Subversion Repositories Kolibri OS

Rev

Rev 3482 | Rev 4103 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2967 Serge 1
#ifndef _LINUX_JIFFIES_H
2
#define _LINUX_JIFFIES_H
3
 
4
//#include 
5
#include 
6
#include 
7
//#include 
8
//#include 
9
//#include          /* for HZ */
10
 
11
 
12
#define HZ              100
13
#define CLOCK_TICK_RATE 1193182ul
14
 
15
/*
16
 * The following defines establish the engineering parameters of the PLL
17
 * model. The HZ variable establishes the timer interrupt frequency, 100 Hz
18
 * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
19
 * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
20
 * nearest power of two in order to avoid hardware multiply operations.
21
 */
22
#if HZ >= 12 && HZ < 24
23
# define SHIFT_HZ	4
24
#elif HZ >= 24 && HZ < 48
25
# define SHIFT_HZ	5
26
#elif HZ >= 48 && HZ < 96
27
# define SHIFT_HZ	6
28
#elif HZ >= 96 && HZ < 192
29
# define SHIFT_HZ	7
30
#elif HZ >= 192 && HZ < 384
31
# define SHIFT_HZ	8
32
#elif HZ >= 384 && HZ < 768
33
# define SHIFT_HZ	9
34
#elif HZ >= 768 && HZ < 1536
35
# define SHIFT_HZ	10
36
#elif HZ >= 1536 && HZ < 3072
37
# define SHIFT_HZ	11
38
#elif HZ >= 3072 && HZ < 6144
39
# define SHIFT_HZ	12
40
#elif HZ >= 6144 && HZ < 12288
41
# define SHIFT_HZ	13
42
#else
43
# error Invalid value of HZ.
44
#endif
45
 
46
/* LATCH is used in the interval timer and ftape setup. */
47
#define LATCH  ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */
48
 
49
/* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can
50
 * improve accuracy by shifting LSH bits, hence calculating:
51
 *     (NOM << LSH) / DEN
52
 * This however means trouble for large NOM, because (NOM << LSH) may no
53
 * longer fit in 32 bits. The following way of calculating this gives us
54
 * some slack, under the following conditions:
55
 *   - (NOM / DEN) fits in (32 - LSH) bits.
56
 *   - (NOM % DEN) fits in (32 - LSH) bits.
57
 */
58
#define SH_DIV(NOM,DEN,LSH) (   (((NOM) / (DEN)) << (LSH))              \
59
                             + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
60
 
61
/* HZ is the requested value. ACTHZ is actual HZ ("<< 8" is for accuracy) */
62
#define ACTHZ (SH_DIV (CLOCK_TICK_RATE, LATCH, 8))
63
 
64
/* TICK_NSEC is the time between ticks in nsec assuming real ACTHZ */
65
#define TICK_NSEC (SH_DIV (1000000UL * 1000, ACTHZ, 8))
66
 
67
/* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
68
#define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
69
 
70
/* TICK_USEC_TO_NSEC is the time between ticks in nsec assuming real ACTHZ and	*/
71
/* a value TUSEC for TICK_USEC (can be set bij adjtimex)		*/
72
#define TICK_USEC_TO_NSEC(TUSEC) (SH_DIV (TUSEC * USER_HZ * 1000, ACTHZ, 8))
73
 
74
static inline u64 get_jiffies_64(void)
75
{
3031 serge 76
    return (u64)GetTimerTicks();
2967 Serge 77
}
78
 
79
/*
80
 *	These inlines deal with timer wrapping correctly. You are
81
 *	strongly encouraged to use them
82
 *	1. Because people otherwise forget
83
 *	2. Because if the timer wrap changes in future you won't have to
84
 *	   alter your driver code.
85
 *
86
 * time_after(a,b) returns true if the time a is after time b.
87
 *
88
 * Do this with "<0" and ">=0" to only test the sign of the result. A
89
 * good compiler would generate better code (and a really good compiler
90
 * wouldn't care). Gcc is currently neither.
91
 */
92
#define time_after(a,b)		\
93
	(typecheck(unsigned long, a) && \
94
	 typecheck(unsigned long, b) && \
95
	 ((long)(b) - (long)(a) < 0))
96
#define time_before(a,b)	time_after(b,a)
97
 
98
#define time_after_eq(a,b)	\
99
	(typecheck(unsigned long, a) && \
100
	 typecheck(unsigned long, b) && \
101
	 ((long)(a) - (long)(b) >= 0))
102
#define time_before_eq(a,b)	time_after_eq(b,a)
103
 
104
/*
105
 * Calculate whether a is in the range of [b, c].
106
 */
107
#define time_in_range(a,b,c) \
108
	(time_after_eq(a,b) && \
109
	 time_before_eq(a,c))
110
 
