Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
6515 serge 1
/* Definitions of target machine for GCC for IA-32.
2
   Copyright (C) 1988-2015 Free Software Foundation, Inc.
3
 
4
This file is part of GCC.
5
 
6
GCC is free software; you can redistribute it and/or modify
7
it under the terms of the GNU General Public License as published by
8
the Free Software Foundation; either version 3, or (at your option)
9
any later version.
10
 
11
GCC is distributed in the hope that it will be useful,
12
but WITHOUT ANY WARRANTY; without even the implied warranty of
13
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
GNU General Public License for more details.
15
 
16
Under Section 7 of GPL version 3, you are granted additional
17
permissions described in the GCC Runtime Library Exception, version
18
3.1, as published by the Free Software Foundation.
19
 
20
You should have received a copy of the GNU General Public License and
21
a copy of the GCC Runtime Library Exception along with this program;
22
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23
.  */
24
 
25
/* The purpose of this file is to define the characteristics of the i386,
26
   independent of assembler syntax or operating system.
27
 
28
   Three other files build on this one to describe a specific assembler syntax:
29
   bsd386.h, att386.h, and sun386.h.
30
 
31
   The actual tm.h file for a particular system should include
32
   this file, and then the file for the appropriate assembler syntax.
33
 
34
   Many macros that specify assembler syntax are omitted entirely from
35
   this file because they really belong in the files for particular
36
   assemblers.  These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37
   ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38
   that start with ASM_ or end in ASM_OP.  */
39
 
