Subversion Repositories Kolibri OS

Rev

Rev 5056 | Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
3391 Serge 1
/*
2
 * lib/bitmap.c
3
 * Helper functions for bitmap.h.
4
 *
5
 * Tlhis source code is licensed under the GNU General Public License,
6
 * Version 2.  See the file COPYING for more details.
7
 */
8
#include 
9
#include 
10
//#include 
11
#include 
12
#include 
13
#include 
14
#include 
15
#include 
16
//#include 
17
 
18
/*
19
 * bitmaps provide an array of bits, implemented using an an
20
 * array of unsigned longs.  The number of valid bits in a
21
 * given bitmap does _not_ need to be an exact multiple of
22
 * BITS_PER_LONG.
23
 *
24
 * The possible unused bits in the last, partially used word
25
 * of a bitmap are 'don't care'.  The implementation makes
26
 * no particular effort to keep them zero.  It ensures that
27
 * their value will not affect the results of any operation.
28
 * The bitmap operations that return Boolean (bitmap_empty,
29
 * for example) or scalar (bitmap_weight, for example) results
30
 * carefully filter out these unused bits from impacting their
31
 * results.
32
 *
33
 * These operations actually hold to a slightly stronger rule:
34
 * if you don't input any bitmaps to these ops that have some
35
 * unused bits set, then they won't output any set unused bits
36
 * in output bitmaps.
37
 *
38
 * The byte ordering of bitmaps is more natural on little
39
 * endian architectures.  See the big-endian headers
40
 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
41
 * for the best explanations of this ordering.
42
 */
43
 
44
int __bitmap_empty(const unsigned long *bitmap, int bits)
45
{
46
	int k, lim = bits/BITS_PER_LONG;
47
	for (k = 0; k < lim; ++k)
48
		if (bitmap[k])
49
			return 0;
50
 
51
	if (bits % BITS_PER_LONG)
52
		if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
53
			return 0;
54
 
55
	return 1;
56
}
57
EXPORT_SYMBOL(__bitmap_empty);
58
 
59
int __bitmap_full(const unsigned long *bitmap, int bits)
60
{
61
	int k, lim = bits/BITS_PER_LONG;
62
	for (k = 0; k < lim; ++k)
63
		if (~bitmap[k])
64
			return 0;
65
 
66
	if (bits % BITS_PER_LONG)
67
		if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
68
			return 0;
69
 
70
	return 1;
71
}
72
EXPORT_SYMBOL(__bitmap_full);
73
 
74
int __bitmap_equal(const unsigned long *bitmap1,
75
		const unsigned long *bitmap2, int bits)
76
{
77
	int k, lim = bits/BITS_PER_LONG;
78
	for (k = 0; k < lim; ++k)
79
		if (bitmap1[k] != bitmap2[k])
80
			return 0;
81
 
82
	if (bits % BITS_PER_LONG)
83
		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
84
			return 0;
85
 
86
	return 1;
87
}
88
EXPORT_SYMBOL(__bitmap_equal);
89
 
90
void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits)
91
{
92
	int k, lim = bits/BITS_PER_LONG;
93
	for (k = 0; k < lim; ++k)
94
		dst[k] = ~src[k];
95
 
96
	if (bits % BITS_PER_LONG)
97
		dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
98
}
99
EXPORT_SYMBOL(__bitmap_complement);
100
 
101
/**
102
 * __bitmap_shift_right - logical right shift of the bits in a bitmap
103
 *   @dst : destination bitmap
104
 *   @src : source bitmap
105
 *   @shift : shift by this many bits
106
 *   @bits : bitmap size, in bits
107
 *
108
 * Shifting right (dividing) means moving bits in the MS -> LS bit
109
 * direction.  Zeros are fed into the vacated MS positions and the
110
 * LS bits shifted off the bottom are lost.
111
 */
112
void __bitmap_shift_right(unsigned long *dst,
113
			const unsigned long *src, int shift, int bits)
114
{
115
	int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
116
	int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
117
	unsigned long mask = (1UL << left) - 1;
118
	for (k = 0; off + k < lim; ++k) {
119
		unsigned long upper, lower;
120
 
