Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
6554 serge 1
// Map implementation -*- C++ -*-
2
 
3
// Copyright (C) 2001-2015 Free Software Foundation, Inc.
4
//
5
// This file is part of the GNU ISO C++ Library.  This library is free
6
// software; you can redistribute it and/or modify it under the
7
// terms of the GNU General Public License as published by the
8
// Free Software Foundation; either version 3, or (at your option)
9
// any later version.
10
 
11
// This library is distributed in the hope that it will be useful,
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
// GNU General Public License for more details.
15
 
16
// Under Section 7 of GPL version 3, you are granted additional
17
// permissions described in the GCC Runtime Library Exception, version
18
// 3.1, as published by the Free Software Foundation.
19
 
20
// You should have received a copy of the GNU General Public License and
21
// a copy of the GCC Runtime Library Exception along with this program;
22
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23
// .
24
 
25
/*
26
 *
27
 * Copyright (c) 1994
28
 * Hewlett-Packard Company
29
 *
30
 * Permission to use, copy, modify, distribute and sell this software
31
 * and its documentation for any purpose is hereby granted without fee,
32
 * provided that the above copyright notice appear in all copies and
33
 * that both that copyright notice and this permission notice appear
34
 * in supporting documentation.  Hewlett-Packard Company makes no
35
 * representations about the suitability of this software for any
36
 * purpose.  It is provided "as is" without express or implied warranty.
37
 *
38
 *
39
 * Copyright (c) 1996,1997
40
 * Silicon Graphics Computer Systems, Inc.
41
 *
42
 * Permission to use, copy, modify, distribute and sell this software
43
 * and its documentation for any purpose is hereby granted without fee,
44
 * provided that the above copyright notice appear in all copies and
45
 * that both that copyright notice and this permission notice appear
46
 * in supporting documentation.  Silicon Graphics makes no
47
 * representations about the suitability of this software for any
48
 * purpose.  It is provided "as is" without express or implied warranty.
49
 */
50
 
51
/** @file bits/stl_map.h
52
 *  This is an internal header file, included by other library headers.
53
 *  Do not attempt to use it directly. @headername{map}
54
 */
55
 
56
#ifndef _STL_MAP_H
57
#define _STL_MAP_H 1
58
 
59
#include 
60
#include 
61
#if __cplusplus >= 201103L
62
#include 
63
#include 
64
#endif
65
 
66
namespace std _GLIBCXX_VISIBILITY(default)
67
{
68
_GLIBCXX_BEGIN_NAMESPACE_CONTAINER
69
 
70
  /**
71
   *  @brief A standard container made up of (key,value) pairs, which can be
72
   *  retrieved based on a key, in logarithmic time.
73
   *
74
   *  @ingroup associative_containers
75
   *
76
   *  @tparam _Key  Type of key objects.
77
   *  @tparam  _Tp  Type of mapped objects.
78
   *  @tparam _Compare  Comparison function object type, defaults to less<_Key>.
79
   *  @tparam _Alloc  Allocator type, defaults to
80
   *                  allocator.
81
   *
82
   *  Meets the requirements of a container, a
83
   *  reversible container, and an
84
   *  associative container (using unique keys).
85
   *  For a @c map the key_type is Key, the mapped_type is T, and the
86
   *  value_type is std::pair.
87
   *
88
   *  Maps support bidirectional iterators.
89
   *
90
   *  The private tree data is declared exactly the same way for map and
91
   *  multimap; the distinction is made entirely in how the tree functions are
92
   *  called (*_unique versus *_equal, same as the standard).
93
  */
94
  template ,
95
            typename _Alloc = std::allocator > >
96
    class map
97
    {
98
    public:
99
      typedef _Key                                          key_type;
100
      typedef _Tp                                           mapped_type;
101
      typedef std::pair                    value_type;
102
      typedef _Compare                                      key_compare;
103
      typedef _Alloc                                        allocator_type;
104
 
105
    private:
106
      // concept requirements
107
      typedef typename _Alloc::value_type                   _Alloc_value_type;
108
      __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
109
      __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
110
				_BinaryFunctionConcept)
111
      __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
112
 
113
    public:
114
      class value_compare
115
      : public std::binary_function
116
      {
117
	friend class map<_Key, _Tp, _Compare, _Alloc>;
118
      protected:
119
	_Compare comp;
120
 
121
	value_compare(_Compare __c)
122
	: comp(__c) { }
123
 
124
      public:
125
	bool operator()(const value_type& __x, const value_type& __y) const
126
	{ return comp(__x.first, __y.first); }
127
      };
128
 
129
    private:
130
      /// This turns a red-black tree into a [multi]map.
131
      typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
132
	rebind::other _Pair_alloc_type;
133
 
134
      typedef _Rb_tree,
135
		       key_compare, _Pair_alloc_type> _Rep_type;
136
 