40
/* Redefines for option macros.  */
41
 
42
#define TARGET_64BIT	TARGET_ISA_64BIT
43
#define TARGET_64BIT_P(x)	TARGET_ISA_64BIT_P(x)
44
#define TARGET_MMX	TARGET_ISA_MMX
45
#define TARGET_MMX_P(x)	TARGET_ISA_MMX_P(x)
46
#define TARGET_3DNOW	TARGET_ISA_3DNOW
47
#define TARGET_3DNOW_P(x)	TARGET_ISA_3DNOW_P(x)
48
#define TARGET_3DNOW_A	TARGET_ISA_3DNOW_A
49
#define TARGET_3DNOW_A_P(x)	TARGET_ISA_3DNOW_A_P(x)
50
#define TARGET_SSE	TARGET_ISA_SSE
51
#define TARGET_SSE_P(x)	TARGET_ISA_SSE_P(x)
52
#define TARGET_SSE2	TARGET_ISA_SSE2
53
#define TARGET_SSE2_P(x)	TARGET_ISA_SSE2_P(x)
54
#define TARGET_SSE3	TARGET_ISA_SSE3
55
#define TARGET_SSE3_P(x)	TARGET_ISA_SSE3_P(x)
56
#define TARGET_SSSE3	TARGET_ISA_SSSE3
57
#define TARGET_SSSE3_P(x)	TARGET_ISA_SSSE3_P(x)
58
#define TARGET_SSE4_1	TARGET_ISA_SSE4_1
59
#define TARGET_SSE4_1_P(x)	TARGET_ISA_SSE4_1_P(x)
60
#define TARGET_SSE4_2	TARGET_ISA_SSE4_2
61
#define TARGET_SSE4_2_P(x)	TARGET_ISA_SSE4_2_P(x)
62
#define TARGET_AVX	TARGET_ISA_AVX
63
#define TARGET_AVX_P(x)	TARGET_ISA_AVX_P(x)
64
#define TARGET_AVX2	TARGET_ISA_AVX2
65
#define TARGET_AVX2_P(x)	TARGET_ISA_AVX2_P(x)
66
#define TARGET_AVX512F	TARGET_ISA_AVX512F
67
#define TARGET_AVX512F_P(x)	TARGET_ISA_AVX512F_P(x)
68
#define TARGET_AVX512PF	TARGET_ISA_AVX512PF
69
#define TARGET_AVX512PF_P(x)	TARGET_ISA_AVX512PF_P(x)
70
#define TARGET_AVX512ER	TARGET_ISA_AVX512ER
71
#define TARGET_AVX512ER_P(x)	TARGET_ISA_AVX512ER_P(x)
72
#define TARGET_AVX512CD	TARGET_ISA_AVX512CD
73
#define TARGET_AVX512CD_P(x)	TARGET_ISA_AVX512CD_P(x)
74
#define TARGET_AVX512DQ	TARGET_ISA_AVX512DQ
75
#define TARGET_AVX512DQ_P(x)	TARGET_ISA_AVX512DQ_P(x)
76
#define TARGET_AVX512BW	TARGET_ISA_AVX512BW
77
#define TARGET_AVX512BW_P(x)	TARGET_ISA_AVX512BW_P(x)
78
#define TARGET_AVX512VL	TARGET_ISA_AVX512VL
79
#define TARGET_AVX512VL_P(x)	TARGET_ISA_AVX512VL_P(x)
80
#define TARGET_AVX512VBMI	TARGET_ISA_AVX512VBMI
81
#define TARGET_AVX512VBMI_P(x)	TARGET_ISA_AVX512VBMI_P(x)
82
#define TARGET_AVX512IFMA	TARGET_ISA_AVX512IFMA
83
#define TARGET_AVX512IFMA_P(x)	TARGET_ISA_AVX512IFMA_P(x)
84
#define TARGET_FMA	TARGET_ISA_FMA
85
#define TARGET_FMA_P(x)	TARGET_ISA_FMA_P(x)
86
#define TARGET_SSE4A	TARGET_ISA_SSE4A
87
#define TARGET_SSE4A_P(x)	TARGET_ISA_SSE4A_P(x)
88
#define TARGET_FMA4	TARGET_ISA_FMA4
89
#define TARGET_FMA4_P(x)	TARGET_ISA_FMA4_P(x)
90
#define TARGET_XOP	TARGET_ISA_XOP
91
#define TARGET_XOP_P(x)	TARGET_ISA_XOP_P(x)
92
#define TARGET_LWP	TARGET_ISA_LWP
93
#define TARGET_LWP_P(x)	TARGET_ISA_LWP_P(x)
94
#define TARGET_ROUND	TARGET_ISA_ROUND
95
#define TARGET_ABM	TARGET_ISA_ABM
96
#define TARGET_ABM_P(x)	TARGET_ISA_ABM_P(x)
97
#define TARGET_BMI	TARGET_ISA_BMI
98
#define TARGET_BMI_P(x)	TARGET_ISA_BMI_P(x)
99
#define TARGET_BMI2	TARGET_ISA_BMI2
100
#define TARGET_BMI2_P(x)	TARGET_ISA_BMI2_P(x)
