Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
6554 serge 1
// Multimap implementation -*- C++ -*-
2
 
3
// Copyright (C) 2001-2015 Free Software Foundation, Inc.
4
//
5
// This file is part of the GNU ISO C++ Library.  This library is free
6
// software; you can redistribute it and/or modify it under the
7
// terms of the GNU General Public License as published by the
8
// Free Software Foundation; either version 3, or (at your option)
9
// any later version.
10
 
11
// This library is distributed in the hope that it will be useful,
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
// GNU General Public License for more details.
15
 
16
// Under Section 7 of GPL version 3, you are granted additional
17
// permissions described in the GCC Runtime Library Exception, version
18
// 3.1, as published by the Free Software Foundation.
19
 
20
// You should have received a copy of the GNU General Public License and
21
// a copy of the GCC Runtime Library Exception along with this program;
22
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23
// .
24
 
25
/*
26
 *
27
 * Copyright (c) 1994
28
 * Hewlett-Packard Company
29
 *
30
 * Permission to use, copy, modify, distribute and sell this software
31
 * and its documentation for any purpose is hereby granted without fee,
32
 * provided that the above copyright notice appear in all copies and
33
 * that both that copyright notice and this permission notice appear
34
 * in supporting documentation.  Hewlett-Packard Company makes no
35
 * representations about the suitability of this software for any
36
 * purpose.  It is provided "as is" without express or implied warranty.
37
 *
38
 *
39
 * Copyright (c) 1996,1997
40
 * Silicon Graphics Computer Systems, Inc.
41
 *
42
 * Permission to use, copy, modify, distribute and sell this software
43
 * and its documentation for any purpose is hereby granted without fee,
44
 * provided that the above copyright notice appear in all copies and
45
 * that both that copyright notice and this permission notice appear
46
 * in supporting documentation.  Silicon Graphics makes no
47
 * representations about the suitability of this software for any
48
 * purpose.  It is provided "as is" without express or implied warranty.
49
 */
50
 
51
/** @file bits/stl_multimap.h
52
 *  This is an internal header file, included by other library headers.
53
 *  Do not attempt to use it directly. @headername{map}
54
 */
55
 
56
#ifndef _STL_MULTIMAP_H
57
#define _STL_MULTIMAP_H 1
58
 
59
#include 
60
#if __cplusplus >= 201103L
61
#include 
62
#endif
63
 
64
namespace std _GLIBCXX_VISIBILITY(default)
65
{
66
_GLIBCXX_BEGIN_NAMESPACE_CONTAINER
67
 
68
  /**
69
   *  @brief A standard container made up of (key,value) pairs, which can be
70
   *  retrieved based on a key, in logarithmic time.
71
   *
72
   *  @ingroup associative_containers
73
   *
74
   *  @tparam _Key  Type of key objects.
75
   *  @tparam  _Tp  Type of mapped objects.
76
   *  @tparam _Compare  Comparison function object type, defaults to less<_Key>.
77
   *  @tparam _Alloc  Allocator type, defaults to
78
   *                  allocator.
79
   *
80
   *  Meets the requirements of a container, a
81
   *  reversible container, and an
82
   *  associative container (using equivalent
83
   *  keys).  For a @c multimap the key_type is Key, the mapped_type
84
   *  is T, and the value_type is std::pair.
85
   *
86
   *  Multimaps support bidirectional iterators.
87
   *
88
   *  The private tree data is declared exactly the same way for map and
89
   *  multimap; the distinction is made entirely in how the tree functions are
90
   *  called (*_unique versus *_equal, same as the standard).
91
  */
92
  template 
93
	    typename _Compare = std::less<_Key>,
94
	    typename _Alloc = std::allocator > >
95
    class multimap
96
    {
97
    public:
98
      typedef _Key                                          key_type;
99
      typedef _Tp                                           mapped_type;
100
      typedef std::pair                    value_type;
101
      typedef _Compare                                      key_compare;
102
      typedef _Alloc                                        allocator_type;
103
 
104
    private:
105
      // concept requirements
106
      typedef typename _Alloc::value_type                   _Alloc_value_type;
107
      __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
108
      __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
109
				_BinaryFunctionConcept)
110
      __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
111
 
112
    public:
113
      class value_compare
114
      : public std::binary_function
115
      {
116
	friend class multimap<_Key, _Tp, _Compare, _Alloc>;
117
      protected:
118
	_Compare comp;
119
 
120
	value_compare(_Compare __c)
121
	: comp(__c) { }
122
 
123
      public:
124
	bool operator()(const value_type& __x, const value_type& __y) const
125
	{ return comp(__x.first, __y.first); }
126
      };
127
 
128
    private:
129
      /// This turns a red-black tree into a [multi]map.
130
      typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
131
	rebind::other _Pair_alloc_type;
132
 
