Subversion Repositories Kolibri OS

Rev

Rev 6934 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
6082 serge 1
/*
2
 * FPU data structures:
3
 */
4
#ifndef _ASM_X86_FPU_H
5
#define _ASM_X86_FPU_H
6
 
7
/*
8
 * The legacy x87 FPU state format, as saved by FSAVE and
9
 * restored by the FRSTOR instructions:
10
 */
11
struct fregs_state {
12
	u32			cwd;	/* FPU Control Word		*/
13
	u32			swd;	/* FPU Status Word		*/
14
	u32			twd;	/* FPU Tag Word			*/
15
	u32			fip;	/* FPU IP Offset		*/
16
	u32			fcs;	/* FPU IP Selector		*/
17
	u32			foo;	/* FPU Operand Pointer Offset	*/
18
	u32			fos;	/* FPU Operand Pointer Selector	*/
19
 
20
	/* 8*10 bytes for each FP-reg = 80 bytes:			*/
21
	u32			st_space[20];
22
 
23
	/* Software status information [not touched by FSAVE]:		*/
24
	u32			status;
25
};
26
 
27
/*
28
 * The legacy fx SSE/MMX FPU state format, as saved by FXSAVE and
29
 * restored by the FXRSTOR instructions. It's similar to the FSAVE
30
 * format, but differs in some areas, plus has extensions at
31
 * the end for the XMM registers.
32
 */
33
struct fxregs_state {
34
	u16			cwd; /* Control Word			*/
35
	u16			swd; /* Status Word			*/
36
	u16			twd; /* Tag Word			*/
37
	u16			fop; /* Last Instruction Opcode		*/
38
	union {
39
		struct {
40
			u64	rip; /* Instruction Pointer		*/
41
			u64	rdp; /* Data Pointer			*/
42
		};
43
		struct {
44
			u32	fip; /* FPU IP Offset			*/
45
			u32	fcs; /* FPU IP Selector			*/
46
			u32	foo; /* FPU Operand Offset		*/
47
			u32	fos; /* FPU Operand Selector		*/
48
		};
49
	};
50
	u32			mxcsr;		/* MXCSR Register State */
51
	u32			mxcsr_mask;	/* MXCSR Mask		*/
52
 
53
	/* 8*16 bytes for each FP-reg = 128 bytes:			*/
54
	u32			st_space[32];
55
 
56
	/* 16*16 bytes for each XMM-reg = 256 bytes:			*/
57
	u32			xmm_space[64];
58
 
59
	u32			padding[12];
60
 
61
	union {
62
		u32		padding1[12];
63
		u32		sw_reserved[12];
64
	};
65
 
66
} __attribute__((aligned(16)));
67
 
68
/* Default value for fxregs_state.mxcsr: */
69
#define MXCSR_DEFAULT		0x1f80
70
 
71
/*
72
 * Software based FPU emulation state. This is arbitrary really,
73
 * it matches the x87 format to make it easier to understand:
74
 */
75
struct swregs_state {
76
	u32			cwd;
77
	u32			swd;
78
	u32			twd;
79
	u32			fip;
80
	u32			fcs;
81
	u32			foo;
82
	u32			fos;
83
	/* 8*10 bytes for each FP-reg = 80 bytes: */
84
	u32			st_space[20];
85
	u8			ftop;
86
	u8			changed;
87
	u8			lookahead;
88
	u8			no_update;
89
	u8			rm;
90
	u8			alimit;
91
	struct math_emu_info	*info;
92
	u32			entry_eip;
93
};
94
 
95
/*
96
 * List of XSAVE features Linux knows about:
97
 */
98
enum xfeature {
99
	XFEATURE_FP,
100
	XFEATURE_SSE,
101
	/*
102
	 * Values above here are "legacy states".
103
	 * Those below are "extended states".
104
	 */
105
	XFEATURE_YMM,
106
	XFEATURE_BNDREGS,
107
	XFEATURE_BNDCSR,
108
	XFEATURE_OPMASK,
109
	XFEATURE_ZMM_Hi256,
110
	XFEATURE_Hi16_ZMM,
7143 serge 111
	XFEATURE_PT_UNIMPLEMENTED_SO_FAR,
112
	XFEATURE_PKRU,
6082 serge 113
 
114
	XFEATURE_MAX,
115
};
116
 
117
#define XFEATURE_MASK_FP		(1 << XFEATURE_FP)
118
#define XFEATURE_MASK_SSE		(1 << XFEATURE_SSE)
119
#define XFEATURE_MASK_YMM		(1 << XFEATURE_YMM)
120
#define XFEATURE_MASK_BNDREGS		(1 << XFEATURE_BNDREGS)
121
#define XFEATURE_MASK_BNDCSR		(1 << XFEATURE_BNDCSR)
122
#define XFEATURE_MASK_OPMASK		(1 << XFEATURE_OPMASK)
123
#define XFEATURE_MASK_ZMM_Hi256		(1 << XFEATURE_ZMM_Hi256)
124
#define XFEATURE_MASK_Hi16_ZMM		(1 << XFEATURE_Hi16_ZMM)
7143 serge 125
#define XFEATURE_MASK_PKRU		(1 << XFEATURE_PKRU)
6082 serge 126
 