137
      /// The actual tree structure.
138
      _Rep_type _M_t;
139
 
140
      typedef __gnu_cxx::__alloc_traits<_Pair_alloc_type> _Alloc_traits;
141
 
142
    public:
143
      // many of these are specified differently in ISO, but the following are
144
      // "functionally equivalent"
145
      typedef typename _Alloc_traits::pointer            pointer;
146
      typedef typename _Alloc_traits::const_pointer      const_pointer;
147
      typedef typename _Alloc_traits::reference          reference;
148
      typedef typename _Alloc_traits::const_reference    const_reference;
149
      typedef typename _Rep_type::iterator               iterator;
150
      typedef typename _Rep_type::const_iterator         const_iterator;
151
      typedef typename _Rep_type::size_type              size_type;
152
      typedef typename _Rep_type::difference_type        difference_type;
153
      typedef typename _Rep_type::reverse_iterator       reverse_iterator;
154
      typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
155
 
156
      // [23.3.1.1] construct/copy/destroy
157
      // (get_allocator() is also listed in this section)
158
 
159
      /**
160
       *  @brief  Default constructor creates no elements.
161
       */
162
      map()
163
#if __cplusplus >= 201103L
164
      noexcept(is_nothrow_default_constructible::value)
165
#endif
166
      : _M_t() { }
167
 
168
      /**
169
       *  @brief  Creates a %map with no elements.
170
       *  @param  __comp  A comparison object.
171
       *  @param  __a  An allocator object.
172
       */
173
      explicit
174
      map(const _Compare& __comp,
175
	  const allocator_type& __a = allocator_type())
176
      : _M_t(__comp, _Pair_alloc_type(__a)) { }
177
 
178
      /**
179
       *  @brief  %Map copy constructor.
180
       *  @param  __x  A %map of identical element and allocator types.
181
       *
182
       *  The newly-created %map uses a copy of the allocation object
183
       *  used by @a __x.
184
       */
185
      map(const map& __x)
186
      : _M_t(__x._M_t) { }
187
 
188
#if __cplusplus >= 201103L
189
      /**
190
       *  @brief  %Map move constructor.
191
       *  @param  __x  A %map of identical element and allocator types.
192
       *
193
       *  The newly-created %map contains the exact contents of @a __x.
194
       *  The contents of @a __x are a valid, but unspecified %map.
195
       */
196
      map(map&& __x)
197
      noexcept(is_nothrow_copy_constructible<_Compare>::value)
198
      : _M_t(std::move(__x._M_t)) { }
199
 
200
      /**
201
       *  @brief  Builds a %map from an initializer_list.
202
       *  @param  __l  An initializer_list.
203
       *  @param  __comp  A comparison object.
204
       *  @param  __a  An allocator object.
205
       *
206
       *  Create a %map consisting of copies of the elements in the
207
       *  initializer_list @a __l.
208
       *  This is linear in N if the range is already sorted, and NlogN
209
       *  otherwise (where N is @a __l.size()).
210
       */
211
      map(initializer_list __l,
212
	  const _Compare& __comp = _Compare(),
213
	  const allocator_type& __a = allocator_type())
214
      : _M_t(__comp, _Pair_alloc_type(__a))
215
      { _M_t._M_insert_unique(__l.begin(), __l.end()); }
216
 
217
      /// Allocator-extended default constructor.
218
      explicit
219
      map(const allocator_type& __a)
220
      : _M_t(_Compare(), _Pair_alloc_type(__a)) { }
221
 
222
      /// Allocator-extended copy constructor.
223
      map(const map& __m, const allocator_type& __a)
224
      : _M_t(__m._M_t, _Pair_alloc_type(__a)) { }
225
 
226
      /// Allocator-extended move constructor.
227
      map(map&& __m, const allocator_type& __a)
228
      noexcept(is_nothrow_copy_constructible<_Compare>::value
229
	       && _Alloc_traits::_S_always_equal())
230
      : _M_t(std::move(__m._M_t), _Pair_alloc_type(__a)) { }
231
 
232
      /// Allocator-extended initialier-list constructor.
233
      map(initializer_list __l, const allocator_type& __a)
234
      : _M_t(_Compare(), _Pair_alloc_type(__a))
235
      { _M_t._M_insert_unique(__l.begin(), __l.end()); }
236
 
237
      /// Allocator-extended range constructor.
238
      template
239
        map(_InputIterator __first, _InputIterator __last,
240
	    const allocator_type& __a)
241
	: _M_t(_Compare(), _Pair_alloc_type(__a))
242
        { _M_t._M_insert_unique(__first, __last); }
243
#endif
244
 
245
      /**
246
       *  @brief  Builds a %map from a range.
247
       *  @param  __first  An input iterator.
248
       *  @param  __last  An input iterator.
249
       *
250
       *  Create a %map consisting of copies of the elements from
251
       *  [__first,__last).  This is linear in N if the range is
252
       *  already sorted, and NlogN otherwise (where N is
253
       *  distance(__first,__last)).
254
       */
255
      template
256
        map(_InputIterator __first, _InputIterator __last)
257
	: _M_t()
258
        { _M_t._M_insert_unique(__first, __last); }
259
 
260
      /**
261
       *  @brief  Builds a %map from a range.
262
       *  @param  __first  An input iterator.
263
       *  @param  __last  An input iterator.
264
       *  @param  __comp  A comparison functor.
265
       *  @param  __a  An allocator object.
266
       *
267
       *  Create a %map consisting of copies of the elements from
268
       *  [__first,__last).  This is linear in N if the range is
269
       *  already sorted, and NlogN otherwise (where N is
270
       *  distance(__first,__last)).
271
       */
272
      template
273
        map(_InputIterator __first, _InputIterator __last,
274
	    const _Compare& __comp,
275
	    const allocator_type& __a = allocator_type())
276
	: _M_t(__comp, _Pair_alloc_type(__a))
277
        { _M_t._M_insert_unique(__first, __last); }
278
 