111
/*
112
 * Calculate whether a is in the range of [b, c).
113
 */
114
#define time_in_range_open(a,b,c) \
115
	(time_after_eq(a,b) && \
116
	 time_before(a,c))
117
 
118
/* Same as above, but does so with platform independent 64bit types.
119
 * These must be used when utilizing jiffies_64 (i.e. return value of
120
 * get_jiffies_64() */
121
#define time_after64(a,b)	\
122
	(typecheck(__u64, a) &&	\
123
	 typecheck(__u64, b) && \
124
	 ((__s64)(b) - (__s64)(a) < 0))
125
#define time_before64(a,b)	time_after64(b,a)
126
 
127
#define time_after_eq64(a,b)	\
128
	(typecheck(__u64, a) && \
129
	 typecheck(__u64, b) && \
130
	 ((__s64)(a) - (__s64)(b) >= 0))
131
#define time_before_eq64(a,b)	time_after_eq64(b,a)
132
 
4065 Serge 133
#define time_in_range64(a, b, c) \
134
	(time_after_eq64(a, b) && \
135
	 time_before_eq64(a, c))
136
 
2967 Serge 137
/*
138
 * These four macros compare jiffies and 'a' for convenience.
139
 */
140
 
141
/* time_is_before_jiffies(a) return true if a is before jiffies */
142
#define time_is_before_jiffies(a) time_after(jiffies, a)
143
 
144
/* time_is_after_jiffies(a) return true if a is after jiffies */
145
#define time_is_after_jiffies(a) time_before(jiffies, a)
146
 
147
/* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/
148
#define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a)
149
 
150
/* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/
151
#define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a)
152
 
153
/*
154
 * Have the 32 bit jiffies value wrap 5 minutes after boot
155
 * so jiffies wrap bugs show up earlier.
156
 */
157
#define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
158
 
159
/*
160
 * Change timeval to jiffies, trying to avoid the
161
 * most obvious overflows..
162
 *
163
 * And some not so obvious.
164
 *
165
 * Note that we don't want to return LONG_MAX, because
166
 * for various timeout reasons we often end up having
167
 * to wait "jiffies+1" in order to guarantee that we wait
168
 * at _least_ "jiffies" - so "jiffies+1" had better still
169
 * be positive.
170
 */
171
#define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1)
172
 
173
extern unsigned long preset_lpj;
174
 
175
/*
176
 * We want to do realistic conversions of time so we need to use the same
177
 * values the update wall clock code uses as the jiffies size.  This value
178
 * is: TICK_NSEC (which is defined in timex.h).  This
179
 * is a constant and is in nanoseconds.  We will use scaled math
180
 * with a set of scales defined here as SEC_JIFFIE_SC,  USEC_JIFFIE_SC and
181
 * NSEC_JIFFIE_SC.  Note that these defines contain nothing but
182
 * constants and so are computed at compile time.  SHIFT_HZ (computed in
183
 * timex.h) adjusts the scaling for different HZ values.
184
 
185
 * Scaled math???  What is that?
186
 *
187
 * Scaled math is a way to do integer math on values that would,
188
 * otherwise, either overflow, underflow, or cause undesired div
189
 * instructions to appear in the execution path.  In short, we "scale"
190
 * up the operands so they take more bits (more precision, less
191
 * underflow), do the desired operation and then "scale" the result back
192
 * by the same amount.  If we do the scaling by shifting we avoid the
193
 * costly mpy and the dastardly div instructions.
194
 
195
 * Suppose, for example, we want to convert from seconds to jiffies
196
 * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE.  The
197
 * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
198
 * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
199
 * might calculate at compile time, however, the result will only have
200
 * about 3-4 bits of precision (less for smaller values of HZ).
201
 *
202
 * So, we scale as follows:
203
 * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
204
 * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
205
 * Then we make SCALE a power of two so:
206
 * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
207
 * Now we define:
208
 * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
209
 * jiff = (sec * SEC_CONV) >> SCALE;
210
 *
211
 * Often the math we use will expand beyond 32-bits so we tell C how to
212
 * do this and pass the 64-bit result of the mpy through the ">> SCALE"
213
 * which should take the result back to 32-bits.  We want this expansion
214
 * to capture as much precision as possible.  At the same time we don't
215
 * want to overflow so we pick the SCALE to avoid this.  In this file,
216
 * that means using a different scale for each range of HZ values (as
217
 * defined in timex.h).
218
 *
219
 * For those who want to know, gcc will give a 64-bit result from a "*"
220
 * operator if the result is a long long AND at least one of the
221
 * operands is cast to long long (usually just prior to the "*" so as
222
 * not to confuse it into thinking it really has a 64-bit operand,
223
 * which, buy the way, it can do, but it takes more code and at least 2
224
 * mpys).
225
 
226
 * We also need to be aware that one second in nanoseconds is only a
227
 * couple of bits away from overflowing a 32-bit word, so we MUST use
228
 * 64-bits to get the full range time in nanoseconds.
229
 