133
      typedef _Rb_tree,
134
		       key_compare, _Pair_alloc_type> _Rep_type;
135
      /// The actual tree structure.
136
      _Rep_type _M_t;
137
 
138
      typedef __gnu_cxx::__alloc_traits<_Pair_alloc_type> _Alloc_traits;
139
 
140
    public:
141
      // many of these are specified differently in ISO, but the following are
142
      // "functionally equivalent"
143
      typedef typename _Alloc_traits::pointer            pointer;
144
      typedef typename _Alloc_traits::const_pointer      const_pointer;
145
      typedef typename _Alloc_traits::reference          reference;
146
      typedef typename _Alloc_traits::const_reference    const_reference;
147
      typedef typename _Rep_type::iterator               iterator;
148
      typedef typename _Rep_type::const_iterator         const_iterator;
149
      typedef typename _Rep_type::size_type              size_type;
150
      typedef typename _Rep_type::difference_type        difference_type;
151
      typedef typename _Rep_type::reverse_iterator       reverse_iterator;
152
      typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
153
 
154
      // [23.3.2] construct/copy/destroy
155
      // (get_allocator() is also listed in this section)
156
 
157
      /**
158
       *  @brief  Default constructor creates no elements.
159
       */
160
      multimap()
161
#if __cplusplus >= 201103L
162
      noexcept(is_nothrow_default_constructible::value)
163
#endif
164
      : _M_t() { }
165
 
166
      /**
167
       *  @brief  Creates a %multimap with no elements.
168
       *  @param  __comp  A comparison object.
169
       *  @param  __a  An allocator object.
170
       */
171
      explicit
172
      multimap(const _Compare& __comp,
173
	       const allocator_type& __a = allocator_type())
174
      : _M_t(__comp, _Pair_alloc_type(__a)) { }
175
 
176
      /**
177
       *  @brief  %Multimap copy constructor.
178
       *  @param  __x  A %multimap of identical element and allocator types.
179
       *
180
       *  The newly-created %multimap uses a copy of the allocation object
181
       *  used by @a __x.
182
       */
183
      multimap(const multimap& __x)
184
      : _M_t(__x._M_t) { }
185
 
186
#if __cplusplus >= 201103L
187
      /**
188
       *  @brief  %Multimap move constructor.
189
       *  @param   __x  A %multimap of identical element and allocator types.
190
       *
191
       *  The newly-created %multimap contains the exact contents of @a __x.
192
       *  The contents of @a __x are a valid, but unspecified %multimap.
193
       */
194
      multimap(multimap&& __x)
195
      noexcept(is_nothrow_copy_constructible<_Compare>::value)
196
      : _M_t(std::move(__x._M_t)) { }
197
 
198
      /**
199
       *  @brief  Builds a %multimap from an initializer_list.
200
       *  @param  __l  An initializer_list.
201
       *  @param  __comp  A comparison functor.
202
       *  @param  __a  An allocator object.
203
       *
204
       *  Create a %multimap consisting of copies of the elements from
205
       *  the initializer_list.  This is linear in N if the list is already
206
       *  sorted, and NlogN otherwise (where N is @a __l.size()).
207
       */
208
      multimap(initializer_list __l,
209
	       const _Compare& __comp = _Compare(),
210
	       const allocator_type& __a = allocator_type())
211
      : _M_t(__comp, _Pair_alloc_type(__a))
212
      { _M_t._M_insert_equal(__l.begin(), __l.end()); }
213
 
214
      /// Allocator-extended default constructor.
215
      explicit
216
      multimap(const allocator_type& __a)
217
      : _M_t(_Compare(), _Pair_alloc_type(__a)) { }
218
 
219
      /// Allocator-extended copy constructor.
220
      multimap(const multimap& __m, const allocator_type& __a)
221
      : _M_t(__m._M_t, _Pair_alloc_type(__a)) { }
222
 
223
      /// Allocator-extended move constructor.
224
      multimap(multimap&& __m, const allocator_type& __a)
225
      noexcept(is_nothrow_copy_constructible<_Compare>::value
226
	       && _Alloc_traits::_S_always_equal())
227
      : _M_t(std::move(__m._M_t), _Pair_alloc_type(__a)) { }
228
 
229
      /// Allocator-extended initialier-list constructor.
230
      multimap(initializer_list __l, const allocator_type& __a)
231
      : _M_t(_Compare(), _Pair_alloc_type(__a))
232
      { _M_t._M_insert_equal(__l.begin(), __l.end()); }
233
 
234
      /// Allocator-extended range constructor.
235
      template
236
        multimap(_InputIterator __first, _InputIterator __last,
237
		 const allocator_type& __a)
238
	: _M_t(_Compare(), _Pair_alloc_type(__a))
239
        { _M_t._M_insert_equal(__first, __last); }
240
#endif
241
 