279
      // FIXME There is no dtor declared, but we should have something
280
      // generated by Doxygen.  I don't know what tags to add to this
281
      // paragraph to make that happen:
282
      /**
283
       *  The dtor only erases the elements, and note that if the elements
284
       *  themselves are pointers, the pointed-to memory is not touched in any
285
       *  way.  Managing the pointer is the user's responsibility.
286
       */
287
 
288
      /**
289
       *  @brief  %Map assignment operator.
290
       *  @param  __x  A %map of identical element and allocator types.
291
       *
292
       *  All the elements of @a __x are copied, but unlike the copy
293
       *  constructor, the allocator object is not copied.
294
       */
295
      map&
296
      operator=(const map& __x)
297
      {
298
	_M_t = __x._M_t;
299
	return *this;
300
      }
301
 
302
#if __cplusplus >= 201103L
303
      /// Move assignment operator.
304
      map&
305
      operator=(map&&) = default;
306
 
307
      /**
308
       *  @brief  %Map list assignment operator.
309
       *  @param  __l  An initializer_list.
310
       *
311
       *  This function fills a %map with copies of the elements in the
312
       *  initializer list @a __l.
313
       *
314
       *  Note that the assignment completely changes the %map and
315
       *  that the resulting %map's size is the same as the number
316
       *  of elements assigned.  Old data may be lost.
317
       */
318
      map&
319
      operator=(initializer_list __l)
320
      {
321
	_M_t._M_assign_unique(__l.begin(), __l.end());
322
	return *this;
323
      }
324
#endif
325
 
326
      /// Get a copy of the memory allocation object.
327
      allocator_type
328
      get_allocator() const _GLIBCXX_NOEXCEPT
329
      { return allocator_type(_M_t.get_allocator()); }
330
 
331
      // iterators
332
      /**
333
       *  Returns a read/write iterator that points to the first pair in the
334
       *  %map.
335
       *  Iteration is done in ascending order according to the keys.
336
       */
337
      iterator
338
      begin() _GLIBCXX_NOEXCEPT
339
      { return _M_t.begin(); }
340
 
341
      /**
342
       *  Returns a read-only (constant) iterator that points to the first pair
343
       *  in the %map.  Iteration is done in ascending order according to the
344
       *  keys.
345
       */
346
      const_iterator
347
      begin() const _GLIBCXX_NOEXCEPT
348
      { return _M_t.begin(); }
349
 
350
      /**
351
       *  Returns a read/write iterator that points one past the last
352
       *  pair in the %map.  Iteration is done in ascending order
353
       *  according to the keys.
354
       */
355
      iterator
356
      end() _GLIBCXX_NOEXCEPT
357
      { return _M_t.end(); }
358
 
359
      /**
360
       *  Returns a read-only (constant) iterator that points one past the last
361
       *  pair in the %map.  Iteration is done in ascending order according to
362
       *  the keys.
363
       */
364
      const_iterator
365
      end() const _GLIBCXX_NOEXCEPT
366
      { return _M_t.end(); }
367
 
368
      /**
369
       *  Returns a read/write reverse iterator that points to the last pair in
370
       *  the %map.  Iteration is done in descending order according to the
371
       *  keys.
372
       */
373
      reverse_iterator
374
      rbegin() _GLIBCXX_NOEXCEPT
375
      { return _M_t.rbegin(); }
376
 
377
      /**
378
       *  Returns a read-only (constant) reverse iterator that points to the
379
       *  last pair in the %map.  Iteration is done in descending order
380
       *  according to the keys.
381
       */
382
      const_reverse_iterator
383
      rbegin() const _GLIBCXX_NOEXCEPT
384
      { return _M_t.rbegin(); }
385
 
386
      /**
387
       *  Returns a read/write reverse iterator that points to one before the
388
       *  first pair in the %map.  Iteration is done in descending order
389
       *  according to the keys.
390
       */
391
      reverse_iterator
392
      rend() _GLIBCXX_NOEXCEPT
393
      { return _M_t.rend(); }
394
 
395
      /**
396
       *  Returns a read-only (constant) reverse iterator that points to one
397
       *  before the first pair in the %map.  Iteration is done in descending
398
       *  order according to the keys.
399
       */
400
      const_reverse_iterator
401
      rend() const _GLIBCXX_NOEXCEPT
402
      { return _M_t.rend(); }
403
 
404
#if __cplusplus >= 201103L
405
      /**
406
       *  Returns a read-only (constant) iterator that points to the first pair
407
       *  in the %map.  Iteration is done in ascending order according to the
408
       *  keys.
409
       */
410
      const_iterator
411
      cbegin() const noexcept
412
      { return _M_t.begin(); }
413
 
414
      /**
415
       *  Returns a read-only (constant) iterator that points one past the last
416
       *  pair in the %map.  Iteration is done in ascending order according to
417
       *  the keys.
418
       */
419
      const_iterator
420
      cend() const noexcept
421
      { return _M_t.end(); }
422
 