121
		/*
122
		 * If shift is not word aligned, take lower rem bits of
123
		 * word above and make them the top rem bits of result.
124
		 */
125
		if (!rem || off + k + 1 >= lim)
126
			upper = 0;
127
		else {
128
			upper = src[off + k + 1];
129
			if (off + k + 1 == lim - 1 && left)
130
				upper &= mask;
131
		}
132
		lower = src[off + k];
133
		if (left && off + k == lim - 1)
134
			lower &= mask;
135
		dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem;
136
		if (left && k == lim - 1)
137
			dst[k] &= mask;
138
	}
139
	if (off)
140
		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
141
}
142
EXPORT_SYMBOL(__bitmap_shift_right);
143
 
144
 
145
/**
146
 * __bitmap_shift_left - logical left shift of the bits in a bitmap
147
 *   @dst : destination bitmap
148
 *   @src : source bitmap
149
 *   @shift : shift by this many bits
150
 *   @bits : bitmap size, in bits
151
 *
152
 * Shifting left (multiplying) means moving bits in the LS -> MS
153
 * direction.  Zeros are fed into the vacated LS bit positions
154
 * and those MS bits shifted off the top are lost.
155
 */
156
 
157
void __bitmap_shift_left(unsigned long *dst,
158
			const unsigned long *src, int shift, int bits)
159
{
160
	int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
161
	int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
162
	for (k = lim - off - 1; k >= 0; --k) {
163
		unsigned long upper, lower;
164
 
165
		/*
166
		 * If shift is not word aligned, take upper rem bits of
167
		 * word below and make them the bottom rem bits of result.
168
		 */
169
		if (rem && k > 0)
170
			lower = src[k - 1];
171
		else
172
			lower = 0;
173
		upper = src[k];
174
		if (left && k == lim - 1)
175
			upper &= (1UL << left) - 1;
176
		dst[k + off] = lower  >> (BITS_PER_LONG - rem) | upper << rem;
177
		if (left && k + off == lim - 1)
178
			dst[k + off] &= (1UL << left) - 1;
179
	}
180
	if (off)
181
		memset(dst, 0, off*sizeof(unsigned long));
182
}
183
EXPORT_SYMBOL(__bitmap_shift_left);
184
 
185
int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
186
				const unsigned long *bitmap2, int bits)
187
{
188
	int k;
189
	int nr = BITS_TO_LONGS(bits);
190
	unsigned long result = 0;
191
 
192
	for (k = 0; k < nr; k++)
193
		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
194
	return result != 0;
195
}
196
EXPORT_SYMBOL(__bitmap_and);
197
 
198
void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
199
				const unsigned long *bitmap2, int bits)
200
{
201
	int k;
202
	int nr = BITS_TO_LONGS(bits);
203
 
204
	for (k = 0; k < nr; k++)
205
		dst[k] = bitmap1[k] | bitmap2[k];
206
}
207
EXPORT_SYMBOL(__bitmap_or);
208
 
209
void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
210
				const unsigned long *bitmap2, int bits)
211
{
212
	int k;
213
	int nr = BITS_TO_LONGS(bits);
214
 
215
	for (k = 0; k < nr; k++)
216
		dst[k] = bitmap1[k] ^ bitmap2[k];
217
}
218
EXPORT_SYMBOL(__bitmap_xor);
219
 
220
int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
221
				const unsigned long *bitmap2, int bits)
222
{
223
	int k;
224
	int nr = BITS_TO_LONGS(bits);
225
	unsigned long result = 0;
226
 
227
	for (k = 0; k < nr; k++)
228
		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
229
	return result != 0;
230
}
231
EXPORT_SYMBOL(__bitmap_andnot);
232
 