242
      /**
243
       *  @brief  Builds a %multimap from a range.
244
       *  @param  __first  An input iterator.
245
       *  @param  __last  An input iterator.
246
       *
247
       *  Create a %multimap consisting of copies of the elements from
248
       *  [__first,__last).  This is linear in N if the range is already sorted,
249
       *  and NlogN otherwise (where N is distance(__first,__last)).
250
       */
251
      template
252
        multimap(_InputIterator __first, _InputIterator __last)
253
	: _M_t()
254
        { _M_t._M_insert_equal(__first, __last); }
255
 
256
      /**
257
       *  @brief  Builds a %multimap from a range.
258
       *  @param  __first  An input iterator.
259
       *  @param  __last  An input iterator.
260
       *  @param  __comp  A comparison functor.
261
       *  @param  __a  An allocator object.
262
       *
263
       *  Create a %multimap consisting of copies of the elements from
264
       *  [__first,__last).  This is linear in N if the range is already sorted,
265
       *  and NlogN otherwise (where N is distance(__first,__last)).
266
       */
267
      template
268
        multimap(_InputIterator __first, _InputIterator __last,
269
		 const _Compare& __comp,
270
		 const allocator_type& __a = allocator_type())
271
	: _M_t(__comp, _Pair_alloc_type(__a))
272
        { _M_t._M_insert_equal(__first, __last); }
273
 
274
      // FIXME There is no dtor declared, but we should have something generated
275
      // by Doxygen.  I don't know what tags to add to this paragraph to make
276
      // that happen:
277
      /**
278
       *  The dtor only erases the elements, and note that if the elements
279
       *  themselves are pointers, the pointed-to memory is not touched in any
280
       *  way.  Managing the pointer is the user's responsibility.
281
       */
282
 
283
      /**
284
       *  @brief  %Multimap assignment operator.
285
       *  @param  __x  A %multimap of identical element and allocator types.
286
       *
287
       *  All the elements of @a __x are copied, but unlike the copy
288
       *  constructor, the allocator object is not copied.
289
       */
290
      multimap&
291
      operator=(const multimap& __x)
292
      {
293
	_M_t = __x._M_t;
294
	return *this;
295
      }
296
 
297
#if __cplusplus >= 201103L
298
      /// Move assignment operator.
299
      multimap&
300
      operator=(multimap&&) = default;
301
 
302
      /**
303
       *  @brief  %Multimap list assignment operator.
304
       *  @param  __l  An initializer_list.
305
       *
306
       *  This function fills a %multimap with copies of the elements
307
       *  in the initializer list @a __l.
308
       *
309
       *  Note that the assignment completely changes the %multimap and
310
       *  that the resulting %multimap's size is the same as the number
311
       *  of elements assigned.  Old data may be lost.
312
       */
313
      multimap&
314
      operator=(initializer_list __l)
315
      {
316
	_M_t._M_assign_equal(__l.begin(), __l.end());
317
	return *this;
318
      }
319
#endif
320
 
321
      /// Get a copy of the memory allocation object.
322
      allocator_type
323
      get_allocator() const _GLIBCXX_NOEXCEPT
324
      { return allocator_type(_M_t.get_allocator()); }
325
 
326
      // iterators
327
      /**
328
       *  Returns a read/write iterator that points to the first pair in the
329
       *  %multimap.  Iteration is done in ascending order according to the
330
       *  keys.
331
       */
332
      iterator
333
      begin() _GLIBCXX_NOEXCEPT
334
      { return _M_t.begin(); }
335
 
336
      /**
337
       *  Returns a read-only (constant) iterator that points to the first pair
338
       *  in the %multimap.  Iteration is done in ascending order according to
339
       *  the keys.
340
       */
341
      const_iterator
342
      begin() const _GLIBCXX_NOEXCEPT
343
      { return _M_t.begin(); }
344
 
345
      /**
346
       *  Returns a read/write iterator that points one past the last pair in
347
       *  the %multimap.  Iteration is done in ascending order according to the
348
       *  keys.
349
       */
350
      iterator
351
      end() _GLIBCXX_NOEXCEPT
352
      { return _M_t.end(); }
353
 
354
      /**
355
       *  Returns a read-only (constant) iterator that points one past the last
356
       *  pair in the %multimap.  Iteration is done in ascending order according
357
       *  to the keys.
358
       */
359
      const_iterator
360
      end() const _GLIBCXX_NOEXCEPT
361
      { return _M_t.end(); }
362
 
363
      /**
364
       *  Returns a read/write reverse iterator that points to the last pair in
365
       *  the %multimap.  Iteration is done in descending order according to the
366
       *  keys.
367
       */
368
      reverse_iterator
369
      rbegin() _GLIBCXX_NOEXCEPT
370
      { return _M_t.rbegin(); }
371
 