423
      /**
424
       *  Returns a read-only (constant) reverse iterator that points to the
425
       *  last pair in the %map.  Iteration is done in descending order
426
       *  according to the keys.
427
       */
428
      const_reverse_iterator
429
      crbegin() const noexcept
430
      { return _M_t.rbegin(); }
431
 
432
      /**
433
       *  Returns a read-only (constant) reverse iterator that points to one
434
       *  before the first pair in the %map.  Iteration is done in descending
435
       *  order according to the keys.
436
       */
437
      const_reverse_iterator
438
      crend() const noexcept
439
      { return _M_t.rend(); }
440
#endif
441
 
442
      // capacity
443
      /** Returns true if the %map is empty.  (Thus begin() would equal
444
       *  end().)
445
      */
446
      bool
447
      empty() const _GLIBCXX_NOEXCEPT
448
      { return _M_t.empty(); }
449
 
450
      /** Returns the size of the %map.  */
451
      size_type
452
      size() const _GLIBCXX_NOEXCEPT
453
      { return _M_t.size(); }
454
 
455
      /** Returns the maximum size of the %map.  */
456
      size_type
457
      max_size() const _GLIBCXX_NOEXCEPT
458
      { return _M_t.max_size(); }
459
 
460
      // [23.3.1.2] element access
461
      /**
462
       *  @brief  Subscript ( @c [] ) access to %map data.
463
       *  @param  __k  The key for which data should be retrieved.
464
       *  @return  A reference to the data of the (key,data) %pair.
465
       *
466
       *  Allows for easy lookup with the subscript ( @c [] )
467
       *  operator.  Returns data associated with the key specified in
468
       *  subscript.  If the key does not exist, a pair with that key
469
       *  is created using default values, which is then returned.
470
       *
471
       *  Lookup requires logarithmic time.
472
       */
473
      mapped_type&
474
      operator[](const key_type& __k)
475
      {
476
	// concept requirements
477
	__glibcxx_function_requires(_DefaultConstructibleConcept)
478
 
479
	iterator __i = lower_bound(__k);
480
	// __i->first is greater than or equivalent to __k.
481
	if (__i == end() || key_comp()(__k, (*__i).first))
482
#if __cplusplus >= 201103L
483
	  __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
484
					    std::tuple(__k),
485
					    std::tuple<>());
486
#else
487
          __i = insert(__i, value_type(__k, mapped_type()));
488
#endif
489
	return (*__i).second;
490
      }
491
 
492
#if __cplusplus >= 201103L
493
      mapped_type&
494
      operator[](key_type&& __k)
495
      {
496
	// concept requirements
497
	__glibcxx_function_requires(_DefaultConstructibleConcept)
498
 
499
	iterator __i = lower_bound(__k);
500
	// __i->first is greater than or equivalent to __k.
501
	if (__i == end() || key_comp()(__k, (*__i).first))
502
	  __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
503
					std::forward_as_tuple(std::move(__k)),
504
					std::tuple<>());
505
	return (*__i).second;
506
      }
507
#endif
508
 
509
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
510
      // DR 464. Suggestion for new member functions in standard containers.
511
      /**
512
       *  @brief  Access to %map data.
513
       *  @param  __k  The key for which data should be retrieved.
514
       *  @return  A reference to the data whose key is equivalent to @a __k, if
515
       *           such a data is present in the %map.
516
       *  @throw  std::out_of_range  If no such data is present.
517
       */
518
      mapped_type&
519
      at(const key_type& __k)
520
      {
521
	iterator __i = lower_bound(__k);
522
	if (__i == end() || key_comp()(__k, (*__i).first))
523
	  __throw_out_of_range(__N("map::at"));
524
	return (*__i).second;
525
      }
526
 
527
      const mapped_type&
528
      at(const key_type& __k) const
529
      {
530
	const_iterator __i = lower_bound(__k);
531
	if (__i == end() || key_comp()(__k, (*__i).first))
532
	  __throw_out_of_range(__N("map::at"));
533
	return (*__i).second;
534
      }
535
 
536
      // modifiers
537
#if __cplusplus >= 201103L
538
      /**
539
       *  @brief Attempts to build and insert a std::pair into the %map.
540
       *
541
       *  @param __args  Arguments used to generate a new pair instance (see
542
       *	        std::piecewise_contruct for passing arguments to each
543
       *	        part of the pair constructor).
544
       *
545
       *  @return  A pair, of which the first element is an iterator that points
546
       *           to the possibly inserted pair, and the second is a bool that
547
       *           is true if the pair was actually inserted.
548
       *
549
       *  This function attempts to build and insert a (key, value) %pair into
550
       *  the %map.
551
       *  A %map relies on unique keys and thus a %pair is only inserted if its
552
       *  first element (the key) is not already present in the %map.
553
       *
554
       *  Insertion requires logarithmic time.
555
       */
556
      template
557
	std::pair
558
	emplace(_Args&&... __args)
559
	{ return _M_t._M_emplace_unique(std::forward<_Args>(__args)...); }
560
 