101
#define TARGET_LZCNT	TARGET_ISA_LZCNT
102
#define TARGET_LZCNT_P(x)	TARGET_ISA_LZCNT_P(x)
103
#define TARGET_TBM	TARGET_ISA_TBM
104
#define TARGET_TBM_P(x)	TARGET_ISA_TBM_P(x)
105
#define TARGET_POPCNT	TARGET_ISA_POPCNT
106
#define TARGET_POPCNT_P(x)	TARGET_ISA_POPCNT_P(x)
107
#define TARGET_SAHF	TARGET_ISA_SAHF
108
#define TARGET_SAHF_P(x)	TARGET_ISA_SAHF_P(x)
109
#define TARGET_MOVBE	TARGET_ISA_MOVBE
110
#define TARGET_MOVBE_P(x)	TARGET_ISA_MOVBE_P(x)
111
#define TARGET_CRC32	TARGET_ISA_CRC32
112
#define TARGET_CRC32_P(x)	TARGET_ISA_CRC32_P(x)
113
#define TARGET_AES	TARGET_ISA_AES
114
#define TARGET_AES_P(x)	TARGET_ISA_AES_P(x)
115
#define TARGET_SHA	TARGET_ISA_SHA
116
#define TARGET_SHA_P(x)	TARGET_ISA_SHA_P(x)
117
#define TARGET_CLFLUSHOPT	TARGET_ISA_CLFLUSHOPT
118
#define TARGET_CLFLUSHOPT_P(x)	TARGET_ISA_CLFLUSHOPT_P(x)
119
#define TARGET_XSAVEC	TARGET_ISA_XSAVEC
120
#define TARGET_XSAVEC_P(x)	TARGET_ISA_XSAVEC_P(x)
121
#define TARGET_XSAVES	TARGET_ISA_XSAVES
122
#define TARGET_XSAVES_P(x)	TARGET_ISA_XSAVES_P(x)
123
#define TARGET_PCLMUL	TARGET_ISA_PCLMUL
124
#define TARGET_PCLMUL_P(x)	TARGET_ISA_PCLMUL_P(x)
125
#define TARGET_CMPXCHG16B	TARGET_ISA_CX16
126
#define TARGET_CMPXCHG16B_P(x)	TARGET_ISA_CX16_P(x)
127
#define TARGET_FSGSBASE	TARGET_ISA_FSGSBASE
128
#define TARGET_FSGSBASE_P(x)	TARGET_ISA_FSGSBASE_P(x)
129
#define TARGET_RDRND	TARGET_ISA_RDRND
130
#define TARGET_RDRND_P(x)	TARGET_ISA_RDRND_P(x)
131
#define TARGET_F16C	TARGET_ISA_F16C
132
#define TARGET_F16C_P(x)	TARGET_ISA_F16C_P(x)
133
#define TARGET_RTM	TARGET_ISA_RTM
134
#define TARGET_RTM_P(x)	TARGET_ISA_RTM_P(x)
135
#define TARGET_HLE	TARGET_ISA_HLE
136
#define TARGET_HLE_P(x)	TARGET_ISA_HLE_P(x)
137
#define TARGET_RDSEED	TARGET_ISA_RDSEED
138
#define TARGET_RDSEED_P(x)	TARGET_ISA_RDSEED_P(x)
139
#define TARGET_PRFCHW	TARGET_ISA_PRFCHW
140
#define TARGET_PRFCHW_P(x)	TARGET_ISA_PRFCHW_P(x)
141
#define TARGET_ADX	TARGET_ISA_ADX
142
#define TARGET_ADX_P(x)	TARGET_ISA_ADX_P(x)
143
#define TARGET_FXSR	TARGET_ISA_FXSR
144
#define TARGET_FXSR_P(x)	TARGET_ISA_FXSR_P(x)
145
#define TARGET_XSAVE	TARGET_ISA_XSAVE
146
#define TARGET_XSAVE_P(x)	TARGET_ISA_XSAVE_P(x)
147
#define TARGET_XSAVEOPT	TARGET_ISA_XSAVEOPT
148
#define TARGET_XSAVEOPT_P(x)	TARGET_ISA_XSAVEOPT_P(x)
149
#define TARGET_PREFETCHWT1	TARGET_ISA_PREFETCHWT1
150
#define TARGET_PREFETCHWT1_P(x)	TARGET_ISA_PREFETCHWT1_P(x)
151
#define TARGET_MPX	TARGET_ISA_MPX
152
#define TARGET_MPX_P(x)	TARGET_ISA_MPX_P(x)
153
#define TARGET_PCOMMIT	TARGET_ISA_PCOMMIT
154
#define TARGET_PCOMMIT_P(x)	TARGET_ISA_PCOMMIT_P(x)
155
#define TARGET_CLWB	TARGET_ISA_CLWB
156
#define TARGET_CLWB_P(x)	TARGET_ISA_CLWB_P(x)
157
#define TARGET_MWAITX	TARGET_ISA_MWAITX
158
#define TARGET_MWAITX_P(x)	TARGET_ISA_MWAITX_P(x)
159
 