372
      /**
373
       *  Returns a read-only (constant) reverse iterator that points to the
374
       *  last pair in the %multimap.  Iteration is done in descending order
375
       *  according to the keys.
376
       */
377
      const_reverse_iterator
378
      rbegin() const _GLIBCXX_NOEXCEPT
379
      { return _M_t.rbegin(); }
380
 
381
      /**
382
       *  Returns a read/write reverse iterator that points to one before the
383
       *  first pair in the %multimap.  Iteration is done in descending order
384
       *  according to the keys.
385
       */
386
      reverse_iterator
387
      rend() _GLIBCXX_NOEXCEPT
388
      { return _M_t.rend(); }
389
 
390
      /**
391
       *  Returns a read-only (constant) reverse iterator that points to one
392
       *  before the first pair in the %multimap.  Iteration is done in
393
       *  descending order according to the keys.
394
       */
395
      const_reverse_iterator
396
      rend() const _GLIBCXX_NOEXCEPT
397
      { return _M_t.rend(); }
398
 
399
#if __cplusplus >= 201103L
400
      /**
401
       *  Returns a read-only (constant) iterator that points to the first pair
402
       *  in the %multimap.  Iteration is done in ascending order according to
403
       *  the keys.
404
       */
405
      const_iterator
406
      cbegin() const noexcept
407
      { return _M_t.begin(); }
408
 
409
      /**
410
       *  Returns a read-only (constant) iterator that points one past the last
411
       *  pair in the %multimap.  Iteration is done in ascending order according
412
       *  to the keys.
413
       */
414
      const_iterator
415
      cend() const noexcept
416
      { return _M_t.end(); }
417
 
418
      /**
419
       *  Returns a read-only (constant) reverse iterator that points to the
420
       *  last pair in the %multimap.  Iteration is done in descending order
421
       *  according to the keys.
422
       */
423
      const_reverse_iterator
424
      crbegin() const noexcept
425
      { return _M_t.rbegin(); }
426
 
427
      /**
428
       *  Returns a read-only (constant) reverse iterator that points to one
429
       *  before the first pair in the %multimap.  Iteration is done in
430
       *  descending order according to the keys.
431
       */
432
      const_reverse_iterator
433
      crend() const noexcept
434
      { return _M_t.rend(); }
435
#endif
436
 
437
      // capacity
438
      /** Returns true if the %multimap is empty.  */
439
      bool
440
      empty() const _GLIBCXX_NOEXCEPT
441
      { return _M_t.empty(); }
442
 
443
      /** Returns the size of the %multimap.  */
444
      size_type
445
      size() const _GLIBCXX_NOEXCEPT
446
      { return _M_t.size(); }
447
 
448
      /** Returns the maximum size of the %multimap.  */
449
      size_type
450
      max_size() const _GLIBCXX_NOEXCEPT
451
      { return _M_t.max_size(); }
452
 
453
      // modifiers
454
#if __cplusplus >= 201103L
455
      /**
456
       *  @brief Build and insert a std::pair into the %multimap.
457
       *
458
       *  @param __args  Arguments used to generate a new pair instance (see
459
       *	        std::piecewise_contruct for passing arguments to each
460
       *	        part of the pair constructor).
461
       *
462
       *  @return An iterator that points to the inserted (key,value) pair.
463
       *
464
       *  This function builds and inserts a (key, value) %pair into the
465
       *  %multimap.
466
       *  Contrary to a std::map the %multimap does not rely on unique keys and
467
       *  thus multiple pairs with the same key can be inserted.
468
       *
469
       *  Insertion requires logarithmic time.
470
       */
471
      template
472
	iterator
473
	emplace(_Args&&... __args)
474
	{ return _M_t._M_emplace_equal(std::forward<_Args>(__args)...); }
475
 
476
      /**
477
       *  @brief Builds and inserts a std::pair into the %multimap.
478
       *
479
       *  @param  __pos  An iterator that serves as a hint as to where the pair
480
       *                should be inserted.
481
       *  @param  __args  Arguments used to generate a new pair instance (see
482
       *	         std::piecewise_contruct for passing arguments to each
483
       *	         part of the pair constructor).
484
       *  @return An iterator that points to the inserted (key,value) pair.
485
       *
486
       *  This function inserts a (key, value) pair into the %multimap.
487
       *  Contrary to a std::map the %multimap does not rely on unique keys and
488
       *  thus multiple pairs with the same key can be inserted.
489
       *  Note that the first parameter is only a hint and can potentially
490
       *  improve the performance of the insertion process.  A bad hint would
491
       *  cause no gains in efficiency.
492
       *
493
       *  For more on @a hinting, see:
494
       *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
495
       *
496
       *  Insertion requires logarithmic time (if the hint is not taken).
497
       */
498
      template
499
	iterator
500
	emplace_hint(const_iterator __pos, _Args&&... __args)
501
	{
502
	  return _M_t._M_emplace_hint_equal(__pos,
503
					    std::forward<_Args>(__args)...);
504
	}
505
#endif
506
 