230
 */
231
 
232
/*
233
 * Here are the scales we will use.  One for seconds, nanoseconds and
234
 * microseconds.
235
 *
236
 * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
237
 * check if the sign bit is set.  If not, we bump the shift count by 1.
238
 * (Gets an extra bit of precision where we can use it.)
239
 * We know it is set for HZ = 1024 and HZ = 100 not for 1000.
240
 * Haven't tested others.
241
 
242
 * Limits of cpp (for #if expressions) only long (no long long), but
243
 * then we only need the most signicant bit.
244
 */
245
 
246
#define SEC_JIFFIE_SC (31 - SHIFT_HZ)
247
#if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
248
#undef SEC_JIFFIE_SC
249
#define SEC_JIFFIE_SC (32 - SHIFT_HZ)
250
#endif
251
#define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
252
#define USEC_JIFFIE_SC (SEC_JIFFIE_SC + 19)
253
#define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
254
                                TICK_NSEC -1) / (u64)TICK_NSEC))
255
 
256
#define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
257
                                        TICK_NSEC -1) / (u64)TICK_NSEC))
258
#define USEC_CONVERSION  \
259
                    ((unsigned long)((((u64)NSEC_PER_USEC << USEC_JIFFIE_SC) +\
260
                                        TICK_NSEC -1) / (u64)TICK_NSEC))
261
/*
262
 * USEC_ROUND is used in the timeval to jiffie conversion.  See there
263
 * for more details.  It is the scaled resolution rounding value.  Note
264
 * that it is a 64-bit value.  Since, when it is applied, we are already
265
 * in jiffies (albit scaled), it is nothing but the bits we will shift
266
 * off.
267
 */
268
#define USEC_ROUND (u64)(((u64)1 << USEC_JIFFIE_SC) - 1)
269
/*
270
 * The maximum jiffie value is (MAX_INT >> 1).  Here we translate that
271
 * into seconds.  The 64-bit case will overflow if we are not careful,
272
 * so use the messy SH_DIV macro to do it.  Still all constants.
273
 */
274
#if BITS_PER_LONG < 64
275
# define MAX_SEC_IN_JIFFIES \
276
	(long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
277
#else	/* take care of overflow on 64 bits machines */
278
# define MAX_SEC_IN_JIFFIES \
279
	(SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
280
 
281
#endif
282
 
283
/*
284
 * Convert various time units to each other:
285
 */
286
extern unsigned int jiffies_to_msecs(const unsigned long j);
287
extern unsigned int jiffies_to_usecs(const unsigned long j);
288
extern unsigned long msecs_to_jiffies(const unsigned int m);
289
extern unsigned long usecs_to_jiffies(const unsigned int u);
290
extern unsigned long timespec_to_jiffies(const struct timespec *value);
291
extern void jiffies_to_timespec(const unsigned long jiffies,
292
				struct timespec *value);
293
extern unsigned long timeval_to_jiffies(const struct timeval *value);
294
extern void jiffies_to_timeval(const unsigned long jiffies,
295
			       struct timeval *value);
3031 serge 296
 
2967 Serge 297
extern clock_t jiffies_to_clock_t(unsigned long x);
3031 serge 298
static inline clock_t jiffies_delta_to_clock_t(long delta)
299
{
300
	return jiffies_to_clock_t(max(0L, delta));
301
}
302
 
2967 Serge 303
extern unsigned long clock_t_to_jiffies(unsigned long x);
304
extern u64 jiffies_64_to_clock_t(u64 x);
305
extern u64 nsec_to_clock_t(u64 x);
306
extern u64 nsecs_to_jiffies64(u64 n);
307
extern unsigned long nsecs_to_jiffies(u64 n);
308
 
3482 Serge 309
 
310
static unsigned long round_jiffies_common(unsigned long j, bool force_up)
311
{
312
    int rem;
313
    unsigned long original = j;
314
 
315
    rem = j % HZ;
316
 
317
    /*
318
     * If the target jiffie is just after a whole second (which can happen
319
     * due to delays of the timer irq, long irq off times etc etc) then
320
     * we should round down to the whole second, not up. Use 1/4th second
321
     * as cutoff for this rounding as an extreme upper bound for this.
322
     * But never round down if @force_up is set.
323
     */
324
    if (rem < HZ/4 && !force_up) /* round down */
325
            j = j - rem;
326
    else /* round up */
327
            j = j - rem + HZ;
328
 
329
    if (j <= GetTimerTicks()) /* rounding ate our timeout entirely; */
330
            return original;
331
    return j;
332
}
333
 
334
 
335
 
336
unsigned long round_jiffies_up_relative(unsigned long j);
337
 
2967 Serge 338
#define TIMESTAMP_SIZE	30
339
 
340
#endif