233
int __bitmap_intersects(const unsigned long *bitmap1,
234
				const unsigned long *bitmap2, int bits)
235
{
236
	int k, lim = bits/BITS_PER_LONG;
237
	for (k = 0; k < lim; ++k)
238
		if (bitmap1[k] & bitmap2[k])
239
			return 1;
240
 
241
	if (bits % BITS_PER_LONG)
242
		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
243
			return 1;
244
	return 0;
245
}
246
EXPORT_SYMBOL(__bitmap_intersects);
247
 
248
int __bitmap_subset(const unsigned long *bitmap1,
249
				const unsigned long *bitmap2, int bits)
250
{
251
	int k, lim = bits/BITS_PER_LONG;
252
	for (k = 0; k < lim; ++k)
253
		if (bitmap1[k] & ~bitmap2[k])
254
			return 0;
255
 
256
	if (bits % BITS_PER_LONG)
257
		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
258
			return 0;
259
	return 1;
260
}
261
EXPORT_SYMBOL(__bitmap_subset);
262
 
263
int __bitmap_weight(const unsigned long *bitmap, int bits)
264
{
265
	int k, w = 0, lim = bits/BITS_PER_LONG;
266
 
267
	for (k = 0; k < lim; k++)
268
		w += hweight_long(bitmap[k]);
269
 
270
	if (bits % BITS_PER_LONG)
271
		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
272
 
273
	return w;
274
}
275
EXPORT_SYMBOL(__bitmap_weight);
276
 
277
void bitmap_set(unsigned long *map, int start, int nr)
278
{
279
	unsigned long *p = map + BIT_WORD(start);
280
	const int size = start + nr;
281
	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
282
	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
283
 
284
	while (nr - bits_to_set >= 0) {
285
		*p |= mask_to_set;
286
		nr -= bits_to_set;
287
		bits_to_set = BITS_PER_LONG;
288
		mask_to_set = ~0UL;
289
		p++;
290
	}
291
	if (nr) {
292
		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
293
		*p |= mask_to_set;
294
	}
295
}
296
EXPORT_SYMBOL(bitmap_set);
297
 
298
void bitmap_clear(unsigned long *map, int start, int nr)
299
{
300
	unsigned long *p = map + BIT_WORD(start);
301
	const int size = start + nr;
302
	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
303
	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
304
 
305
	while (nr - bits_to_clear >= 0) {
306
		*p &= ~mask_to_clear;
307
		nr -= bits_to_clear;
308
		bits_to_clear = BITS_PER_LONG;
309
		mask_to_clear = ~0UL;
310
		p++;
311
	}
312
	if (nr) {
313
		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
314
		*p &= ~mask_to_clear;
315
	}
316
}
317
EXPORT_SYMBOL(bitmap_clear);
318
 
319
/*
320
 * bitmap_find_next_zero_area - find a contiguous aligned zero area
321
 * @map: The address to base the search on
322
 * @size: The bitmap size in bits
323
 * @start: The bitnumber to start searching at
324
 * @nr: The number of zeroed bits we're looking for
325
 * @align_mask: Alignment mask for zero area
326
 *
327
 * The @align_mask should be one less than a power of 2; the effect is that
328
 * the bit offset of all zero areas this function finds is multiples of that
329
 * power of 2. A @align_mask of 0 means no alignment is required.
330
 */
331
unsigned long bitmap_find_next_zero_area(unsigned long *map,
332
					 unsigned long size,
333
					 unsigned long start,
334
					 unsigned int nr,
335
					 unsigned long align_mask)
336
{
337
	unsigned long index, end, i;
338
again:
339
	index = find_next_zero_bit(map, size, start);
340
 