561
      /**
562
       *  @brief Attempts to build and insert a std::pair into the %map.
563
       *
564
       *  @param  __pos  An iterator that serves as a hint as to where the pair
565
       *                should be inserted.
566
       *  @param  __args  Arguments used to generate a new pair instance (see
567
       *	         std::piecewise_contruct for passing arguments to each
568
       *	         part of the pair constructor).
569
       *  @return An iterator that points to the element with key of the
570
       *          std::pair built from @a __args (may or may not be that
571
       *          std::pair).
572
       *
573
       *  This function is not concerned about whether the insertion took place,
574
       *  and thus does not return a boolean like the single-argument emplace()
575
       *  does.
576
       *  Note that the first parameter is only a hint and can potentially
577
       *  improve the performance of the insertion process. A bad hint would
578
       *  cause no gains in efficiency.
579
       *
580
       *  See
581
       *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
582
       *  for more on @a hinting.
583
       *
584
       *  Insertion requires logarithmic time (if the hint is not taken).
585
       */
586
      template
587
	iterator
588
	emplace_hint(const_iterator __pos, _Args&&... __args)
589
	{
590
	  return _M_t._M_emplace_hint_unique(__pos,
591
					     std::forward<_Args>(__args)...);
592
	}
593
#endif
594
 
595
      /**
596
       *  @brief Attempts to insert a std::pair into the %map.
597
 
598
       *  @param __x Pair to be inserted (see std::make_pair for easy
599
       *	     creation of pairs).
600
       *
601
       *  @return  A pair, of which the first element is an iterator that
602
       *           points to the possibly inserted pair, and the second is
603
       *           a bool that is true if the pair was actually inserted.
604
       *
605
       *  This function attempts to insert a (key, value) %pair into the %map.
606
       *  A %map relies on unique keys and thus a %pair is only inserted if its
607
       *  first element (the key) is not already present in the %map.
608
       *
609
       *  Insertion requires logarithmic time.
610
       */
611
      std::pair
612
      insert(const value_type& __x)
613
      { return _M_t._M_insert_unique(__x); }
614
 
615
#if __cplusplus >= 201103L
616
      template
617
	       std::enable_if
618
						    _Pair&&>::value>::type>
619
        std::pair
620
        insert(_Pair&& __x)
621
        { return _M_t._M_insert_unique(std::forward<_Pair>(__x)); }
622
#endif
623
 
624
#if __cplusplus >= 201103L
625
      /**
626
       *  @brief Attempts to insert a list of std::pairs into the %map.
627
       *  @param  __list  A std::initializer_list of pairs to be
628
       *                  inserted.
629
       *
630
       *  Complexity similar to that of the range constructor.
631
       */
632
      void
633
      insert(std::initializer_list __list)
634
      { insert(__list.begin(), __list.end()); }
635
#endif
636
 
637
      /**
638
       *  @brief Attempts to insert a std::pair into the %map.
639
       *  @param  __position  An iterator that serves as a hint as to where the
640
       *                    pair should be inserted.
641
       *  @param  __x  Pair to be inserted (see std::make_pair for easy creation
642
       *               of pairs).
643
       *  @return An iterator that points to the element with key of
644
       *           @a __x (may or may not be the %pair passed in).
645
       *
646
 
647
       *  This function is not concerned about whether the insertion
648
       *  took place, and thus does not return a boolean like the
649
       *  single-argument insert() does.  Note that the first
650
       *  parameter is only a hint and can potentially improve the
651
       *  performance of the insertion process.  A bad hint would
652
       *  cause no gains in efficiency.
653
       *
654
       *  See
655
       *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
656
       *  for more on @a hinting.
657
       *
658
       *  Insertion requires logarithmic time (if the hint is not taken).
659
       */
660
      iterator
661
#if __cplusplus >= 201103L
662
      insert(const_iterator __position, const value_type& __x)
663
#else
664
      insert(iterator __position, const value_type& __x)
665
#endif
666
      { return _M_t._M_insert_unique_(__position, __x); }
667
 
668
#if __cplusplus >= 201103L
669
      template
670
	       std::enable_if
671
						    _Pair&&>::value>::type>
672
        iterator
673
        insert(const_iterator __position, _Pair&& __x)
674
        { return _M_t._M_insert_unique_(__position,
675
					std::forward<_Pair>(__x)); }
676
#endif
677
 
678
      /**
679
       *  @brief Template function that attempts to insert a range of elements.
680
       *  @param  __first  Iterator pointing to the start of the range to be
681
       *                   inserted.
682
       *  @param  __last  Iterator pointing to the end of the range.
683
       *
684
       *  Complexity similar to that of the range constructor.
685
       */
686
      template
687
        void
688
        insert(_InputIterator __first, _InputIterator __last)
689
        { _M_t._M_insert_unique(__first, __last); }
690
 
691
#if __cplusplus >= 201103L
692
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
693
      // DR 130. Associative erase should return an iterator.
694
      /**
695
       *  @brief Erases an element from a %map.
696
       *  @param  __position  An iterator pointing to the element to be erased.
697
       *  @return An iterator pointing to the element immediately following
698
       *          @a position prior to the element being erased. If no such
699
       *          element exists, end() is returned.
700
       *
701
       *  This function erases an element, pointed to by the given
702
       *  iterator, from a %map.  Note that this function only erases
703
       *  the element, and that if the element is itself a pointer,
704
       *  the pointed-to memory is not touched in any way.  Managing
705
       *  the pointer is the user's responsibility.
706
       */
707
      iterator
708
      erase(const_iterator __position)
709
      { return _M_t.erase(__position); }
710
 
