Subversion Repositories Kolibri OS

Rev

Rev 4103 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
4103 Serge 1
/*
2
  Red Black Trees
3
  (C) 1999  Andrea Arcangeli 
4
  (C) 2002  David Woodhouse 
5
  (C) 2012  Michel Lespinasse 
6
 
7
  This program is free software; you can redistribute it and/or modify
8
  it under the terms of the GNU General Public License as published by
9
  the Free Software Foundation; either version 2 of the License, or
10
  (at your option) any later version.
11
 
12
  This program is distributed in the hope that it will be useful,
13
  but WITHOUT ANY WARRANTY; without even the implied warranty of
14
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
  GNU General Public License for more details.
16
 
17
  You should have received a copy of the GNU General Public License
18
  along with this program; if not, write to the Free Software
19
  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20
 
21
  linux/lib/rbtree.c
22
*/
23
 
24
#include 
25
#include 
26
 
27
/*
28
 * red-black trees properties:  http://en.wikipedia.org/wiki/Rbtree
29
 *
30
 *  1) A node is either red or black
31
 *  2) The root is black
32
 *  3) All leaves (NULL) are black
33
 *  4) Both children of every red node are black
34
 *  5) Every simple path from root to leaves contains the same number
35
 *     of black nodes.
36
 *
37
 *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
38
 *  consecutive red nodes in a path and every red node is therefore followed by
39
 *  a black. So if B is the number of black nodes on every simple path (as per
40
 *  5), then the longest possible path due to 4 is 2B.
41
 *
42
 *  We shall indicate color with case, where black nodes are uppercase and red
43
 *  nodes will be lowercase. Unknown color nodes shall be drawn as red within
44
 *  parentheses and have some accompanying text comment.
45
 */
46
 
47
static inline void rb_set_black(struct rb_node *rb)
48
{
49
	rb->__rb_parent_color |= RB_BLACK;
50
}
51
 
52
static inline struct rb_node *rb_red_parent(struct rb_node *red)
53
{
54
	return (struct rb_node *)red->__rb_parent_color;
55
}
56
 
57
/*
58
 * Helper function for rotations:
59
 * - old's parent and color get assigned to new
60
 * - old gets assigned new as a parent and 'color' as a color.
61
 */
62
static inline void
63
__rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
64
			struct rb_root *root, int color)
65
{
66
	struct rb_node *parent = rb_parent(old);
67
	new->__rb_parent_color = old->__rb_parent_color;
68
	rb_set_parent_color(old, new, color);
69
	__rb_change_child(old, new, parent, root);
70
}
71
 
72
static __always_inline void
73
__rb_insert(struct rb_node *node, struct rb_root *root,
74
	    void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
75
{
76
	struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
77
 
78
	while (true) {
79
		/*
80
		 * Loop invariant: node is red
81
		 *
82
		 * If there is a black parent, we are done.
83
		 * Otherwise, take some corrective action as we don't
84
		 * want a red root or two consecutive red nodes.
85
		 */
86
		if (!parent) {
87
			rb_set_parent_color(node, NULL, RB_BLACK);
88
			break;
89
		} else if (rb_is_black(parent))
90
			break;
91
 
92
		gparent = rb_red_parent(parent);
93
 
94
		tmp = gparent->rb_right;
95
		if (parent != tmp) {	/* parent == gparent->rb_left */
96
			if (tmp && rb_is_red(tmp)) {
97
				/*
98
				 * Case 1 - color flips
99
				 *
100
				 *       G            g
101
				 *      / \          / \
102
				 *     p   u  -->   P   U
103
				 *    /            /
5270 serge 104
				 *   n            n
4103 Serge 105
				 *
106
				 * However, since g's parent might be red, and
107
				 * 4) does not allow this, we need to recurse
108
				 * at g.
109
				 */
110
				rb_set_parent_color(tmp, gparent, RB_BLACK);
111
				rb_set_parent_color(parent, gparent, RB_BLACK);
112
				node = gparent;
113
				parent = rb_parent(node);
114
				rb_set_parent_color(node, parent, RB_RED);
115
				continue;
116
			}
117
 