507
      /**
508
       *  @brief Inserts a std::pair into the %multimap.
509
       *  @param  __x  Pair to be inserted (see std::make_pair for easy creation
510
       *             of pairs).
511
       *  @return An iterator that points to the inserted (key,value) pair.
512
       *
513
       *  This function inserts a (key, value) pair into the %multimap.
514
       *  Contrary to a std::map the %multimap does not rely on unique keys and
515
       *  thus multiple pairs with the same key can be inserted.
516
       *
517
       *  Insertion requires logarithmic time.
518
       */
519
      iterator
520
      insert(const value_type& __x)
521
      { return _M_t._M_insert_equal(__x); }
522
 
523
#if __cplusplus >= 201103L
524
      template
525
	       std::enable_if
526
						    _Pair&&>::value>::type>
527
        iterator
528
        insert(_Pair&& __x)
529
        { return _M_t._M_insert_equal(std::forward<_Pair>(__x)); }
530
#endif
531
 
532
      /**
533
       *  @brief Inserts a std::pair into the %multimap.
534
       *  @param  __position  An iterator that serves as a hint as to where the
535
       *                      pair should be inserted.
536
       *  @param  __x  Pair to be inserted (see std::make_pair for easy creation
537
       *               of pairs).
538
       *  @return An iterator that points to the inserted (key,value) pair.
539
       *
540
       *  This function inserts a (key, value) pair into the %multimap.
541
       *  Contrary to a std::map the %multimap does not rely on unique keys and
542
       *  thus multiple pairs with the same key can be inserted.
543
       *  Note that the first parameter is only a hint and can potentially
544
       *  improve the performance of the insertion process.  A bad hint would
545
       *  cause no gains in efficiency.
546
       *
547
       *  For more on @a hinting, see:
548
       *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
549
       *
550
       *  Insertion requires logarithmic time (if the hint is not taken).
551
       */
552
      iterator
553
#if __cplusplus >= 201103L
554
      insert(const_iterator __position, const value_type& __x)
555
#else
556
      insert(iterator __position, const value_type& __x)
557
#endif
558
      { return _M_t._M_insert_equal_(__position, __x); }
559
 
560
#if __cplusplus >= 201103L
561
      template
562
	       std::enable_if
563
						    _Pair&&>::value>::type>
564
        iterator
565
        insert(const_iterator __position, _Pair&& __x)
566
        { return _M_t._M_insert_equal_(__position,
567
				       std::forward<_Pair>(__x)); }
568
#endif
569
 
570
      /**
571
       *  @brief A template function that attempts to insert a range
572
       *  of elements.
573
       *  @param  __first  Iterator pointing to the start of the range to be
574
       *                   inserted.
575
       *  @param  __last  Iterator pointing to the end of the range.
576
       *
577
       *  Complexity similar to that of the range constructor.
578
       */
579
      template
580
        void
581
        insert(_InputIterator __first, _InputIterator __last)
582
        { _M_t._M_insert_equal(__first, __last); }
583
 
584
#if __cplusplus >= 201103L
585
      /**
586
       *  @brief Attempts to insert a list of std::pairs into the %multimap.
587
       *  @param  __l  A std::initializer_list of pairs to be
588
       *               inserted.
589
       *
590
       *  Complexity similar to that of the range constructor.
591
       */
592
      void
593
      insert(initializer_list __l)
594
      { this->insert(__l.begin(), __l.end()); }
595
#endif
596
 
597
#if __cplusplus >= 201103L
598
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
599
      // DR 130. Associative erase should return an iterator.
600
      /**
601
       *  @brief Erases an element from a %multimap.
602
       *  @param  __position  An iterator pointing to the element to be erased.
603
       *  @return An iterator pointing to the element immediately following
604
       *          @a position prior to the element being erased. If no such
605
       *          element exists, end() is returned.
606
       *
607
       *  This function erases an element, pointed to by the given iterator,
608
       *  from a %multimap.  Note that this function only erases the element,
609
       *  and that if the element is itself a pointer, the pointed-to memory is
610
       *  not touched in any way.  Managing the pointer is the user's
611
       *  responsibility.
612
       */
613
      iterator
614
      erase(const_iterator __position)
615
      { return _M_t.erase(__position); }
616
 