127
#define XFEATURE_MASK_FPSSE		(XFEATURE_MASK_FP | XFEATURE_MASK_SSE)
128
#define XFEATURE_MASK_AVX512		(XFEATURE_MASK_OPMASK \
129
					 | XFEATURE_MASK_ZMM_Hi256 \
130
					 | XFEATURE_MASK_Hi16_ZMM)
131
 
132
#define FIRST_EXTENDED_XFEATURE	XFEATURE_YMM
133
 
134
struct reg_128_bit {
135
	u8      regbytes[128/8];
136
};
137
struct reg_256_bit {
138
	u8	regbytes[256/8];
139
};
140
struct reg_512_bit {
141
	u8	regbytes[512/8];
142
};
143
 
144
/*
145
 * State component 2:
146
 *
147
 * There are 16x 256-bit AVX registers named YMM0-YMM15.
148
 * The low 128 bits are aliased to the 16 SSE registers (XMM0-XMM15)
149
 * and are stored in 'struct fxregs_state::xmm_space[]' in the
150
 * "legacy" area.
151
 *
152
 * The high 128 bits are stored here.
153
 */
154
struct ymmh_struct {
155
	struct reg_128_bit              hi_ymm[16];
156
} __packed;
157
 
158
/* Intel MPX support: */
159
 
160
struct mpx_bndreg {
161
	u64				lower_bound;
162
	u64				upper_bound;
163
} __packed;
164
/*
165
 * State component 3 is used for the 4 128-bit bounds registers
166
 */
167
struct mpx_bndreg_state {
168
	struct mpx_bndreg		bndreg[4];
169
} __packed;
170
 
171
/*
172
 * State component 4 is used for the 64-bit user-mode MPX
173
 * configuration register BNDCFGU and the 64-bit MPX status
174
 * register BNDSTATUS.  We call the pair "BNDCSR".
175
 */
176
struct mpx_bndcsr {
177
	u64				bndcfgu;
178
	u64				bndstatus;
179
} __packed;
180
 
181
/*
182
 * The BNDCSR state is padded out to be 64-bytes in size.
183
 */
184
struct mpx_bndcsr_state {
185
	union {
186
		struct mpx_bndcsr		bndcsr;
187
		u8				pad_to_64_bytes[64];
188
	};
189
} __packed;
190
 
191
/* AVX-512 Components: */
192
 
193
/*
194
 * State component 5 is used for the 8 64-bit opmask registers
195
 * k0-k7 (opmask state).
196
 */
197
struct avx_512_opmask_state {
198
	u64				opmask_reg[8];
199
} __packed;
200
 
201
/*
202
 * State component 6 is used for the upper 256 bits of the
203
 * registers ZMM0-ZMM15. These 16 256-bit values are denoted
204
 * ZMM0_H-ZMM15_H (ZMM_Hi256 state).
205
 */
206
struct avx_512_zmm_uppers_state {
207
	struct reg_256_bit		zmm_upper[16];
208
} __packed;
209
 
210
/*
211
 * State component 7 is used for the 16 512-bit registers
212
 * ZMM16-ZMM31 (Hi16_ZMM state).
213
 */
214
struct avx_512_hi16_state {
215
	struct reg_512_bit		hi16_zmm[16];
216
} __packed;
217
 
7143 serge 218
/*
219
 * State component 9: 32-bit PKRU register.  The state is
220
 * 8 bytes long but only 4 bytes is used currently.
221
 */
222
struct pkru_state {
223
	u32				pkru;
224
	u32				pad;
225
} __packed;
226
 
6082 serge 227
struct xstate_header {
228
	u64				xfeatures;
229
	u64				xcomp_bv;
230
	u64				reserved[6];
231
} __attribute__((packed));
232
 
233
/*
234
 * This is our most modern FPU state format, as saved by the XSAVE
235
 * and restored by the XRSTOR instructions.
236
 *
237
 * It consists of a legacy fxregs portion, an xstate header and
238
 * subsequent areas as defined by the xstate header.  Not all CPUs
239
 * support all the extensions, so the size of the extended area
240
 * can vary quite a bit between CPUs.
241
 */
242
struct xregs_state {
243
	struct fxregs_state		i387;
244
	struct xstate_header		header;
245
	u8				extended_state_area[0];
246
} __attribute__ ((packed, aligned (64)));
247
 