118
			tmp = parent->rb_right;
119
			if (node == tmp) {
120
				/*
121
				 * Case 2 - left rotate at parent
122
				 *
123
				 *      G             G
124
				 *     / \           / \
125
				 *    p   U  -->    n   U
126
				 *     \           /
127
				 *      n         p
128
				 *
129
				 * This still leaves us in violation of 4), the
130
				 * continuation into Case 3 will fix that.
131
				 */
132
				parent->rb_right = tmp = node->rb_left;
133
				node->rb_left = parent;
134
				if (tmp)
135
					rb_set_parent_color(tmp, parent,
136
							    RB_BLACK);
137
				rb_set_parent_color(parent, node, RB_RED);
138
				augment_rotate(parent, node);
139
				parent = node;
140
				tmp = node->rb_right;
141
			}
142
 
143
			/*
144
			 * Case 3 - right rotate at gparent
145
			 *
146
			 *        G           P
147
			 *       / \         / \
148
			 *      p   U  -->  n   g
149
			 *     /                 \
150
			 *    n                   U
151
			 */
152
			gparent->rb_left = tmp;  /* == parent->rb_right */
153
			parent->rb_right = gparent;
154
			if (tmp)
155
				rb_set_parent_color(tmp, gparent, RB_BLACK);
156
			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
157
			augment_rotate(gparent, parent);
158
			break;
159
		} else {
160
			tmp = gparent->rb_left;
161
			if (tmp && rb_is_red(tmp)) {
162
				/* Case 1 - color flips */
163
				rb_set_parent_color(tmp, gparent, RB_BLACK);
164
				rb_set_parent_color(parent, gparent, RB_BLACK);
165
				node = gparent;
166
				parent = rb_parent(node);
167
				rb_set_parent_color(node, parent, RB_RED);
168
				continue;
169
			}
170
 
171
			tmp = parent->rb_left;
172
			if (node == tmp) {
173
				/* Case 2 - right rotate at parent */
174
				parent->rb_left = tmp = node->rb_right;
175
				node->rb_right = parent;
176
				if (tmp)
177
					rb_set_parent_color(tmp, parent,
178
							    RB_BLACK);
179
				rb_set_parent_color(parent, node, RB_RED);
180
				augment_rotate(parent, node);
181
				parent = node;
182
				tmp = node->rb_left;
183
			}
184
 
185
			/* Case 3 - left rotate at gparent */
186
			gparent->rb_right = tmp;  /* == parent->rb_left */
187
			parent->rb_left = gparent;
188
			if (tmp)
189
				rb_set_parent_color(tmp, gparent, RB_BLACK);
190
			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
191
			augment_rotate(gparent, parent);
192
			break;
193
		}
194
	}
195
}
196
 
197
/*
198
 * Inline version for rb_erase() use - we want to be able to inline
199
 * and eliminate the dummy_rotate callback there
200
 */
201
static __always_inline void
202
____rb_erase_color(struct rb_node *parent, struct rb_root *root,
203
	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
204
{
205
	struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
206
 