160
#define TARGET_LP64	TARGET_ABI_64
161
#define TARGET_LP64_P(x)	TARGET_ABI_64_P(x)
162
#define TARGET_X32	TARGET_ABI_X32
163
#define TARGET_X32_P(x)	TARGET_ABI_X32_P(x)
164
#define TARGET_16BIT	TARGET_CODE16
165
#define TARGET_16BIT_P(x)	TARGET_CODE16_P(x)
166
 
167
/* SSE4.1 defines round instructions */
168
#define	OPTION_MASK_ISA_ROUND	OPTION_MASK_ISA_SSE4_1
169
#define	TARGET_ISA_ROUND	((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
170
 
171
#include "config/vxworks-dummy.h"
172
 
173
#include "config/i386/i386-opts.h"
174
 
175
#define MAX_STRINGOP_ALGS 4
176
 
177
/* Specify what algorithm to use for stringops on known size.
178
   When size is unknown, the UNKNOWN_SIZE alg is used.  When size is
179
   known at compile time or estimated via feedback, the SIZE array
180
   is walked in order until MAX is greater then the estimate (or -1
181
   means infinity).  Corresponding ALG is used then.
182
   When NOALIGN is true the code guaranting the alignment of the memory
183
   block is skipped.
184
 
185
   For example initializer:
186
    {{256, loop}, {-1, rep_prefix_4_byte}}
187
   will use loop for blocks smaller or equal to 256 bytes, rep prefix will
188
   be used otherwise.  */
189
struct stringop_algs
190
{
191
  const enum stringop_alg unknown_size;
192
  const struct stringop_strategy {
193
    const int max;
194
    const enum stringop_alg alg;
195
    int noalign;
196
  } size [MAX_STRINGOP_ALGS];
197
};
198
 
199
/* Define the specific costs for a given cpu */
200
 
201
struct processor_costs {
202
  const int add;		/* cost of an add instruction */
203
  const int lea;		/* cost of a lea instruction */
204
  const int shift_var;		/* variable shift costs */
205
  const int shift_const;	/* constant shift costs */
206
  const int mult_init[5];	/* cost of starting a multiply
207
				   in QImode, HImode, SImode, DImode, TImode*/
208
  const int mult_bit;		/* cost of multiply per each bit set */
209
  const int divide[5];		/* cost of a divide/mod
210
				   in QImode, HImode, SImode, DImode, TImode*/
211
  int movsx;			/* The cost of movsx operation.  */
212
  int movzx;			/* The cost of movzx operation.  */
213
  const int large_insn;		/* insns larger than this cost more */
214
  const int move_ratio;		/* The threshold of number of scalar
215
				   memory-to-memory move insns.  */
216
  const int movzbl_load;	/* cost of loading using movzbl */
217
  const int int_load[3];	/* cost of loading integer registers
218
				   in QImode, HImode and SImode relative
219
				   to reg-reg move (2).  */
220
  const int int_store[3];	/* cost of storing integer register
221
				   in QImode, HImode and SImode */
222
  const int fp_move;		/* cost of reg,reg fld/fst */
223
  const int fp_load[3];		/* cost of loading FP register
224
				   in SFmode, DFmode and XFmode */
225
  const int fp_store[3];	/* cost of storing FP register
226
				   in SFmode, DFmode and XFmode */
227
  const int mmx_move;		/* cost of moving MMX register.  */
228
  const int mmx_load[2];	/* cost of loading MMX register
229
				   in SImode and DImode */
230
  const int mmx_store[2];	/* cost of storing MMX register
231
				   in SImode and DImode */
232
  const int sse_move;		/* cost of moving SSE register.  */
233
  const int sse_load[3];	/* cost of loading SSE register
234
				   in SImode, DImode and TImode*/
235
  const int sse_store[3];	/* cost of storing SSE register
236
				   in SImode, DImode and TImode*/
237
  const int mmxsse_to_integer;	/* cost of moving mmxsse register to
238
				   integer and vice versa.  */
239
  const int l1_cache_size;	/* size of l1 cache, in kilobytes.  */
240
  const int l2_cache_size;	/* size of l2 cache, in kilobytes.  */
241
  const int prefetch_block;	/* bytes moved to cache for prefetch.  */
242
  const int simultaneous_prefetches; /* number of parallel prefetch
243
				   operations.  */
244
  const int branch_cost;	/* Default value for BRANCH_COST.  */
245
  const int fadd;		/* cost of FADD and FSUB instructions.  */
246
  const int fmul;		/* cost of FMUL instruction.  */
247
  const int fdiv;		/* cost of FDIV instruction.  */
248
  const int fabs;		/* cost of FABS instruction.  */
249
  const int fchs;		/* cost of FCHS instruction.  */
250
  const int fsqrt;		/* cost of FSQRT instruction.  */
251
				/* Specify what algorithm
252
				   to use for stringops on unknown size.  */
253
  struct stringop_algs *memcpy, *memset;
254
  const int scalar_stmt_cost;   /* Cost of any scalar operation, excluding
255
				   load and store.  */
256
  const int scalar_load_cost;   /* Cost of scalar load.  */
257
  const int scalar_store_cost;  /* Cost of scalar store.  */
258
  const int vec_stmt_cost;      /* Cost of any vector operation, excluding
259
                                   load, store, vector-to-scalar and
260
                                   scalar-to-vector operation.  */
261
  const int vec_to_scalar_cost;    /* Cost of vect-to-scalar operation.  */
262
  const int scalar_to_vec_cost;    /* Cost of scalar-to-vector operation.  */
263
  const int vec_align_load_cost;   /* Cost of aligned vector load.  */
264
  const int vec_unalign_load_cost; /* Cost of unaligned vector load.  */
265
  const int vec_store_cost;        /* Cost of vector store.  */
266
  const int cond_taken_branch_cost;    /* Cost of taken branch for vectorizer
267
					  cost model.  */
268
  const int cond_not_taken_branch_cost;/* Cost of not taken branch for
269
					  vectorizer cost model.  */
270
};
271
 