341
	/* Align allocation */
342
	index = __ALIGN_MASK(index, align_mask);
343
 
344
	end = index + nr;
345
	if (end > size)
346
		return end;
347
	i = find_next_bit(map, end, index);
348
	if (i < end) {
349
		start = i + 1;
350
		goto again;
351
	}
352
	return index;
353
}
354
EXPORT_SYMBOL(bitmap_find_next_zero_area);
355
 
356
/*
357
 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
358
 * second version by Paul Jackson, third by Joe Korty.
359
 */
360
 
361
#define CHUNKSZ				32
362
#define nbits_to_hold_value(val)	fls(val)
363
#define BASEDEC 10		/* fancier cpuset lists input in decimal */
364
 
365
 
366
 
367
 
368
 
369
/**
370
 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
371
 *	@buf: pointer to a bitmap
372
 *	@pos: a bit position in @buf (0 <= @pos < @bits)
373
 *	@bits: number of valid bit positions in @buf
374
 *
375
 * Map the bit at position @pos in @buf (of length @bits) to the
376
 * ordinal of which set bit it is.  If it is not set or if @pos
377
 * is not a valid bit position, map to -1.
378
 *
379
 * If for example, just bits 4 through 7 are set in @buf, then @pos
380
 * values 4 through 7 will get mapped to 0 through 3, respectively,
381
 * and other @pos values will get mapped to 0.  When @pos value 7
382
 * gets mapped to (returns) @ord value 3 in this example, that means
383
 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
384
 *
385
 * The bit positions 0 through @bits are valid positions in @buf.
386
 */
387
static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
388
{
389
	int i, ord;
390
 
391
	if (pos < 0 || pos >= bits || !test_bit(pos, buf))
392
		return -1;
393
 
394
	i = find_first_bit(buf, bits);
395
	ord = 0;
396
	while (i < pos) {
397
		i = find_next_bit(buf, bits, i + 1);
398
	     	ord++;
399
	}
400
	BUG_ON(i != pos);
401
 
402
	return ord;
403
}
404
 
405
/**
406
 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
407
 *	@buf: pointer to bitmap
408
 *	@ord: ordinal bit position (n-th set bit, n >= 0)
409
 *	@bits: number of valid bit positions in @buf
410
 *
411
 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
412
 * Value of @ord should be in range 0 <= @ord < weight(buf), else
413
 * results are undefined.
414
 *
415
 * If for example, just bits 4 through 7 are set in @buf, then @ord
416
 * values 0 through 3 will get mapped to 4 through 7, respectively,
417
 * and all other @ord values return undefined values.  When @ord value 3
418
 * gets mapped to (returns) @pos value 7 in this example, that means
419
 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
420
 *
421
 * The bit positions 0 through @bits are valid positions in @buf.
422
 */
423
int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
424
{
425
	int pos = 0;
426
 
427
	if (ord >= 0 && ord < bits) {
428
		int i;
429
 
430
		for (i = find_first_bit(buf, bits);
431
		     i < bits && ord > 0;
432
		     i = find_next_bit(buf, bits, i + 1))
433
	     		ord--;
434
		if (i < bits && ord == 0)
435
			pos = i;
436
	}
437
 
438
	return pos;
439
}
440
 
441
/**
442
 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
443
 *	@dst: remapped result
444
 *	@src: subset to be remapped
445
 *	@old: defines domain of map
446
 *	@new: defines range of map
447
 *	@bits: number of bits in each of these bitmaps
448
 *
449
 * Let @old and @new define a mapping of bit positions, such that
450
 * whatever position is held by the n-th set bit in @old is mapped
451
 * to the n-th set bit in @new.  In the more general case, allowing
452
 * for the possibility that the weight 'w' of @new is less than the
453
 * weight of @old, map the position of the n-th set bit in @old to
454
 * the position of the m-th set bit in @new, where m == n % w.
455
 *
456
 * If either of the @old and @new bitmaps are empty, or if @src and
457
 * @dst point to the same location, then this routine copies @src
458
 * to @dst.
459
 *
460
 * The positions of unset bits in @old are mapped to themselves
461
 * (the identify map).
462
 *
463
 * Apply the above specified mapping to @src, placing the result in
464
 * @dst, clearing any bits previously set in @dst.
465
 *
466
 * For example, lets say that @old has bits 4 through 7 set, and
467
 * @new has bits 12 through 15 set.  This defines the mapping of bit
468
 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
469
 * bit positions unchanged.  So if say @src comes into this routine
470
 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
471
 * 13 and 15 set.
472
 */
473
void bitmap_remap(unsigned long *dst, const unsigned long *src,
474
		const unsigned long *old, const unsigned long *new,
475
		int bits)
476
{
477
	int oldbit, w;
478
 