207
	while (true) {
208
		/*
209
		 * Loop invariants:
210
		 * - node is black (or NULL on first iteration)
211
		 * - node is not the root (parent is not NULL)
212
		 * - All leaf paths going through parent and node have a
213
		 *   black node count that is 1 lower than other leaf paths.
214
		 */
215
		sibling = parent->rb_right;
216
		if (node != sibling) {	/* node == parent->rb_left */
217
			if (rb_is_red(sibling)) {
218
				/*
219
				 * Case 1 - left rotate at parent
220
				 *
221
				 *     P               S
222
				 *    / \             / \
223
				 *   N   s    -->    p   Sr
224
				 *      / \         / \
225
				 *     Sl  Sr      N   Sl
226
				 */
227
				parent->rb_right = tmp1 = sibling->rb_left;
228
				sibling->rb_left = parent;
229
				rb_set_parent_color(tmp1, parent, RB_BLACK);
230
				__rb_rotate_set_parents(parent, sibling, root,
231
							RB_RED);
232
				augment_rotate(parent, sibling);
233
				sibling = tmp1;
234
			}
235
			tmp1 = sibling->rb_right;
236
			if (!tmp1 || rb_is_black(tmp1)) {
237
				tmp2 = sibling->rb_left;
238
				if (!tmp2 || rb_is_black(tmp2)) {
239
					/*
240
					 * Case 2 - sibling color flip
241
					 * (p could be either color here)
242
					 *
243
					 *    (p)           (p)
244
					 *    / \           / \
245
					 *   N   S    -->  N   s
246
					 *      / \           / \
247
					 *     Sl  Sr        Sl  Sr
248
					 *
249
					 * This leaves us violating 5) which
250
					 * can be fixed by flipping p to black
251
					 * if it was red, or by recursing at p.
252
					 * p is red when coming from Case 1.
253
					 */
254
					rb_set_parent_color(sibling, parent,
255
							    RB_RED);
256
					if (rb_is_red(parent))
257
						rb_set_black(parent);
258
					else {
259
						node = parent;
260
						parent = rb_parent(node);
261
						if (parent)
262
							continue;
263
					}
264
					break;
265
				}
266
				/*
267
				 * Case 3 - right rotate at sibling
268
				 * (p could be either color here)
269
				 *
270
				 *   (p)           (p)
271
				 *   / \           / \
272
				 *  N   S    -->  N   Sl
273
				 *     / \             \
274
				 *    sl  Sr            s
275
				 *                       \
276
				 *                        Sr
277
				 */
278
				sibling->rb_left = tmp1 = tmp2->rb_right;
279
				tmp2->rb_right = sibling;
280
				parent->rb_right = tmp2;
281
				if (tmp1)
282
					rb_set_parent_color(tmp1, sibling,
283
							    RB_BLACK);
284
				augment_rotate(sibling, tmp2);
285
				tmp1 = sibling;
286
				sibling = tmp2;
287
			}
288
			/*
289
			 * Case 4 - left rotate at parent + color flips
290
			 * (p and sl could be either color here.
291
			 *  After rotation, p becomes black, s acquires
292
			 *  p's color, and sl keeps its color)
293
			 *
294
			 *      (p)             (s)
295
			 *      / \             / \
296
			 *     N   S     -->   P   Sr
297
			 *        / \         / \
298
			 *      (sl) sr      N  (sl)
299
			 */
300
			parent->rb_right = tmp2 = sibling->rb_left;
301
			sibling->rb_left = parent;
302
			rb_set_parent_color(tmp1, sibling, RB_BLACK);
303
			if (tmp2)
304
				rb_set_parent(tmp2, parent);
305
			__rb_rotate_set_parents(parent, sibling, root,
306
						RB_BLACK);
307
			augment_rotate(parent, sibling);
308
			break;
309
		} else {
310
			sibling = parent->rb_left;
311
			if (rb_is_red(sibling)) {
312
				/* Case 1 - right rotate at parent */
313
				parent->rb_left = tmp1 = sibling->rb_right;
314
				sibling->rb_right = parent;
315
				rb_set_parent_color(tmp1, parent, RB_BLACK);
316
				__rb_rotate_set_parents(parent, sibling, root,
317
							RB_RED);
318
				augment_rotate(parent, sibling);
319
				sibling = tmp1;
320
			}
321
			tmp1 = sibling->rb_left;
322
			if (!tmp1 || rb_is_black(tmp1)) {
323
				tmp2 = sibling->rb_right;
324
				if (!tmp2 || rb_is_black(tmp2)) {
325
					/* Case 2 - sibling color flip */
326
					rb_set_parent_color(sibling, parent,
327
							    RB_RED);
328
					if (rb_is_red(parent))
329
						rb_set_black(parent);
330
					else {
331
						node = parent;
332
						parent = rb_parent(node);
333
						if (parent)
334
							continue;
335
					}
336
					break;
337
				}
338
				/* Case 3 - right rotate at sibling */
339
				sibling->rb_right = tmp1 = tmp2->rb_left;
340
				tmp2->rb_left = sibling;
341
				parent->rb_left = tmp2;
342
				if (tmp1)
343
					rb_set_parent_color(tmp1, sibling,
344
							    RB_BLACK);
345
				augment_rotate(sibling, tmp2);
346
				tmp1 = sibling;
347
				sibling = tmp2;
348
			}
349
			/* Case 4 - left rotate at parent + color flips */
350
			parent->rb_left = tmp2 = sibling->rb_right;
351
			sibling->rb_right = parent;
352
			rb_set_parent_color(tmp1, sibling, RB_BLACK);
353
			if (tmp2)
354
				rb_set_parent(tmp2, parent);
355
			__rb_rotate_set_parents(parent, sibling, root,
356
						RB_BLACK);
357
			augment_rotate(parent, sibling);
358
			break;
359
		}
360
	}
361
}
362
 