711
      // LWG 2059
712
      _GLIBCXX_ABI_TAG_CXX11
713
      iterator
714
      erase(iterator __position)
715
      { return _M_t.erase(__position); }
716
#else
717
      /**
718
       *  @brief Erases an element from a %map.
719
       *  @param  __position  An iterator pointing to the element to be erased.
720
       *
721
       *  This function erases an element, pointed to by the given
722
       *  iterator, from a %map.  Note that this function only erases
723
       *  the element, and that if the element is itself a pointer,
724
       *  the pointed-to memory is not touched in any way.  Managing
725
       *  the pointer is the user's responsibility.
726
       */
727
      void
728
      erase(iterator __position)
729
      { _M_t.erase(__position); }
730
#endif
731
 
732
      /**
733
       *  @brief Erases elements according to the provided key.
734
       *  @param  __x  Key of element to be erased.
735
       *  @return  The number of elements erased.
736
       *
737
       *  This function erases all the elements located by the given key from
738
       *  a %map.
739
       *  Note that this function only erases the element, and that if
740
       *  the element is itself a pointer, the pointed-to memory is not touched
741
       *  in any way.  Managing the pointer is the user's responsibility.
742
       */
743
      size_type
744
      erase(const key_type& __x)
745
      { return _M_t.erase(__x); }
746
 
747
#if __cplusplus >= 201103L
748
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
749
      // DR 130. Associative erase should return an iterator.
750
      /**
751
       *  @brief Erases a [first,last) range of elements from a %map.
752
       *  @param  __first  Iterator pointing to the start of the range to be
753
       *                   erased.
754
       *  @param __last Iterator pointing to the end of the range to
755
       *                be erased.
756
       *  @return The iterator @a __last.
757
       *
758
       *  This function erases a sequence of elements from a %map.
759
       *  Note that this function only erases the element, and that if
760
       *  the element is itself a pointer, the pointed-to memory is not touched
761
       *  in any way.  Managing the pointer is the user's responsibility.
762
       */
763
      iterator
764
      erase(const_iterator __first, const_iterator __last)
765
      { return _M_t.erase(__first, __last); }
766
#else
767
      /**
768
       *  @brief Erases a [__first,__last) range of elements from a %map.
769
       *  @param  __first  Iterator pointing to the start of the range to be
770
       *                   erased.
771
       *  @param __last Iterator pointing to the end of the range to
772
       *                be erased.
773
       *
774
       *  This function erases a sequence of elements from a %map.
775
       *  Note that this function only erases the element, and that if
776
       *  the element is itself a pointer, the pointed-to memory is not touched
777
       *  in any way.  Managing the pointer is the user's responsibility.
778
       */
779
      void
780
      erase(iterator __first, iterator __last)
781
      { _M_t.erase(__first, __last); }
782
#endif
783
 
784
      /**
785
       *  @brief  Swaps data with another %map.
786
       *  @param  __x  A %map of the same element and allocator types.
787
       *
788
       *  This exchanges the elements between two maps in constant
789
       *  time.  (It is only swapping a pointer, an integer, and an
790
       *  instance of the @c Compare type (which itself is often
791
       *  stateless and empty), so it should be quite fast.)  Note
792
       *  that the global std::swap() function is specialized such
793
       *  that std::swap(m1,m2) will feed to this function.
794
       */
795
      void
796
      swap(map& __x)
797
#if __cplusplus >= 201103L
798
      noexcept(_Alloc_traits::_S_nothrow_swap())
799
#endif
800
      { _M_t.swap(__x._M_t); }
801
 
802
      /**
803
       *  Erases all elements in a %map.  Note that this function only
804
       *  erases the elements, and that if the elements themselves are
805
       *  pointers, the pointed-to memory is not touched in any way.
806
       *  Managing the pointer is the user's responsibility.
807
       */
808
      void
809
      clear() _GLIBCXX_NOEXCEPT
810
      { _M_t.clear(); }
811
 
812
      // observers
813
      /**
814
       *  Returns the key comparison object out of which the %map was
815
       *  constructed.
816
       */
817
      key_compare
818
      key_comp() const
819
      { return _M_t.key_comp(); }
820
 
821
      /**
822
       *  Returns a value comparison object, built from the key comparison
823
       *  object out of which the %map was constructed.
824
       */
825
      value_compare
826
      value_comp() const
827
      { return value_compare(_M_t.key_comp()); }
828
 
829
      // [23.3.1.3] map operations
830
 
831
      //@{
832
      /**
833
       *  @brief Tries to locate an element in a %map.
834
       *  @param  __x  Key of (key, value) %pair to be located.
835
       *  @return  Iterator pointing to sought-after element, or end() if not
836
       *           found.
837
       *
838
       *  This function takes a key and tries to locate the element with which
839
       *  the key matches.  If successful the function returns an iterator
840
       *  pointing to the sought after %pair.  If unsuccessful it returns the
841
       *  past-the-end ( @c end() ) iterator.
842
       */
843
 