479
	if (dst == src)		/* following doesn't handle inplace remaps */
480
		return;
481
	bitmap_zero(dst, bits);
482
 
483
	w = bitmap_weight(new, bits);
484
	for_each_set_bit(oldbit, src, bits) {
485
	     	int n = bitmap_pos_to_ord(old, oldbit, bits);
486
 
487
		if (n < 0 || w == 0)
488
			set_bit(oldbit, dst);	/* identity map */
489
		else
490
			set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
491
	}
492
}
493
EXPORT_SYMBOL(bitmap_remap);
494
 
495
/**
496
 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
497
 *	@oldbit: bit position to be mapped
498
 *	@old: defines domain of map
499
 *	@new: defines range of map
500
 *	@bits: number of bits in each of these bitmaps
501
 *
502
 * Let @old and @new define a mapping of bit positions, such that
503
 * whatever position is held by the n-th set bit in @old is mapped
504
 * to the n-th set bit in @new.  In the more general case, allowing
505
 * for the possibility that the weight 'w' of @new is less than the
506
 * weight of @old, map the position of the n-th set bit in @old to
507
 * the position of the m-th set bit in @new, where m == n % w.
508
 *
509
 * The positions of unset bits in @old are mapped to themselves
510
 * (the identify map).
511
 *
512
 * Apply the above specified mapping to bit position @oldbit, returning
513
 * the new bit position.
514
 *
515
 * For example, lets say that @old has bits 4 through 7 set, and
516
 * @new has bits 12 through 15 set.  This defines the mapping of bit
517
 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
518
 * bit positions unchanged.  So if say @oldbit is 5, then this routine
519
 * returns 13.
520
 */
521
int bitmap_bitremap(int oldbit, const unsigned long *old,
522
				const unsigned long *new, int bits)
523
{
524
	int w = bitmap_weight(new, bits);
525
	int n = bitmap_pos_to_ord(old, oldbit, bits);
526
	if (n < 0 || w == 0)
527
		return oldbit;
528
	else
529
		return bitmap_ord_to_pos(new, n % w, bits);
530
}
531
EXPORT_SYMBOL(bitmap_bitremap);
532
 