272
extern const struct processor_costs *ix86_cost;
273
extern const struct processor_costs ix86_size_cost;
274
 
275
#define ix86_cur_cost() \
276
  (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
277
 
278
/* Macros used in the machine description to test the flags.  */
279
 
280
/* configure can arrange to change it.  */
281
 
282
#ifndef TARGET_CPU_DEFAULT
283
#define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
284
#endif
285
 
286
#ifndef TARGET_FPMATH_DEFAULT
287
#define TARGET_FPMATH_DEFAULT \
288
  (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
289
#endif
290
 
291
#ifndef TARGET_FPMATH_DEFAULT_P
292
#define TARGET_FPMATH_DEFAULT_P(x) \
293
  (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
294
#endif
295
 
296
#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
297
#define TARGET_FLOAT_RETURNS_IN_80387_P(x) TARGET_FLOAT_RETURNS_P(x)
298
 
299
/* 64bit Sledgehammer mode.  For libgcc2 we make sure this is a
300
   compile-time constant.  */
301
#ifdef IN_LIBGCC2
302
#undef TARGET_64BIT
303
#ifdef __x86_64__
304
#define TARGET_64BIT 1
305
#else
306
#define TARGET_64BIT 0
307
#endif
308
#else
309
#ifndef TARGET_BI_ARCH
310
#undef TARGET_64BIT
311
#undef TARGET_64BIT_P
312
#if TARGET_64BIT_DEFAULT
313
#define TARGET_64BIT 1
314
#define TARGET_64BIT_P(x) 1
315
#else
316
#define TARGET_64BIT 0
317
#define TARGET_64BIT_P(x) 0
318
#endif
319
#endif
320
#endif
321
 
322
#define HAS_LONG_COND_BRANCH 1
323
#define HAS_LONG_UNCOND_BRANCH 1
324
 
325
#define TARGET_386 (ix86_tune == PROCESSOR_I386)
326
#define TARGET_486 (ix86_tune == PROCESSOR_I486)
327
#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
328
#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
329
#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
330
#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
331
#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
332
#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
333
#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
334
#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
335
#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
336
#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
337
#define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
338
#define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
339
#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
340
#define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
341
#define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
342
#define TARGET_KNL (ix86_tune == PROCESSOR_KNL)
343
#define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
344
#define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
345
#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
346
#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
347
#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
348
#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
349
#define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
350
#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
351
#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
352
 
353
/* Feature tests against the various tunings.  */
354
enum ix86_tune_indices {
355
#undef DEF_TUNE
356
#define DEF_TUNE(tune, name, selector) tune,
357
#include "x86-tune.def"
358
#undef DEF_TUNE
359
X86_TUNE_LAST
360
};
361
 