248
/*
249
 * This is a union of all the possible FPU state formats
250
 * put together, so that we can pick the right one runtime.
251
 *
252
 * The size of the structure is determined by the largest
253
 * member - which is the xsave area.  The padding is there
254
 * to ensure that statically-allocated task_structs (just
255
 * the init_task today) have enough space.
256
 */
257
union fpregs_state {
258
	struct fregs_state		fsave;
259
	struct fxregs_state		fxsave;
260
	struct swregs_state		soft;
261
	struct xregs_state		xsave;
262
	u8 __padding[PAGE_SIZE];
263
};
264
 
265
/*
266
 * Highest level per task FPU state data structure that
267
 * contains the FPU register state plus various FPU
268
 * state fields:
269
 */
270
struct fpu {
271
	/*
272
	 * @last_cpu:
273
	 *
274
	 * Records the last CPU on which this context was loaded into
275
	 * FPU registers. (In the lazy-restore case we might be
276
	 * able to reuse FPU registers across multiple context switches
277
	 * this way, if no intermediate task used the FPU.)
278
	 *
279
	 * A value of -1 is used to indicate that the FPU state in context
280
	 * memory is newer than the FPU state in registers, and that the
281
	 * FPU state should be reloaded next time the task is run.
282
	 */
283
	unsigned int			last_cpu;
284
 
285
	/*
286
	 * @fpstate_active:
287
	 *
288
	 * This flag indicates whether this context is active: if the task
289
	 * is not running then we can restore from this context, if the task
290
	 * is running then we should save into this context.
291
	 */
292
	unsigned char			fpstate_active;
293
 
294
	/*
295
	 * @fpregs_active:
296
	 *
297
	 * This flag determines whether a given context is actively
298
	 * loaded into the FPU's registers and that those registers
299
	 * represent the task's current FPU state.
300
	 *
301
	 * Note the interaction with fpstate_active:
302
	 *
303
	 *   # task does not use the FPU:
304
	 *   fpstate_active == 0
305
	 *
306
	 *   # task uses the FPU and regs are active:
307
	 *   fpstate_active == 1 && fpregs_active == 1
308
	 *
309
	 *   # the regs are inactive but still match fpstate:
310
	 *   fpstate_active == 1 && fpregs_active == 0 && fpregs_owner == fpu
311
	 *
312
	 * The third state is what we use for the lazy restore optimization
313
	 * on lazy-switching CPUs.
314
	 */
315
	unsigned char			fpregs_active;
316
 
317
	/*
318
	 * @counter:
319
	 *
320
	 * This counter contains the number of consecutive context switches
321
	 * during which the FPU stays used. If this is over a threshold, the
322
	 * lazy FPU restore logic becomes eager, to save the trap overhead.
323
	 * This is an unsigned char so that after 256 iterations the counter
324
	 * wraps and the context switch behavior turns lazy again; this is to
325
	 * deal with bursty apps that only use the FPU for a short time:
326
	 */
327
	unsigned char			counter;
328
	/*
329
	 * @state:
330
	 *
331
	 * In-memory copy of all FPU registers that we save/restore
332
	 * over context switches. If the task is using the FPU then
333
	 * the registers in the FPU are more recent than this state
334
	 * copy. If the task context-switches away then they get
335
	 * saved here and represent the FPU state.
336
	 *
337
	 * After context switches there may be a (short) time period
338
	 * during which the in-FPU hardware registers are unchanged
339
	 * and still perfectly match this state, if the tasks
340
	 * scheduled afterwards are not using the FPU.
341
	 *
342
	 * This is the 'lazy restore' window of optimization, which
343
	 * we track though 'fpu_fpregs_owner_ctx' and 'fpu->last_cpu'.
344
	 *
345
	 * We detect whether a subsequent task uses the FPU via setting
346
	 * CR0::TS to 1, which causes any FPU use to raise a #NM fault.
347
	 *
348
	 * During this window, if the task gets scheduled again, we
349
	 * might be able to skip having to do a restore from this
350
	 * memory buffer to the hardware registers - at the cost of
351
	 * incurring the overhead of #NM fault traps.
352
	 *
353
	 * Note that on modern CPUs that support the XSAVEOPT (or other
354
	 * optimized XSAVE instructions), we don't use #NM traps anymore,
355
	 * as the hardware can track whether FPU registers need saving
356
	 * or not. On such CPUs we activate the non-lazy ('eagerfpu')
357
	 * logic, which unconditionally saves/restores all FPU state
358
	 * across context switches. (if FPU state exists.)
359
	 */
360
	union fpregs_state		state;
361
	/*
362
	 * WARNING: 'state' is dynamically-sized.  Do not put
363
	 * anything after it here.
364
	 */
365
};
366
 
367
#endif /* _ASM_X86_FPU_H */