533
/**
534
 * bitmap_onto - translate one bitmap relative to another
535
 *	@dst: resulting translated bitmap
536
 * 	@orig: original untranslated bitmap
537
 * 	@relmap: bitmap relative to which translated
538
 *	@bits: number of bits in each of these bitmaps
539
 *
540
 * Set the n-th bit of @dst iff there exists some m such that the
541
 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
542
 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
543
 * (If you understood the previous sentence the first time your
544
 * read it, you're overqualified for your current job.)
545
 *
546
 * In other words, @orig is mapped onto (surjectively) @dst,
547
 * using the the map {  | the n-th bit of @relmap is the
548
 * m-th set bit of @relmap }.
549
 *
550
 * Any set bits in @orig above bit number W, where W is the
551
 * weight of (number of set bits in) @relmap are mapped nowhere.
552
 * In particular, if for all bits m set in @orig, m >= W, then
553
 * @dst will end up empty.  In situations where the possibility
554
 * of such an empty result is not desired, one way to avoid it is
555
 * to use the bitmap_fold() operator, below, to first fold the
556
 * @orig bitmap over itself so that all its set bits x are in the
557
 * range 0 <= x < W.  The bitmap_fold() operator does this by
558
 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
559
 *
560
 * Example [1] for bitmap_onto():
561
 *  Let's say @relmap has bits 30-39 set, and @orig has bits
562
 *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
563
 *  @dst will have bits 31, 33, 35, 37 and 39 set.
564
 *
565
 *  When bit 0 is set in @orig, it means turn on the bit in
566
 *  @dst corresponding to whatever is the first bit (if any)
567
 *  that is turned on in @relmap.  Since bit 0 was off in the
568
 *  above example, we leave off that bit (bit 30) in @dst.
569
 *
570
 *  When bit 1 is set in @orig (as in the above example), it
571
 *  means turn on the bit in @dst corresponding to whatever
572
 *  is the second bit that is turned on in @relmap.  The second
573
 *  bit in @relmap that was turned on in the above example was
574
 *  bit 31, so we turned on bit 31 in @dst.
575
 *
576
 *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
577
 *  because they were the 4th, 6th, 8th and 10th set bits
578
 *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
579
 *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
580
 *
581
 *  When bit 11 is set in @orig, it means turn on the bit in
582
 *  @dst corresponding to whatever is the twelfth bit that is
583
 *  turned on in @relmap.  In the above example, there were
584
 *  only ten bits turned on in @relmap (30..39), so that bit
585
 *  11 was set in @orig had no affect on @dst.
586
 *
587
 * Example [2] for bitmap_fold() + bitmap_onto():
588
 *  Let's say @relmap has these ten bits set:
589
 *		40 41 42 43 45 48 53 61 74 95
590
 *  (for the curious, that's 40 plus the first ten terms of the
591
 *  Fibonacci sequence.)
592
 *
593
 *  Further lets say we use the following code, invoking
594
 *  bitmap_fold() then bitmap_onto, as suggested above to
595
 *  avoid the possitility of an empty @dst result:
596
 *
597
 *	unsigned long *tmp;	// a temporary bitmap's bits
598
 *
599
 *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
600
 *	bitmap_onto(dst, tmp, relmap, bits);
601
 *
602
 *  Then this table shows what various values of @dst would be, for
603
 *  various @orig's.  I list the zero-based positions of each set bit.
604
 *  The tmp column shows the intermediate result, as computed by
605
 *  using bitmap_fold() to fold the @orig bitmap modulo ten
606
 *  (the weight of @relmap).
607
 *
608
 *      @orig           tmp            @dst
609
 *      0                0             40
610
 *      1                1             41
611
 *      9                9             95
612
 *      10               0             40 (*)
613
 *      1 3 5 7          1 3 5 7       41 43 48 61
614
 *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
615
 *      0 9 18 27        0 9 8 7       40 61 74 95
616
 *      0 10 20 30       0             40
617
 *      0 11 22 33       0 1 2 3       40 41 42 43
618
 *      0 12 24 36       0 2 4 6       40 42 45 53
619
 *      78 102 211       1 2 8         41 42 74 (*)
620
 *
621
 * (*) For these marked lines, if we hadn't first done bitmap_fold()
622
 *     into tmp, then the @dst result would have been empty.
623
 *
624
 * If either of @orig or @relmap is empty (no set bits), then @dst
625
 * will be returned empty.
626
 *
627
 * If (as explained above) the only set bits in @orig are in positions
628
 * m where m >= W, (where W is the weight of @relmap) then @dst will
629
 * once again be returned empty.
630
 *
631
 * All bits in @dst not set by the above rule are cleared.
632
 */
633
void bitmap_onto(unsigned long *dst, const unsigned long *orig,
634
			const unsigned long *relmap, int bits)
635
{
636
	int n, m;       	/* same meaning as in above comment */
637
 