617
      // LWG 2059.
618
      _GLIBCXX_ABI_TAG_CXX11
619
      iterator
620
      erase(iterator __position)
621
      { return _M_t.erase(__position); }
622
#else
623
      /**
624
       *  @brief Erases an element from a %multimap.
625
       *  @param  __position  An iterator pointing to the element to be erased.
626
       *
627
       *  This function erases an element, pointed to by the given iterator,
628
       *  from a %multimap.  Note that this function only erases the element,
629
       *  and that if the element is itself a pointer, the pointed-to memory is
630
       *  not touched in any way.  Managing the pointer is the user's
631
       *  responsibility.
632
       */
633
      void
634
      erase(iterator __position)
635
      { _M_t.erase(__position); }
636
#endif
637
 
638
      /**
639
       *  @brief Erases elements according to the provided key.
640
       *  @param  __x  Key of element to be erased.
641
       *  @return  The number of elements erased.
642
       *
643
       *  This function erases all elements located by the given key from a
644
       *  %multimap.
645
       *  Note that this function only erases the element, and that if
646
       *  the element is itself a pointer, the pointed-to memory is not touched
647
       *  in any way.  Managing the pointer is the user's responsibility.
648
       */
649
      size_type
650
      erase(const key_type& __x)
651
      { return _M_t.erase(__x); }
652
 
653
#if __cplusplus >= 201103L
654
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
655
      // DR 130. Associative erase should return an iterator.
656
      /**
657
       *  @brief Erases a [first,last) range of elements from a %multimap.
658
       *  @param  __first  Iterator pointing to the start of the range to be
659
       *                   erased.
660
       *  @param __last Iterator pointing to the end of the range to be
661
       *                erased .
662
       *  @return The iterator @a __last.
663
       *
664
       *  This function erases a sequence of elements from a %multimap.
665
       *  Note that this function only erases the elements, and that if
666
       *  the elements themselves are pointers, the pointed-to memory is not
667
       *  touched in any way.  Managing the pointer is the user's
668
       *  responsibility.
669
       */
670
      iterator
671
      erase(const_iterator __first, const_iterator __last)
672
      { return _M_t.erase(__first, __last); }
673
#else
674
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
675
      // DR 130. Associative erase should return an iterator.
676
      /**
677
       *  @brief Erases a [first,last) range of elements from a %multimap.
678
       *  @param  __first  Iterator pointing to the start of the range to be
679
       *                 erased.
680
       *  @param __last Iterator pointing to the end of the range to
681
       *                be erased.
682
       *
683
       *  This function erases a sequence of elements from a %multimap.
684
       *  Note that this function only erases the elements, and that if
685
       *  the elements themselves are pointers, the pointed-to memory is not
686
       *  touched in any way.  Managing the pointer is the user's
687
       *  responsibility.
688
       */
689
      void
690
      erase(iterator __first, iterator __last)
691
      { _M_t.erase(__first, __last); }
692
#endif
693
 
694
      /**
695
       *  @brief  Swaps data with another %multimap.
696
       *  @param  __x  A %multimap of the same element and allocator types.
697
       *
698
       *  This exchanges the elements between two multimaps in constant time.
699
       *  (It is only swapping a pointer, an integer, and an instance of
700
       *  the @c Compare type (which itself is often stateless and empty), so it
701
       *  should be quite fast.)
702
       *  Note that the global std::swap() function is specialized such that
703
       *  std::swap(m1,m2) will feed to this function.
704
       */
705
      void
706
      swap(multimap& __x)
707
#if __cplusplus >= 201103L
708
      noexcept(_Alloc_traits::_S_nothrow_swap())
709
#endif
710
      { _M_t.swap(__x._M_t); }
711
 
712
      /**
713
       *  Erases all elements in a %multimap.  Note that this function only
714
       *  erases the elements, and that if the elements themselves are pointers,
715
       *  the pointed-to memory is not touched in any way.  Managing the pointer
716
       *  is the user's responsibility.
717
       */
718
      void
719
      clear() _GLIBCXX_NOEXCEPT
720
      { _M_t.clear(); }
721
 
722
      // observers
723
      /**
724
       *  Returns the key comparison object out of which the %multimap
725
       *  was constructed.
726
       */
727
      key_compare
728
      key_comp() const
729
      { return _M_t.key_comp(); }
730
 
731
      /**
732
       *  Returns a value comparison object, built from the key comparison
733
       *  object out of which the %multimap was constructed.
734
       */
735
      value_compare
736
      value_comp() const
737
      { return value_compare(_M_t.key_comp()); }
738
 
739
      // multimap operations
740
 
741
      //@{
742
      /**
743
       *  @brief Tries to locate an element in a %multimap.
744
       *  @param  __x  Key of (key, value) pair to be located.
745
       *  @return  Iterator pointing to sought-after element,
746
       *           or end() if not found.
747
       *
748
       *  This function takes a key and tries to locate the element with which
749
       *  the key matches.  If successful the function returns an iterator
750
       *  pointing to the sought after %pair.  If unsuccessful it returns the
751
       *  past-the-end ( @c end() ) iterator.
752
       */
753
      iterator
754
      find(const key_type& __x)
755
      { return _M_t.find(__x); }
756
 
