Subversion Repositories Kolibri OS

Rev

Rev 3031 | Rev 4065 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2967 Serge 1
#ifndef _LINUX_JIFFIES_H
2
#define _LINUX_JIFFIES_H
3
 
4
//#include 
5
#include 
6
#include 
7
//#include 
8
//#include 
9
//#include          /* for HZ */
10
 
11
 
12
#define HZ              100
13
#define CLOCK_TICK_RATE 1193182ul
14
 
15
/*
16
 * The following defines establish the engineering parameters of the PLL
17
 * model. The HZ variable establishes the timer interrupt frequency, 100 Hz
18
 * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
19
 * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
20
 * nearest power of two in order to avoid hardware multiply operations.
21
 */
22
#if HZ >= 12 && HZ < 24
23
# define SHIFT_HZ	4
24
#elif HZ >= 24 && HZ < 48
25
# define SHIFT_HZ	5
26
#elif HZ >= 48 && HZ < 96
27
# define SHIFT_HZ	6
28
#elif HZ >= 96 && HZ < 192
29
# define SHIFT_HZ	7
30
#elif HZ >= 192 && HZ < 384
31
# define SHIFT_HZ	8
32
#elif HZ >= 384 && HZ < 768
33
# define SHIFT_HZ	9
34
#elif HZ >= 768 && HZ < 1536
35
# define SHIFT_HZ	10
36
#elif HZ >= 1536 && HZ < 3072
37
# define SHIFT_HZ	11
38
#elif HZ >= 3072 && HZ < 6144
39
# define SHIFT_HZ	12
40
#elif HZ >= 6144 && HZ < 12288
41
# define SHIFT_HZ	13
42
#else
43
# error Invalid value of HZ.
44
#endif
45
 
46
/* LATCH is used in the interval timer and ftape setup. */
47
#define LATCH  ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */
48
 
49
/* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can
50
 * improve accuracy by shifting LSH bits, hence calculating:
51
 *     (NOM << LSH) / DEN
52
 * This however means trouble for large NOM, because (NOM << LSH) may no
53
 * longer fit in 32 bits. The following way of calculating this gives us
54
 * some slack, under the following conditions:
55
 *   - (NOM / DEN) fits in (32 - LSH) bits.
56
 *   - (NOM % DEN) fits in (32 - LSH) bits.
57
 */
58
#define SH_DIV(NOM,DEN,LSH) (   (((NOM) / (DEN)) << (LSH))              \
59
                             + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
60
 
61
/* HZ is the requested value. ACTHZ is actual HZ ("<< 8" is for accuracy) */
62
#define ACTHZ (SH_DIV (CLOCK_TICK_RATE, LATCH, 8))
63
 
64
/* TICK_NSEC is the time between ticks in nsec assuming real ACTHZ */
65
#define TICK_NSEC (SH_DIV (1000000UL * 1000, ACTHZ, 8))
66
 
67
/* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
68
#define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
69
 
70
/* TICK_USEC_TO_NSEC is the time between ticks in nsec assuming real ACTHZ and	*/
71
/* a value TUSEC for TICK_USEC (can be set bij adjtimex)		*/
72
#define TICK_USEC_TO_NSEC(TUSEC) (SH_DIV (TUSEC * USER_HZ * 1000, ACTHZ, 8))
73
 
74
static inline u64 get_jiffies_64(void)
75
{
3031 serge 76
    return (u64)GetTimerTicks();
2967 Serge 77
}
78
 
79
/*
80
 *	These inlines deal with timer wrapping correctly. You are
81
 *	strongly encouraged to use them
82
 *	1. Because people otherwise forget
83
 *	2. Because if the timer wrap changes in future you won't have to
84
 *	   alter your driver code.
85
 *
86
 * time_after(a,b) returns true if the time a is after time b.
87
 *
88
 * Do this with "<0" and ">=0" to only test the sign of the result. A
89
 * good compiler would generate better code (and a really good compiler
90
 * wouldn't care). Gcc is currently neither.
91
 */
92
#define time_after(a,b)		\
93
	(typecheck(unsigned long, a) && \
94
	 typecheck(unsigned long, b) && \
95
	 ((long)(b) - (long)(a) < 0))
96
#define time_before(a,b)	time_after(b,a)
97
 
98
#define time_after_eq(a,b)	\
99
	(typecheck(unsigned long, a) && \
100
	 typecheck(unsigned long, b) && \
101
	 ((long)(a) - (long)(b) >= 0))
102
#define time_before_eq(a,b)	time_after_eq(b,a)
103
 
104
/*
105
 * Calculate whether a is in the range of [b, c].
106
 */
107
#define time_in_range(a,b,c) \
108
	(time_after_eq(a,b) && \
109
	 time_before_eq(a,c))
110
 