638
	if (dst == orig)	/* following doesn't handle inplace mappings */
639
		return;
640
	bitmap_zero(dst, bits);
641
 
642
	/*
643
	 * The following code is a more efficient, but less
644
	 * obvious, equivalent to the loop:
645
	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
646
	 *		n = bitmap_ord_to_pos(orig, m, bits);
647
	 *		if (test_bit(m, orig))
648
	 *			set_bit(n, dst);
649
	 *	}
650
	 */
651
 
652
	m = 0;
653
	for_each_set_bit(n, relmap, bits) {
654
		/* m == bitmap_pos_to_ord(relmap, n, bits) */
655
		if (test_bit(m, orig))
656
			set_bit(n, dst);
657
		m++;
658
	}
659
}
660
EXPORT_SYMBOL(bitmap_onto);
661
 
662
/**
663
 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
664
 *	@dst: resulting smaller bitmap
665
 *	@orig: original larger bitmap
666
 *	@sz: specified size
667
 *	@bits: number of bits in each of these bitmaps
668
 *
669
 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
670
 * Clear all other bits in @dst.  See further the comment and
671
 * Example [2] for bitmap_onto() for why and how to use this.
672
 */
673
void bitmap_fold(unsigned long *dst, const unsigned long *orig,
674
			int sz, int bits)
675
{
676
	int oldbit;
677
 
678
	if (dst == orig)	/* following doesn't handle inplace mappings */
679
		return;
680
	bitmap_zero(dst, bits);
681
 
682
	for_each_set_bit(oldbit, orig, bits)
683
		set_bit(oldbit % sz, dst);
684
}
685
EXPORT_SYMBOL(bitmap_fold);
686
 
687
/*
688
 * Common code for bitmap_*_region() routines.
689
 *	bitmap: array of unsigned longs corresponding to the bitmap
690
 *	pos: the beginning of the region
691
 *	order: region size (log base 2 of number of bits)
692
 *	reg_op: operation(s) to perform on that region of bitmap
693
 *
694
 * Can set, verify and/or release a region of bits in a bitmap,
695
 * depending on which combination of REG_OP_* flag bits is set.
696
 *
697
 * A region of a bitmap is a sequence of bits in the bitmap, of
698
 * some size '1 << order' (a power of two), aligned to that same
699
 * '1 << order' power of two.
700
 *
701
 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
702
 * Returns 0 in all other cases and reg_ops.
703
 */
704
 
705
enum {
706
	REG_OP_ISFREE,		/* true if region is all zero bits */
707
	REG_OP_ALLOC,		/* set all bits in region */
708
	REG_OP_RELEASE,		/* clear all bits in region */
709
};
710
 
711
static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op)
712
{
713
	int nbits_reg;		/* number of bits in region */
714
	int index;		/* index first long of region in bitmap */
715
	int offset;		/* bit offset region in bitmap[index] */
716
	int nlongs_reg;		/* num longs spanned by region in bitmap */
717
	int nbitsinlong;	/* num bits of region in each spanned long */
718
	unsigned long mask;	/* bitmask for one long of region */
719
	int i;			/* scans bitmap by longs */
720
	int ret = 0;		/* return value */
721
 
722
	/*
723
	 * Either nlongs_reg == 1 (for small orders that fit in one long)
724
	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
725
	 */
726
	nbits_reg = 1 << order;
727
	index = pos / BITS_PER_LONG;
728
	offset = pos - (index * BITS_PER_LONG);
729
	nlongs_reg = BITS_TO_LONGS(nbits_reg);
730
	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
731
 
732
	/*
733
	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
734
	 * overflows if nbitsinlong == BITS_PER_LONG.
735
	 */
736
	mask = (1UL << (nbitsinlong - 1));
737
	mask += mask - 1;
738
	mask <<= offset;
739
 