362
extern unsigned char ix86_tune_features[X86_TUNE_LAST];
363
 
364
#define TARGET_USE_LEAVE	ix86_tune_features[X86_TUNE_USE_LEAVE]
365
#define TARGET_PUSH_MEMORY	ix86_tune_features[X86_TUNE_PUSH_MEMORY]
366
#define TARGET_ZERO_EXTEND_WITH_AND \
367
	ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
368
#define TARGET_UNROLL_STRLEN	ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
369
#define TARGET_BRANCH_PREDICTION_HINTS \
370
	ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
371
#define TARGET_DOUBLE_WITH_ADD	ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
372
#define TARGET_USE_SAHF		ix86_tune_features[X86_TUNE_USE_SAHF]
373
#define TARGET_MOVX		ix86_tune_features[X86_TUNE_MOVX]
374
#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
375
#define TARGET_PARTIAL_FLAG_REG_STALL \
376
	ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
377
#define TARGET_LCP_STALL \
378
	ix86_tune_features[X86_TUNE_LCP_STALL]
379
#define TARGET_USE_HIMODE_FIOP	ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
380
#define TARGET_USE_SIMODE_FIOP	ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
381
#define TARGET_USE_MOV0		ix86_tune_features[X86_TUNE_USE_MOV0]
382
#define TARGET_USE_CLTD		ix86_tune_features[X86_TUNE_USE_CLTD]
383
#define TARGET_USE_XCHGB	ix86_tune_features[X86_TUNE_USE_XCHGB]
384
#define TARGET_SPLIT_LONG_MOVES	ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
385
#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
386
#define TARGET_READ_MODIFY	ix86_tune_features[X86_TUNE_READ_MODIFY]
387
#define TARGET_PROMOTE_QImode	ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
388
#define TARGET_FAST_PREFIX	ix86_tune_features[X86_TUNE_FAST_PREFIX]
389
#define TARGET_SINGLE_STRINGOP	ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
390
#define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
391
	ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
392
#define TARGET_QIMODE_MATH	ix86_tune_features[X86_TUNE_QIMODE_MATH]
393
#define TARGET_HIMODE_MATH	ix86_tune_features[X86_TUNE_HIMODE_MATH]
394
#define TARGET_PROMOTE_QI_REGS	ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
395
#define TARGET_PROMOTE_HI_REGS	ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
396
#define TARGET_SINGLE_POP	ix86_tune_features[X86_TUNE_SINGLE_POP]
397
#define TARGET_DOUBLE_POP	ix86_tune_features[X86_TUNE_DOUBLE_POP]
398
#define TARGET_SINGLE_PUSH	ix86_tune_features[X86_TUNE_SINGLE_PUSH]
399
#define TARGET_DOUBLE_PUSH	ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
400
#define TARGET_INTEGER_DFMODE_MOVES \
401
	ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
402
#define TARGET_PARTIAL_REG_DEPENDENCY \
403
	ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
404
#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
405
	ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
406
#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
407
	ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
408
#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
409
	ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
410
#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
411
	ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
412
#define TARGET_SSE_SPLIT_REGS	ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
413
#define TARGET_SSE_TYPELESS_STORES \
414
	ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
415
#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
416
#define TARGET_MEMORY_MISMATCH_STALL \
417
	ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
418
#define TARGET_PROLOGUE_USING_MOVE \
419
	ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
420
#define TARGET_EPILOGUE_USING_MOVE \
421
	ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
422
#define TARGET_SHIFT1		ix86_tune_features[X86_TUNE_SHIFT1]
423
#define TARGET_USE_FFREEP	ix86_tune_features[X86_TUNE_USE_FFREEP]
424
#define TARGET_INTER_UNIT_MOVES_TO_VEC \
425
	ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
426
#define TARGET_INTER_UNIT_MOVES_FROM_VEC \
427
	ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
428
#define TARGET_INTER_UNIT_CONVERSIONS \
429
	ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
430
#define TARGET_FOUR_JUMP_LIMIT	ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
431
#define TARGET_SCHEDULE		ix86_tune_features[X86_TUNE_SCHEDULE]
432
#define TARGET_USE_BT		ix86_tune_features[X86_TUNE_USE_BT]
433
#define TARGET_USE_INCDEC	ix86_tune_features[X86_TUNE_USE_INCDEC]
434
#define TARGET_PAD_RETURNS	ix86_tune_features[X86_TUNE_PAD_RETURNS]
435
#define TARGET_PAD_SHORT_FUNCTION \
436
	ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
437
#define TARGET_EXT_80387_CONSTANTS \
438
	ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
439
#define TARGET_AVOID_VECTOR_DECODE \
440
	ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
441
#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
442
	ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
443
#define TARGET_SLOW_IMUL_IMM32_MEM \
444
	ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
445
#define TARGET_SLOW_IMUL_IMM8	ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
446
#define	TARGET_MOVE_M1_VIA_OR	ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
447
#define TARGET_NOT_UNPAIRABLE	ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
448
#define TARGET_NOT_VECTORMODE	ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
449
#define TARGET_USE_VECTOR_FP_CONVERTS \
450
	ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
451
#define TARGET_USE_VECTOR_CONVERTS \
452
	ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
453
#define TARGET_SLOW_PSHUFB \
454
	ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
455
#define TARGET_VECTOR_PARALLEL_EXECUTION \
456
	ix86_tune_features[X86_TUNE_VECTOR_PARALLEL_EXECUTION]
457
#define TARGET_AVOID_4BYTE_PREFIXES \
458
	ix86_tune_features[X86_TUNE_AVOID_4BYTE_PREFIXES]
459
#define TARGET_FUSE_CMP_AND_BRANCH_32 \
460
	ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
461
#define TARGET_FUSE_CMP_AND_BRANCH_64 \
462
	ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
463
#define TARGET_FUSE_CMP_AND_BRANCH \
464
	(TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
465
	 : TARGET_FUSE_CMP_AND_BRANCH_32)
466
#define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
467
	ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
468
#define TARGET_FUSE_ALU_AND_BRANCH \
469
	ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
470
#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
471
#define TARGET_AVOID_LEA_FOR_ADDR \
472
	ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
473
#define TARGET_VECTORIZE_DOUBLE \
474
	ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
475
#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
476
	ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
477
#define TARGET_AVX128_OPTIMAL \
478
	ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
479
#define TARGET_REASSOC_INT_TO_PARALLEL \
480
	ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
481
#define TARGET_REASSOC_FP_TO_PARALLEL \
482
	ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
483
#define TARGET_GENERAL_REGS_SSE_SPILL \
484
	ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
485
#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
486
	ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
487
#define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
488
	ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
489
#define TARGET_ADJUST_UNROLL \
490
    ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
491
#define TARGET_AVOID_FALSE_DEP_FOR_BMI \
492
	ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
493
 