757
#if __cplusplus > 201103L
758
      template
759
	auto
760
	find(const _Kt& __x) -> decltype(_M_t._M_find_tr(__x))
761
	{ return _M_t._M_find_tr(__x); }
762
#endif
763
      //@}
764
 
765
      //@{
766
      /**
767
       *  @brief Tries to locate an element in a %multimap.
768
       *  @param  __x  Key of (key, value) pair to be located.
769
       *  @return  Read-only (constant) iterator pointing to sought-after
770
       *           element, or end() if not found.
771
       *
772
       *  This function takes a key and tries to locate the element with which
773
       *  the key matches.  If successful the function returns a constant
774
       *  iterator pointing to the sought after %pair.  If unsuccessful it
775
       *  returns the past-the-end ( @c end() ) iterator.
776
       */
777
      const_iterator
778
      find(const key_type& __x) const
779
      { return _M_t.find(__x); }
780
 
781
#if __cplusplus > 201103L
782
      template
783
	auto
784
	find(const _Kt& __x) const -> decltype(_M_t._M_find_tr(__x))
785
	{ return _M_t._M_find_tr(__x); }
786
#endif
787
      //@}
788
 
789
      //@{
790
      /**
791
       *  @brief Finds the number of elements with given key.
792
       *  @param  __x  Key of (key, value) pairs to be located.
793
       *  @return Number of elements with specified key.
794
       */
795
      size_type
796
      count(const key_type& __x) const
797
      { return _M_t.count(__x); }
798
 
799
#if __cplusplus > 201103L
800
      template
801
	auto
802
	count(const _Kt& __x) const -> decltype(_M_t._M_count_tr(__x))
803
	{ return _M_t._M_count_tr(__x); }
804
#endif
805
      //@}
806
 
807
      //@{
808
      /**
809
       *  @brief Finds the beginning of a subsequence matching given key.
810
       *  @param  __x  Key of (key, value) pair to be located.
811
       *  @return  Iterator pointing to first element equal to or greater
812
       *           than key, or end().
813
       *
814
       *  This function returns the first element of a subsequence of elements
815
       *  that matches the given key.  If unsuccessful it returns an iterator
816
       *  pointing to the first element that has a greater value than given key
817
       *  or end() if no such element exists.
818
       */
819
      iterator
820
      lower_bound(const key_type& __x)
821
      { return _M_t.lower_bound(__x); }
822
 
823
#if __cplusplus > 201103L
824
      template
825
	auto
826
	lower_bound(const _Kt& __x)
827
	-> decltype(_M_t._M_lower_bound_tr(__x))
828
	{ return _M_t._M_lower_bound_tr(__x); }
829
#endif
830
      //@}
831
 
832
      //@{
833
      /**
834
       *  @brief Finds the beginning of a subsequence matching given key.
835
       *  @param  __x  Key of (key, value) pair to be located.
836
       *  @return  Read-only (constant) iterator pointing to first element
837
       *           equal to or greater than key, or end().
838
       *
839
       *  This function returns the first element of a subsequence of
840
       *  elements that matches the given key.  If unsuccessful the
841
       *  iterator will point to the next greatest element or, if no
842
       *  such greater element exists, to end().
843
       */
844
      const_iterator
845
      lower_bound(const key_type& __x) const
846
      { return _M_t.lower_bound(__x); }
847
 
848
#if __cplusplus > 201103L
849
      template
850
	auto
851
	lower_bound(const _Kt& __x) const
852
	-> decltype(_M_t._M_lower_bound_tr(__x))
853
	{ return _M_t._M_lower_bound_tr(__x); }
854
#endif
855
      //@}
856
 
857
      //@{
858
      /**
859
       *  @brief Finds the end of a subsequence matching given key.
860
       *  @param  __x  Key of (key, value) pair to be located.
861
       *  @return Iterator pointing to the first element
862
       *          greater than key, or end().
863
       */
864
      iterator
865
      upper_bound(const key_type& __x)
866
      { return _M_t.upper_bound(__x); }
867
 
868
#if __cplusplus > 201103L
869
      template
870
	auto
871
	upper_bound(const _Kt& __x)
872
	-> decltype(_M_t._M_upper_bound_tr(__x))
873
	{ return _M_t._M_upper_bound_tr(__x); }
874
#endif
875
      //@}
876
 
877
      //@{
878
      /**
879
       *  @brief Finds the end of a subsequence matching given key.
880
       *  @param  __x  Key of (key, value) pair to be located.
881
       *  @return  Read-only (constant) iterator pointing to first iterator
882
       *           greater than key, or end().
883
       */
884
      const_iterator
885
      upper_bound(const key_type& __x) const
886
      { return _M_t.upper_bound(__x); }
887
 