844
      iterator
845
      find(const key_type& __x)
846
      { return _M_t.find(__x); }
847
 
848
#if __cplusplus > 201103L
849
      template
850
	auto
851
	find(const _Kt& __x) -> decltype(_M_t._M_find_tr(__x))
852
	{ return _M_t._M_find_tr(__x); }
853
#endif
854
      //@}
855
 
856
      //@{
857
      /**
858
       *  @brief Tries to locate an element in a %map.
859
       *  @param  __x  Key of (key, value) %pair to be located.
860
       *  @return  Read-only (constant) iterator pointing to sought-after
861
       *           element, or end() if not found.
862
       *
863
       *  This function takes a key and tries to locate the element with which
864
       *  the key matches.  If successful the function returns a constant
865
       *  iterator pointing to the sought after %pair. If unsuccessful it
866
       *  returns the past-the-end ( @c end() ) iterator.
867
       */
868
 
869
      const_iterator
870
      find(const key_type& __x) const
871
      { return _M_t.find(__x); }
872
 
873
#if __cplusplus > 201103L
874
      template
875
	auto
876
	find(const _Kt& __x) const -> decltype(_M_t._M_find_tr(__x))
877
	{ return _M_t._M_find_tr(__x); }
878
#endif
879
      //@}
880
 
881
      //@{
882
      /**
883
       *  @brief  Finds the number of elements with given key.
884
       *  @param  __x  Key of (key, value) pairs to be located.
885
       *  @return  Number of elements with specified key.
886
       *
887
       *  This function only makes sense for multimaps; for map the result will
888
       *  either be 0 (not present) or 1 (present).
889
       */
890
      size_type
891
      count(const key_type& __x) const
892
      { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
893
 
894
#if __cplusplus > 201103L
895
      template
896
	auto
897
	count(const _Kt& __x) const -> decltype(_M_t._M_count_tr(__x))
898
	{ return _M_t._M_find_tr(__x) == _M_t.end() ? 0 : 1; }
899
#endif
900
      //@}
901
 
902
      //@{
903
      /**
904
       *  @brief Finds the beginning of a subsequence matching given key.
905
       *  @param  __x  Key of (key, value) pair to be located.
906
       *  @return  Iterator pointing to first element equal to or greater
907
       *           than key, or end().
908
       *
909
       *  This function returns the first element of a subsequence of elements
910
       *  that matches the given key.  If unsuccessful it returns an iterator
911
       *  pointing to the first element that has a greater value than given key
912
       *  or end() if no such element exists.
913
       */
914
      iterator
915
      lower_bound(const key_type& __x)
916
      { return _M_t.lower_bound(__x); }
917
 
918
#if __cplusplus > 201103L
919
      template
920
	auto
921
	lower_bound(const _Kt& __x)
922
	-> decltype(_M_t._M_lower_bound_tr(__x))
923
	{ return _M_t._M_lower_bound_tr(__x); }
924
#endif
925
      //@}
926
 
927
      //@{
928
      /**
929
       *  @brief Finds the beginning of a subsequence matching given key.
930
       *  @param  __x  Key of (key, value) pair to be located.
931
       *  @return  Read-only (constant) iterator pointing to first element
932
       *           equal to or greater than key, or end().
933
       *
934
       *  This function returns the first element of a subsequence of elements
935
       *  that matches the given key.  If unsuccessful it returns an iterator
936
       *  pointing to the first element that has a greater value than given key
937
       *  or end() if no such element exists.
938
       */
939
      const_iterator
940
      lower_bound(const key_type& __x) const
941
      { return _M_t.lower_bound(__x); }
942
 
943
#if __cplusplus > 201103L
944
      template
945
	auto
946
	lower_bound(const _Kt& __x) const
947
	-> decltype(_M_t._M_lower_bound_tr(__x))
948
	{ return _M_t._M_lower_bound_tr(__x); }
949
#endif
950
      //@}
951
 
952
      //@{
953
      /**
954
       *  @brief Finds the end of a subsequence matching given key.
955
       *  @param  __x  Key of (key, value) pair to be located.
956
       *  @return Iterator pointing to the first element
957
       *          greater than key, or end().
958
       */
959
      iterator
960
      upper_bound(const key_type& __x)
961
      { return _M_t.upper_bound(__x); }
962
 
963
#if __cplusplus > 201103L
964
      template
965
	auto
966
	upper_bound(const _Kt& __x)
967
	-> decltype(_M_t._M_upper_bound_tr(__x))
968
	{ return _M_t._M_upper_bound_tr(__x); }
969
#endif
970
      //@}
971
 
972
      //@{
973
      /**
974
       *  @brief Finds the end of a subsequence matching given key.
975
       *  @param  __x  Key of (key, value) pair to be located.
976
       *  @return  Read-only (constant) iterator pointing to first iterator
977
       *           greater than key, or end().
978
       */
979
      const_iterator
980
      upper_bound(const key_type& __x) const
981
      { return _M_t.upper_bound(__x); }
982
 
983
#if __cplusplus > 201103L
984
      template
985
	auto
986
	upper_bound(const _Kt& __x) const
987
	-> decltype(_M_t._M_upper_bound_tr(__x))
988
	{ return _M_t._M_upper_bound_tr(__x); }
989
#endif
990
      //@}
991
 