111
/*
112
 * Calculate whether a is in the range of [b, c).
113
 */
114
#define time_in_range_open(a,b,c) \
115
	(time_after_eq(a,b) && \
116
	 time_before(a,c))
117
 
118
/* Same as above, but does so with platform independent 64bit types.
119
 * These must be used when utilizing jiffies_64 (i.e. return value of
120
 * get_jiffies_64() */
121
#define time_after64(a,b)	\
122
	(typecheck(__u64, a) &&	\
123
	 typecheck(__u64, b) && \
124
	 ((__s64)(b) - (__s64)(a) < 0))
125
#define time_before64(a,b)	time_after64(b,a)
126
 
127
#define time_after_eq64(a,b)	\
128
	(typecheck(__u64, a) && \
129
	 typecheck(__u64, b) && \
130
	 ((__s64)(a) - (__s64)(b) >= 0))
131
#define time_before_eq64(a,b)	time_after_eq64(b,a)
132
 
133
/*
134
 * These four macros compare jiffies and 'a' for convenience.
135
 */
136
 
137
/* time_is_before_jiffies(a) return true if a is before jiffies */
138
#define time_is_before_jiffies(a) time_after(jiffies, a)
139
 
140
/* time_is_after_jiffies(a) return true if a is after jiffies */
141
#define time_is_after_jiffies(a) time_before(jiffies, a)
142
 
143
/* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/
144
#define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a)
145
 
146
/* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/
147
#define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a)
148
 
149
/*
150
 * Have the 32 bit jiffies value wrap 5 minutes after boot
151
 * so jiffies wrap bugs show up earlier.
152
 */
153
#define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
154
 
155
/*
156
 * Change timeval to jiffies, trying to avoid the
157
 * most obvious overflows..
158
 *
159
 * And some not so obvious.
160
 *
161
 * Note that we don't want to return LONG_MAX, because
162
 * for various timeout reasons we often end up having
163
 * to wait "jiffies+1" in order to guarantee that we wait
164
 * at _least_ "jiffies" - so "jiffies+1" had better still
165
 * be positive.
166
 */
167
#define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1)
168
 
169
extern unsigned long preset_lpj;
170
 
171
/*
172
 * We want to do realistic conversions of time so we need to use the same
173
 * values the update wall clock code uses as the jiffies size.  This value
174
 * is: TICK_NSEC (which is defined in timex.h).  This
175
 * is a constant and is in nanoseconds.  We will use scaled math
176
 * with a set of scales defined here as SEC_JIFFIE_SC,  USEC_JIFFIE_SC and
177
 * NSEC_JIFFIE_SC.  Note that these defines contain nothing but
178
 * constants and so are computed at compile time.  SHIFT_HZ (computed in
179
 * timex.h) adjusts the scaling for different HZ values.
180
 
181
 * Scaled math???  What is that?
182
 *
183
 * Scaled math is a way to do integer math on values that would,
184
 * otherwise, either overflow, underflow, or cause undesired div
185
 * instructions to appear in the execution path.  In short, we "scale"
186
 * up the operands so they take more bits (more precision, less
187
 * underflow), do the desired operation and then "scale" the result back
188
 * by the same amount.  If we do the scaling by shifting we avoid the
189
 * costly mpy and the dastardly div instructions.
190
 
191
 * Suppose, for example, we want to convert from seconds to jiffies
192
 * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE.  The
193
 * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
194
 * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
195
 * might calculate at compile time, however, the result will only have
196
 * about 3-4 bits of precision (less for smaller values of HZ).
197
 *
198
 * So, we scale as follows:
199
 * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
200
 * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
201
 * Then we make SCALE a power of two so:
202
 * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
203
 * Now we define:
204
 * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
205
 * jiff = (sec * SEC_CONV) >> SCALE;
206
 *
207
 * Often the math we use will expand beyond 32-bits so we tell C how to
208
 * do this and pass the 64-bit result of the mpy through the ">> SCALE"
209
 * which should take the result back to 32-bits.  We want this expansion
210
 * to capture as much precision as possible.  At the same time we don't
211
 * want to overflow so we pick the SCALE to avoid this.  In this file,
212
 * that means using a different scale for each range of HZ values (as
213
 * defined in timex.h).
214
 *
215
 * For those who want to know, gcc will give a 64-bit result from a "*"
216
 * operator if the result is a long long AND at least one of the
217
 * operands is cast to long long (usually just prior to the "*" so as
218
 * not to confuse it into thinking it really has a 64-bit operand,
219
 * which, buy the way, it can do, but it takes more code and at least 2
220
 * mpys).
221
 
222
 * We also need to be aware that one second in nanoseconds is only a
223
 * couple of bits away from overflowing a 32-bit word, so we MUST use
224
 * 64-bits to get the full range time in nanoseconds.
225
 