888
#if __cplusplus > 201103L
889
      template
890
	auto
891
	upper_bound(const _Kt& __x) const
892
	-> decltype(_M_t._M_upper_bound_tr(__x))
893
	{ return _M_t._M_upper_bound_tr(__x); }
894
#endif
895
      //@}
896
 
897
      //@{
898
      /**
899
       *  @brief Finds a subsequence matching given key.
900
       *  @param  __x  Key of (key, value) pairs to be located.
901
       *  @return  Pair of iterators that possibly points to the subsequence
902
       *           matching given key.
903
       *
904
       *  This function is equivalent to
905
       *  @code
906
       *    std::make_pair(c.lower_bound(val),
907
       *                   c.upper_bound(val))
908
       *  @endcode
909
       *  (but is faster than making the calls separately).
910
       */
911
      std::pair
912
      equal_range(const key_type& __x)
913
      { return _M_t.equal_range(__x); }
914
 
915
#if __cplusplus > 201103L
916
      template
917
	auto
918
	equal_range(const _Kt& __x)
919
	-> decltype(_M_t._M_equal_range_tr(__x))
920
	{ return _M_t._M_equal_range_tr(__x); }
921
#endif
922
      //@}
923
 
924
      //@{
925
      /**
926
       *  @brief Finds a subsequence matching given key.
927
       *  @param  __x  Key of (key, value) pairs to be located.
928
       *  @return  Pair of read-only (constant) iterators that possibly points
929
       *           to the subsequence matching given key.
930
       *
931
       *  This function is equivalent to
932
       *  @code
933
       *    std::make_pair(c.lower_bound(val),
934
       *                   c.upper_bound(val))
935
       *  @endcode
936
       *  (but is faster than making the calls separately).
937
       */
938
      std::pair
939
      equal_range(const key_type& __x) const
940
      { return _M_t.equal_range(__x); }
941
 
942
#if __cplusplus > 201103L
943
      template
944
	auto
945
	equal_range(const _Kt& __x) const
946
	-> decltype(_M_t._M_equal_range_tr(__x))
947
	{ return _M_t._M_equal_range_tr(__x); }
948
#endif
949
      //@}
950
 
951
      template
952
        friend bool
953
        operator==(const multimap<_K1, _T1, _C1, _A1>&,
954
		   const multimap<_K1, _T1, _C1, _A1>&);
955
 
956
      template
957
        friend bool
958
        operator<(const multimap<_K1, _T1, _C1, _A1>&,
959
		  const multimap<_K1, _T1, _C1, _A1>&);
960
  };
961
 
962
  /**
963
   *  @brief  Multimap equality comparison.
964
   *  @param  __x  A %multimap.
965
   *  @param  __y  A %multimap of the same type as @a __x.
966
   *  @return  True iff the size and elements of the maps are equal.
967
   *
968
   *  This is an equivalence relation.  It is linear in the size of the
969
   *  multimaps.  Multimaps are considered equivalent if their sizes are equal,
970
   *  and if corresponding elements compare equal.
971
  */
972
  template
973
    inline bool
974
    operator==(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
975
               const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
976
    { return __x._M_t == __y._M_t; }
977
 
978
  /**
979
   *  @brief  Multimap ordering relation.
980
   *  @param  __x  A %multimap.
981
   *  @param  __y  A %multimap of the same type as @a __x.
982
   *  @return  True iff @a x is lexicographically less than @a y.
983
   *
984
   *  This is a total ordering relation.  It is linear in the size of the
985
   *  multimaps.  The elements must be comparable with @c <.
986
   *
987
   *  See std::lexicographical_compare() for how the determination is made.
988
  */
989
  template
990
    inline bool
991
    operator<(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
992
              const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
993
    { return __x._M_t < __y._M_t; }
994
 
995
  /// Based on operator==
996
  template
997
    inline bool
998
    operator!=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
999
               const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1000
    { return !(__x == __y); }
1001
 
1002
  /// Based on operator<
1003
  template
1004
    inline bool
1005
    operator>(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1006
              const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1007
    { return __y < __x; }
1008
 
1009
  /// Based on operator<
1010
  template
1011
    inline bool
1012
    operator<=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1013
               const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1014
    { return !(__y < __x); }
1015
 
1016
  /// Based on operator<
1017
  template
1018
    inline bool
1019
    operator>=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1020
               const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1021
    { return !(__x < __y); }
1022
 
1023
  /// See std::multimap::swap().
1024
  template
1025
    inline void
1026
    swap(multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1027
         multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1028
    { __x.swap(__y); }
1029
 
1030
_GLIBCXX_END_NAMESPACE_CONTAINER
1031
} // namespace std
1032
 
1033
#endif /* _STL_MULTIMAP_H */