992
      //@{
993
      /**
994
       *  @brief Finds a subsequence matching given key.
995
       *  @param  __x  Key of (key, value) pairs to be located.
996
       *  @return  Pair of iterators that possibly points to the subsequence
997
       *           matching given key.
998
       *
999
       *  This function is equivalent to
1000
       *  @code
1001
       *    std::make_pair(c.lower_bound(val),
1002
       *                   c.upper_bound(val))
1003
       *  @endcode
1004
       *  (but is faster than making the calls separately).
1005
       *
1006
       *  This function probably only makes sense for multimaps.
1007
       */
1008
      std::pair
1009
      equal_range(const key_type& __x)
1010
      { return _M_t.equal_range(__x); }
1011
 
1012
#if __cplusplus > 201103L
1013
      template
1014
	auto
1015
	equal_range(const _Kt& __x)
1016
	-> decltype(_M_t._M_equal_range_tr(__x))
1017
	{ return _M_t._M_equal_range_tr(__x); }
1018
#endif
1019
      //@}
1020
 
1021
      //@{
1022
      /**
1023
       *  @brief Finds a subsequence matching given key.
1024
       *  @param  __x  Key of (key, value) pairs to be located.
1025
       *  @return  Pair of read-only (constant) iterators that possibly points
1026
       *           to the subsequence matching given key.
1027
       *
1028
       *  This function is equivalent to
1029
       *  @code
1030
       *    std::make_pair(c.lower_bound(val),
1031
       *                   c.upper_bound(val))
1032
       *  @endcode
1033
       *  (but is faster than making the calls separately).
1034
       *
1035
       *  This function probably only makes sense for multimaps.
1036
       */
1037
      std::pair
1038
      equal_range(const key_type& __x) const
1039
      { return _M_t.equal_range(__x); }
1040
 
1041
#if __cplusplus > 201103L
1042
      template
1043
	auto
1044
	equal_range(const _Kt& __x) const
1045
	-> decltype(_M_t._M_equal_range_tr(__x))
1046
	{ return _M_t._M_equal_range_tr(__x); }
1047
#endif
1048
      //@}
1049
 
1050
      template
1051
        friend bool
1052
        operator==(const map<_K1, _T1, _C1, _A1>&,
1053
		   const map<_K1, _T1, _C1, _A1>&);
1054
 
1055
      template
1056
        friend bool
1057
        operator<(const map<_K1, _T1, _C1, _A1>&,
1058
		  const map<_K1, _T1, _C1, _A1>&);
1059
    };
1060
 
1061
  /**
1062
   *  @brief  Map equality comparison.
1063
   *  @param  __x  A %map.
1064
   *  @param  __y  A %map of the same type as @a x.
1065
   *  @return  True iff the size and elements of the maps are equal.
1066
   *
1067
   *  This is an equivalence relation.  It is linear in the size of the
1068
   *  maps.  Maps are considered equivalent if their sizes are equal,
1069
   *  and if corresponding elements compare equal.
1070
  */
1071
  template
1072
    inline bool
1073
    operator==(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1074
               const map<_Key, _Tp, _Compare, _Alloc>& __y)
1075
    { return __x._M_t == __y._M_t; }
1076
 
1077
  /**
1078
   *  @brief  Map ordering relation.
1079
   *  @param  __x  A %map.
1080
   *  @param  __y  A %map of the same type as @a x.
1081
   *  @return  True iff @a x is lexicographically less than @a y.
1082
   *
1083
   *  This is a total ordering relation.  It is linear in the size of the
1084
   *  maps.  The elements must be comparable with @c <.
1085
   *
1086
   *  See std::lexicographical_compare() for how the determination is made.
1087
  */
1088
  template
1089
    inline bool
1090
    operator<(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1091
              const map<_Key, _Tp, _Compare, _Alloc>& __y)
1092
    { return __x._M_t < __y._M_t; }
1093
 
1094
  /// Based on operator==
1095
  template
1096
    inline bool
1097
    operator!=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1098
               const map<_Key, _Tp, _Compare, _Alloc>& __y)
1099
    { return !(__x == __y); }
1100
 
1101
  /// Based on operator<
1102
  template
1103
    inline bool
1104
    operator>(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1105
              const map<_Key, _Tp, _Compare, _Alloc>& __y)
1106
    { return __y < __x; }
1107
 
1108
  /// Based on operator<
1109
  template
1110
    inline bool
1111
    operator<=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1112
               const map<_Key, _Tp, _Compare, _Alloc>& __y)
1113
    { return !(__y < __x); }
1114
 
1115
  /// Based on operator<
1116
  template
1117
    inline bool
1118
    operator>=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1119
               const map<_Key, _Tp, _Compare, _Alloc>& __y)
1120
    { return !(__x < __y); }
1121
 
1122
  /// See std::map::swap().
1123
  template
1124
    inline void
1125
    swap(map<_Key, _Tp, _Compare, _Alloc>& __x,
1126
	 map<_Key, _Tp, _Compare, _Alloc>& __y)
1127
    { __x.swap(__y); }
1128
 
1129
_GLIBCXX_END_NAMESPACE_CONTAINER
1130
} // namespace std
1131
 
1132
#endif /* _STL_MAP_H */