the result will only have
205
 * about 3-4 bits of precision (less for smaller values of HZ).
206
 *
207
 * So, we scale as follows:
208
 * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
209
 * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
210
 * Then we make SCALE a power of two so:
211
 * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
212
 * Now we define:
213
 * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
214
 * jiff = (sec * SEC_CONV) >> SCALE;
215
 *
216
 * Often the math we use will expand beyond 32-bits so we tell C how to
217
 * do this and pass the 64-bit result of the mpy through the ">> SCALE"
218
 * which should take the result back to 32-bits.  We want this expansion
219
 * to capture as much precision as possible.  At the same time we don't
220
 * want to overflow so we pick the SCALE to avoid this.  In this file,
221
 * that means using a different scale for each range of HZ values (as
222
 * defined in timex.h).
223
 *
224
 * For those who want to know, gcc will give a 64-bit result from a "*"
225
 * operator if the result is a long long AND at least one of the
226
 * operands is cast to long long (usually just prior to the "*" so as
227
 * not to confuse it into thinking it really has a 64-bit operand,
228
 * which, buy the way, it can do, but it takes more code and at least 2
229
 * mpys).
230
 
231
 * We also need to be aware that one second in nanoseconds is only a
232
 * couple of bits away from overflowing a 32-bit word, so we MUST use
233
 * 64-bits to get the full range time in nanoseconds.
234
 
235
 */
236
 
237
/*
238
 * Here are the scales we will use.  One for seconds, nanoseconds and
239
 * microseconds.
240
 *
241
 * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
242
 * check if the sign bit is set.  If not, we bump the shift count by 1.
243
 * (Gets an extra bit of precision where we can use it.)
244
 * We know it is set for HZ = 1024 and HZ = 100 not for 1000.
245
 * Haven't tested others.
246
 
247
 * Limits of cpp (for #if expressions) only long (no long long), but
248
 * then we only need the most signicant bit.
249
 */
250
 
251
#define SEC_JIFFIE_SC (31 - SHIFT_HZ)
252
#if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
253
#undef SEC_JIFFIE_SC
254
#define SEC_JIFFIE_SC (32 - SHIFT_HZ)
255
#endif
256
#define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
257
#define USEC_JIFFIE_SC (SEC_JIFFIE_SC + 19)
258
#define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
259
                                TICK_NSEC -1) / (u64)TICK_NSEC))
260
 
261
#define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
262
                                        TICK_NSEC -1) / (u64)TICK_NSEC))
263
#define USEC_CONVERSION  \
264
                    ((unsigned long)((((u64)NSEC_PER_USEC << USEC_JIFFIE_SC) +\
265
                                        TICK_NSEC -1) / (u64)TICK_NSEC))
266
/*
267
 * USEC_ROUND is used in the timeval to jiffie conversion.  See there
268
 * for more details.  It is the scaled resolution rounding value.  Note
269
 * that it is a 64-bit value.  Since, when it is applied, we are already
270
 * in jiffies (albit scaled), it is nothing but the bits we will shift
271
 * off.
272
 */
273
#define USEC_ROUND (u64)(((u64)1 << USEC_JIFFIE_SC) - 1)
274
/*
275
 * The maximum jiffie value is (MAX_INT >> 1).  Here we translate that
276
 * into seconds.  The 64-bit case will overflow if we are not careful,
277
 * so use the messy SH_DIV macro to do it.  Still all constants.
278
 */
279
#if BITS_PER_LONG < 64
280
# define MAX_SEC_IN_JIFFIES \
281
	(long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
282
#else	/* take care of overflow on 64 bits machines */
283
# define MAX_SEC_IN_JIFFIES \
284
	(SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
285
 
286
#endif
287
 
288
/*
289
 * Convert various time units to each other:
290
 */
291
extern unsigned int jiffies_to_msecs(const unsigned long j);
292
extern unsigned int jiffies_to_usecs(const unsigned long j);
293
extern unsigned long msecs_to_jiffies(const unsigned int m);
294
extern unsigned long usecs_to_jiffies(const unsigned int u);
295
extern unsigned long timespec_to_jiffies(const struct timespec *value);
296
extern void jiffies_to_timespec(const unsigned long jiffies,
297
				struct timespec *value);
298
extern unsigned long timeval_to_jiffies(const struct timeval *value);
299
extern void jiffies_to_timeval(const unsigned long jiffies,
300
			       struct timeval *value);
3031 serge 301
 
2967 Serge 302
extern clock_t jiffies_to_clock_t(unsigned long x);
3031 serge 303
static inline clock_t jiffies_delta_to_clock_t(long delta)
304
{
305
	return jiffies_to_clock_t(max(0L, delta));
306
}
307
 
2967 Serge 308
extern unsigned long clock_t_to_jiffies(unsigned long x);
309
extern u64 jiffies_64_to_clock_t(u64 x);
310
extern u64 nsec_to_clock_t(u64 x);
311
extern u64 nsecs_to_jiffies64(u64 n);
312
extern unsigned long nsecs_to_jiffies(u64 n);
313
 
3482 Serge 314
 
315
static unsigned long round_jiffies_common(unsigned long j, bool force_up)
316
{
317
    int rem;
318
    unsigned long original = j;
319
 
320
    rem = j % HZ;
321
 
322
    /*
323
     * If the target jiffie is just after a whole second (which can happen
324
     * due to delays of the timer irq, long irq off times etc etc) then
325
     * we should round down to the whole second, not up. Use 1/4th second
326
     * as cutoff for this rounding as an extreme upper bound for this.
327
     * But never round down if @force_up is set.
328
     */
329
    if (rem < HZ/4 && !force_up) /* round down */
330
            j = j - rem;
331
    else /* round up */
332
            j = j - rem + HZ;
333
 
334
    if (j <= GetTimerTicks()) /* rounding ate our timeout entirely; */
335
            return original;
336
    return j;
337
}
338
 
339
 
340
 
341
unsigned long round_jiffies_up_relative(unsigned long j);
342
 
2967 Serge 343
#define TIMESTAMP_SIZE	30
344
 
345
#endif