Subversion Repositories Kolibri OS

Rev

Rev 5270 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
4065 Serge 1
#ifndef _LINUX_HASH_H
2
#define _LINUX_HASH_H
3
/* Fast hashing routine for ints,  longs and pointers.
4
   (C) 2002 Nadia Yvette Chambers, IBM */
5
 
6
/*
7
 * Knuth recommends primes in approximately golden ratio to the maximum
8
 * integer representable by a machine word for multiplicative hashing.
9
 * Chuck Lever verified the effectiveness of this technique:
10
 * http://www.citi.umich.edu/techreports/reports/citi-tr-00-1.pdf
11
 *
12
 * These primes are chosen to be bit-sparse, that is operations on
13
 * them can use shifts and additions instead of multiplications for
14
 * machines where multiplications are slow.
15
 */
16
 
17
#include 
18
#include 
19
 
20
/* 2^31 + 2^29 - 2^25 + 2^22 - 2^19 - 2^16 + 1 */
21
#define GOLDEN_RATIO_PRIME_32 0x9e370001UL
22
/*  2^63 + 2^61 - 2^57 + 2^54 - 2^51 - 2^18 + 1 */
23
#define GOLDEN_RATIO_PRIME_64 0x9e37fffffffc0001UL
24
 
25
#if BITS_PER_LONG == 32
26
#define GOLDEN_RATIO_PRIME GOLDEN_RATIO_PRIME_32
27
#define hash_long(val, bits) hash_32(val, bits)
28
#elif BITS_PER_LONG == 64
29
#define hash_long(val, bits) hash_64(val, bits)
30
#define GOLDEN_RATIO_PRIME GOLDEN_RATIO_PRIME_64
31
#else
32
#error Wordsize not 32 or 64
33
#endif
34
 
6934 serge 35
/*
36
 * The above primes are actively bad for hashing, since they are
37
 * too sparse. The 32-bit one is mostly ok, the 64-bit one causes
38
 * real problems. Besides, the "prime" part is pointless for the
39
 * multiplicative hash.
40
 *
41
 * Although a random odd number will do, it turns out that the golden
42
 * ratio phi = (sqrt(5)-1)/2, or its negative, has particularly nice
43
 * properties.
44
 *
45
 * These are the negative, (1 - phi) = (phi^2) = (3 - sqrt(5))/2.
46
 * (See Knuth vol 3, section 6.4, exercise 9.)
47
 */
48
#define GOLDEN_RATIO_32 0x61C88647
49
#define GOLDEN_RATIO_64 0x61C8864680B583EBull
50
 
4065 Serge 51
static __always_inline u64 hash_64(u64 val, unsigned int bits)
52
{
53
	u64 hash = val;
54
 
6934 serge 55
#if BITS_PER_LONG == 64
56
	hash = hash * GOLDEN_RATIO_64;
5270 serge 57
#else
4065 Serge 58
	/*  Sigh, gcc can't optimise this alone like it does for 32 bits. */
59
	u64 n = hash;
60
	n <<= 18;
61
	hash -= n;
62
	n <<= 33;
63
	hash -= n;
64
	n <<= 3;
65
	hash += n;
66
	n <<= 3;
67
	hash -= n;
68
	n <<= 4;
69
	hash += n;
70
	n <<= 2;
71
	hash += n;
5270 serge 72
#endif
4065 Serge 73
 
74
	/* High bits are more random, so use them. */
75
	return hash >> (64 - bits);
76
}
77
 
78
static inline u32 hash_32(u32 val, unsigned int bits)
79
{
80
	/* On some cpus multiply is faster, on others gcc will do shifts */
81
	u32 hash = val * GOLDEN_RATIO_PRIME_32;
82
 
83
	/* High bits are more random, so use them. */
84
	return hash >> (32 - bits);
85
}
86
 
87
static inline unsigned long hash_ptr(const void *ptr, unsigned int bits)
88
{
89
	return hash_long((unsigned long)ptr, bits);
90
}
91
 
92
static inline u32 hash32_ptr(const void *ptr)
93
{
94
	unsigned long val = (unsigned long)ptr;
95
 
96
#if BITS_PER_LONG == 64
97
	val ^= (val >> 32);
98
#endif
99
	return (u32)val;
100
}
5270 serge 101
 
4065 Serge 102
#endif /* _LINUX_HASH_H */