363
/* Non-inline version for rb_erase_augmented() use */
364
void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
365
	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
366
{
367
	____rb_erase_color(parent, root, augment_rotate);
368
}
369
EXPORT_SYMBOL(__rb_erase_color);
370
 
371
/*
372
 * Non-augmented rbtree manipulation functions.
373
 *
374
 * We use dummy augmented callbacks here, and have the compiler optimize them
375
 * out of the rb_insert_color() and rb_erase() function definitions.
376
 */
377
 
378
static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
379
static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
380
static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
381
 
382
static const struct rb_augment_callbacks dummy_callbacks = {
383
	dummy_propagate, dummy_copy, dummy_rotate
384
};
385
 
386
void rb_insert_color(struct rb_node *node, struct rb_root *root)
387
{
388
	__rb_insert(node, root, dummy_rotate);
389
}
390
EXPORT_SYMBOL(rb_insert_color);
391
 
392
void rb_erase(struct rb_node *node, struct rb_root *root)
393
{
394
	struct rb_node *rebalance;
395
	rebalance = __rb_erase_augmented(node, root, &dummy_callbacks);
396
	if (rebalance)
397
		____rb_erase_color(rebalance, root, dummy_rotate);
398
}
399
EXPORT_SYMBOL(rb_erase);
400
 
401
/*
402
 * Augmented rbtree manipulation functions.
403
 *
404
 * This instantiates the same __always_inline functions as in the non-augmented
405
 * case, but this time with user-defined callbacks.
406
 */
407
 
408
void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
409
	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
410
{
411
	__rb_insert(node, root, augment_rotate);
412
}
413
EXPORT_SYMBOL(__rb_insert_augmented);
414
 
415
/*
416
 * This function returns the first node (in sort order) of the tree.
417
 */
418
struct rb_node *rb_first(const struct rb_root *root)
419
{
420
	struct rb_node	*n;
421
 
422
	n = root->rb_node;
423
	if (!n)
424
		return NULL;
425
	while (n->rb_left)
426
		n = n->rb_left;
427
	return n;
428
}
429
EXPORT_SYMBOL(rb_first);
430
 
431
struct rb_node *rb_last(const struct rb_root *root)
432
{
433
	struct rb_node	*n;
434
 
435
	n = root->rb_node;
436
	if (!n)
437
		return NULL;
438
	while (n->rb_right)
439
		n = n->rb_right;
440
	return n;
441
}
442
EXPORT_SYMBOL(rb_last);
443
 