740
	switch (reg_op) {
741
	case REG_OP_ISFREE:
742
		for (i = 0; i < nlongs_reg; i++) {
743
			if (bitmap[index + i] & mask)
744
				goto done;
745
		}
746
		ret = 1;	/* all bits in region free (zero) */
747
		break;
748
 
749
	case REG_OP_ALLOC:
750
		for (i = 0; i < nlongs_reg; i++)
751
			bitmap[index + i] |= mask;
752
		break;
753
 
754
	case REG_OP_RELEASE:
755
		for (i = 0; i < nlongs_reg; i++)
756
			bitmap[index + i] &= ~mask;
757
		break;
758
	}
759
done:
760
	return ret;
761
}
762
 
763
/**
764
 * bitmap_find_free_region - find a contiguous aligned mem region
765
 *	@bitmap: array of unsigned longs corresponding to the bitmap
766
 *	@bits: number of bits in the bitmap
767
 *	@order: region size (log base 2 of number of bits) to find
768
 *
769
 * Find a region of free (zero) bits in a @bitmap of @bits bits and
770
 * allocate them (set them to one).  Only consider regions of length
771
 * a power (@order) of two, aligned to that power of two, which
772
 * makes the search algorithm much faster.
773
 *
774
 * Return the bit offset in bitmap of the allocated region,
775
 * or -errno on failure.
776
 */
777
int bitmap_find_free_region(unsigned long *bitmap, int bits, int order)
778
{
779
	int pos, end;		/* scans bitmap by regions of size order */
780
 
781
	for (pos = 0 ; (end = pos + (1 << order)) <= bits; pos = end) {
782
		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
783
			continue;
784
		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
785
		return pos;
786
	}
787
	return -ENOMEM;
788
}
789
EXPORT_SYMBOL(bitmap_find_free_region);
790
 
791
/**
792
 * bitmap_release_region - release allocated bitmap region
793
 *	@bitmap: array of unsigned longs corresponding to the bitmap
794
 *	@pos: beginning of bit region to release
795
 *	@order: region size (log base 2 of number of bits) to release
796
 *
797
 * This is the complement to __bitmap_find_free_region() and releases
798
 * the found region (by clearing it in the bitmap).
799
 *
800
 * No return value.
801
 */
802
void bitmap_release_region(unsigned long *bitmap, int pos, int order)
803
{
804
	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
805
}
806
EXPORT_SYMBOL(bitmap_release_region);
807
 
808
/**
809
 * bitmap_allocate_region - allocate bitmap region
810
 *	@bitmap: array of unsigned longs corresponding to the bitmap
811
 *	@pos: beginning of bit region to allocate
812
 *	@order: region size (log base 2 of number of bits) to allocate
813
 *
814
 * Allocate (set bits in) a specified region of a bitmap.
815
 *
816
 * Return 0 on success, or %-EBUSY if specified region wasn't
817
 * free (not all bits were zero).
818
 */
819
int bitmap_allocate_region(unsigned long *bitmap, int pos, int order)
820
{
821
	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
822
		return -EBUSY;
823
	__reg_op(bitmap, pos, order, REG_OP_ALLOC);
824
	return 0;
825
}
826
EXPORT_SYMBOL(bitmap_allocate_region);
827
 
828
/**
829
 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
830
 * @dst:   destination buffer
831
 * @src:   bitmap to copy
832
 * @nbits: number of bits in the bitmap
833
 *
834
 * Require nbits % BITS_PER_LONG == 0.
835
 */
836
void bitmap_copy_le(void *dst, const unsigned long *src, int nbits)
837
{
838
	unsigned long *d = dst;
839
	int i;
840
 
841
	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
842
		if (BITS_PER_LONG == 64)
843
			d[i] = cpu_to_le64(src[i]);
844
		else
845
			d[i] = cpu_to_le32(src[i]);
846
	}
847
}
848
EXPORT_SYMBOL(bitmap_copy_le);