226
 */
227
 
228
/*
229
 * Here are the scales we will use.  One for seconds, nanoseconds and
230
 * microseconds.
231
 *
232
 * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
233
 * check if the sign bit is set.  If not, we bump the shift count by 1.
234
 * (Gets an extra bit of precision where we can use it.)
235
 * We know it is set for HZ = 1024 and HZ = 100 not for 1000.
236
 * Haven't tested others.
237
 
238
 * Limits of cpp (for #if expressions) only long (no long long), but
239
 * then we only need the most signicant bit.
240
 */
241
 
242
#define SEC_JIFFIE_SC (31 - SHIFT_HZ)
243
#if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
244
#undef SEC_JIFFIE_SC
245
#define SEC_JIFFIE_SC (32 - SHIFT_HZ)
246
#endif
247
#define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
248
#define USEC_JIFFIE_SC (SEC_JIFFIE_SC + 19)
249
#define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
250
                                TICK_NSEC -1) / (u64)TICK_NSEC))
251
 
252
#define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
253
                                        TICK_NSEC -1) / (u64)TICK_NSEC))
254
#define USEC_CONVERSION  \
255
                    ((unsigned long)((((u64)NSEC_PER_USEC << USEC_JIFFIE_SC) +\
256
                                        TICK_NSEC -1) / (u64)TICK_NSEC))
257
/*
258
 * USEC_ROUND is used in the timeval to jiffie conversion.  See there
259
 * for more details.  It is the scaled resolution rounding value.  Note
260
 * that it is a 64-bit value.  Since, when it is applied, we are already
261
 * in jiffies (albit scaled), it is nothing but the bits we will shift
262
 * off.
263
 */
264
#define USEC_ROUND (u64)(((u64)1 << USEC_JIFFIE_SC) - 1)
265
/*
266
 * The maximum jiffie value is (MAX_INT >> 1).  Here we translate that
267
 * into seconds.  The 64-bit case will overflow if we are not careful,
268
 * so use the messy SH_DIV macro to do it.  Still all constants.
269
 */
270
#if BITS_PER_LONG < 64
271
# define MAX_SEC_IN_JIFFIES \
272
	(long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
273
#else	/* take care of overflow on 64 bits machines */
274
# define MAX_SEC_IN_JIFFIES \
275
	(SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
276
 
277
#endif
278
 
279
/*
280
 * Convert various time units to each other:
281
 */
282
extern unsigned int jiffies_to_msecs(const unsigned long j);
283
extern unsigned int jiffies_to_usecs(const unsigned long j);
284
extern unsigned long msecs_to_jiffies(const unsigned int m);
285
extern unsigned long usecs_to_jiffies(const unsigned int u);
286
extern unsigned long timespec_to_jiffies(const struct timespec *value);
287
extern void jiffies_to_timespec(const unsigned long jiffies,
288
				struct timespec *value);
289
extern unsigned long timeval_to_jiffies(const struct timeval *value);
290
extern void jiffies_to_timeval(const unsigned long jiffies,
291
			       struct timeval *value);
3031 serge 292
 
2967 Serge 293
extern clock_t jiffies_to_clock_t(unsigned long x);
3031 serge 294
static inline clock_t jiffies_delta_to_clock_t(long delta)
295
{
296
	return jiffies_to_clock_t(max(0L, delta));
297
}
298
 
2967 Serge 299
extern unsigned long clock_t_to_jiffies(unsigned long x);
300
extern u64 jiffies_64_to_clock_t(u64 x);
301
extern u64 nsec_to_clock_t(u64 x);
302
extern u64 nsecs_to_jiffies64(u64 n);
303
extern unsigned long nsecs_to_jiffies(u64 n);
304
 
3482 Serge 305
 
306
static unsigned long round_jiffies_common(unsigned long j, bool force_up)
307
{
308
    int rem;
309
    unsigned long original = j;
310
 
311
    rem = j % HZ;
312
 
313
    /*
314
     * If the target jiffie is just after a whole second (which can happen
315
     * due to delays of the timer irq, long irq off times etc etc) then
316
     * we should round down to the whole second, not up. Use 1/4th second
317
     * as cutoff for this rounding as an extreme upper bound for this.
318
     * But never round down if @force_up is set.
319
     */
320
    if (rem < HZ/4 && !force_up) /* round down */
321
            j = j - rem;
322
    else /* round up */
323
            j = j - rem + HZ;
324
 
325
    if (j <= GetTimerTicks()) /* rounding ate our timeout entirely; */
326
            return original;
327
    return j;
328
}
329
 
330
 
331
 
332
unsigned long round_jiffies_up_relative(unsigned long j);
333
 
2967 Serge 334
#define TIMESTAMP_SIZE	30
335
 
336
#endif