444
struct rb_node *rb_next(const struct rb_node *node)
445
{
446
	struct rb_node *parent;
447
 
448
	if (RB_EMPTY_NODE(node))
449
		return NULL;
450
 
451
	/*
452
	 * If we have a right-hand child, go down and then left as far
453
	 * as we can.
454
	 */
455
	if (node->rb_right) {
456
		node = node->rb_right;
457
		while (node->rb_left)
458
			node=node->rb_left;
459
		return (struct rb_node *)node;
460
	}
461
 
462
	/*
463
	 * No right-hand children. Everything down and left is smaller than us,
464
	 * so any 'next' node must be in the general direction of our parent.
465
	 * Go up the tree; any time the ancestor is a right-hand child of its
466
	 * parent, keep going up. First time it's a left-hand child of its
467
	 * parent, said parent is our 'next' node.
468
	 */
469
	while ((parent = rb_parent(node)) && node == parent->rb_right)
470
		node = parent;
471
 
472
	return parent;
473
}
474
EXPORT_SYMBOL(rb_next);
475
 
476
struct rb_node *rb_prev(const struct rb_node *node)
477
{
478
	struct rb_node *parent;
479
 
480
	if (RB_EMPTY_NODE(node))
481
		return NULL;
482
 
483
	/*
484
	 * If we have a left-hand child, go down and then right as far
485
	 * as we can.
486
	 */
487
	if (node->rb_left) {
488
		node = node->rb_left;
489
		while (node->rb_right)
490
			node=node->rb_right;
491
		return (struct rb_node *)node;
492
	}
493
 
494
	/*
495
	 * No left-hand children. Go up till we find an ancestor which
496
	 * is a right-hand child of its parent.
497
	 */
498
	while ((parent = rb_parent(node)) && node == parent->rb_left)
499
		node = parent;
500
 
501
	return parent;
502
}
503
EXPORT_SYMBOL(rb_prev);
504
 
505
void rb_replace_node(struct rb_node *victim, struct rb_node *new,
506
		     struct rb_root *root)
507
{
508
	struct rb_node *parent = rb_parent(victim);
509
 
510
	/* Set the surrounding nodes to point to the replacement */
511
	__rb_change_child(victim, new, parent, root);
512
	if (victim->rb_left)
513
		rb_set_parent(victim->rb_left, new);
514
	if (victim->rb_right)
515
		rb_set_parent(victim->rb_right, new);
516
 
517
	/* Copy the pointers/colour from the victim to the replacement */
518
	*new = *victim;
519
}
520
EXPORT_SYMBOL(rb_replace_node);
521
 
522
static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
523
{
524
	for (;;) {
525
		if (node->rb_left)
526
			node = node->rb_left;
527
		else if (node->rb_right)
528
			node = node->rb_right;
529
		else
530
			return (struct rb_node *)node;
531
	}
532
}
533
 
534
struct rb_node *rb_next_postorder(const struct rb_node *node)
535
{
536
	const struct rb_node *parent;
537
	if (!node)
538
		return NULL;
539
	parent = rb_parent(node);
540
 
541
	/* If we're sitting on node, we've already seen our children */
542
	if (parent && node == parent->rb_left && parent->rb_right) {
543
		/* If we are the parent's left node, go to the parent's right
544
		 * node then all the way down to the left */
545
		return rb_left_deepest_node(parent->rb_right);
546
	} else
547
		/* Otherwise we are the parent's right node, and the parent
548
		 * should be next */
549
		return (struct rb_node *)parent;
550
}
551
EXPORT_SYMBOL(rb_next_postorder);
552
 
553
struct rb_node *rb_first_postorder(const struct rb_root *root)
554
{
555
	if (!root->rb_node)
556
		return NULL;
557
 
558
	return rb_left_deepest_node(root->rb_node);
559
}
560
EXPORT_SYMBOL(rb_first_postorder);