494
/* Feature tests against the various architecture variations.  */
495
enum ix86_arch_indices {
496
  X86_ARCH_CMOV,
497
  X86_ARCH_CMPXCHG,
498
  X86_ARCH_CMPXCHG8B,
499
  X86_ARCH_XADD,
500
  X86_ARCH_BSWAP,
501
 
502
  X86_ARCH_LAST
503
};
504
 
505
extern unsigned char ix86_arch_features[X86_ARCH_LAST];
506
 
507
#define TARGET_CMOV		ix86_arch_features[X86_ARCH_CMOV]
508
#define TARGET_CMPXCHG		ix86_arch_features[X86_ARCH_CMPXCHG]
509
#define TARGET_CMPXCHG8B	ix86_arch_features[X86_ARCH_CMPXCHG8B]
510
#define TARGET_XADD		ix86_arch_features[X86_ARCH_XADD]
511
#define TARGET_BSWAP		ix86_arch_features[X86_ARCH_BSWAP]
512
 
513
/* For sane SSE instruction set generation we need fcomi instruction.
514
   It is safe to enable all CMOVE instructions.  Also, RDRAND intrinsic
515
   expands to a sequence that includes conditional move. */
516
#define TARGET_CMOVE		(TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
517
 
518
#define TARGET_FISTTP		(TARGET_SSE3 && TARGET_80387)
519
 
520
extern unsigned char x86_prefetch_sse;
521
#define TARGET_PREFETCH_SSE	x86_prefetch_sse
522
 
523
#define ASSEMBLER_DIALECT	(ix86_asm_dialect)
524
 
525
#define TARGET_SSE_MATH		((ix86_fpmath & FPMATH_SSE) != 0)
526
#define TARGET_MIX_SSE_I387 \
527
 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
528
 
529
#define TARGET_GNU_TLS		(ix86_tls_dialect == TLS_DIALECT_GNU)
530
#define TARGET_GNU2_TLS		(ix86_tls_dialect == TLS_DIALECT_GNU2)
531
#define TARGET_ANY_GNU_TLS	(TARGET_GNU_TLS || TARGET_GNU2_TLS)
532
#define TARGET_SUN_TLS		0
533
 
534
#ifndef TARGET_64BIT_DEFAULT
535
#define TARGET_64BIT_DEFAULT 0
536
#endif
537
#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
538
#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
539
#endif
540
 
541
#define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
542
#define TARGET_SSP_TLS_GUARD    (ix86_stack_protector_guard == SSP_TLS)
543
 
544
/* Fence to use after loop using storent.  */
545
 
546
extern tree x86_mfence;
547
#define FENCE_FOLLOWING_MOVNT x86_mfence
548
 
549
/* Once GDB has been enhanced to deal with functions without frame
550
   pointers, we can change this to allow for elimination of
551
   the frame pointer in leaf functions.  */
552
#define TARGET_DEFAULT 0
553
 
554
/* Extra bits to force.  */
555
#define TARGET_SUBTARGET_DEFAULT 0
556
#define TARGET_SUBTARGET_ISA_DEFAULT 0
557
 
558
/* Extra bits to force on w/ 32-bit mode.  */
559
#define TARGET_SUBTARGET32_DEFAULT 0
560
#define TARGET_SUBTARGET32_ISA_DEFAULT 0
561
 
562
/* Extra bits to force on w/ 64-bit mode.  */
563
#define TARGET_SUBTARGET64_DEFAULT 0
564
#define TARGET_SUBTARGET64_ISA_DEFAULT 0
565
 
566
/* Replace MACH-O, ifdefs by in-line tests, where possible.
567
   (a) Macros defined in config/i386/darwin.h  */
568
#define TARGET_MACHO 0
569
#define TARGET_MACHO_BRANCH_ISLANDS 0
570
#define MACHOPIC_ATT_STUB 0
571
/* (b) Macros defined in config/darwin.h  */
572
#define MACHO_DYNAMIC_NO_PIC_P 0
573
#define MACHOPIC_INDIRECT 0
574
#define MACHOPIC_PURE 0
575
 
576
/* For the RDOS  */
577
#define TARGET_RDOS 0
578
 
579
/* For the Windows 64-bit ABI.  */
580
#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
581
 
582
/* For the Windows 32-bit ABI.  */
583
#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
584
 
585
/* This is re-defined by cygming.h.  */
586
#define TARGET_SEH 0
587
 
588
/* This is re-defined by cygming.h.  */
589
#define TARGET_PECOFF 0
590
 
591
/* The default abi used by target.  */
592
#define DEFAULT_ABI SYSV_ABI
593
 
594
/* The default TLS segment register used by target.  */
595
#define DEFAULT_TLS_SEG_REG (TARGET_64BIT ? SEG_FS : SEG_GS)
596
 
597
/* Subtargets may reset this to 1 in order to enable 96-bit long double
598
   with the rounding mode forced to 53 bits.  */
599
#define TARGET_96_ROUND_53_LONG_DOUBLE 0
600
 
601
/* -march=native handling only makes sense with compiler running on
602
   an x86 or x86_64 chip.  If changing this condition, also change
603
   the condition in driver-i386.c.  */
604
#if defined(__i386__) || defined(__x86_64__)
605
/* In driver-i386.c.  */
606
extern const char *host_detect_local_cpu (int argc, const char **argv);
607
#define EXTRA_SPEC_FUNCTIONS \
608
  { "local_cpu_detect", host_detect_local_cpu },
609
#define HAVE_LOCAL_CPU_DETECT
610
#endif
611
 
612
#if TARGET_64BIT_DEFAULT
613
#define OPT_ARCH64 "!m32"
614
#define OPT_ARCH32 "m32"
615
#else
616
#define OPT_ARCH64 "m64|mx32"
617
#define OPT_ARCH32 "m64|mx32:;"
618
#endif
619
 
620
/* Support for configure-time defaults of some command line options.
621
   The order here is important so that -march doesn't squash the
622
   tune or cpu values.  */
623
#define OPTION_DEFAULT_SPECS					   \
624
  {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
625
  {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
626
  {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
627
  {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" },  \
628
  {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
629
  {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
630
  {"arch", "%{!march=*:-march=%(VALUE)}"},			   \
631
  {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"},	   \
632
  {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
633
 
634
/* Specs for the compiler proper */
635
 
636
#ifndef CC1_CPU_SPEC
637
#define CC1_CPU_SPEC_1 ""
638
 
639
#ifndef HAVE_LOCAL_CPU_DETECT
640
#define CC1_CPU_SPEC CC1_CPU_SPEC_1
641
#else
642
#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
643
"%{march=native:%>march=native %:local_cpu_detect(arch) \
644
  %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
645
%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
646
#endif
647
#endif
648
 
649
/* Target CPU builtins.  */
650
#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
651
 
652
/* Target Pragmas.  */
653
#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
654
 
655
#ifndef CC1_SPEC
656
#define CC1_SPEC "%(cc1_cpu) "
657
#endif
658
 
659
/* This macro defines names of additional specifications to put in the
660
   specs that can be used in various specifications like CC1_SPEC.  Its
661
   definition is an initializer with a subgrouping for each command option.
662
 
663
   Each subgrouping contains a string constant, that defines the
664
   specification name, and a string constant that used by the GCC driver
665
   program.
666
 
667
   Do not define this macro if it does not need to do anything.  */
668
 
669
#ifndef SUBTARGET_EXTRA_SPECS
670
#define SUBTARGET_EXTRA_SPECS
671
#endif
672
 
673
#define EXTRA_SPECS							\
674
  { "cc1_cpu",  CC1_CPU_SPEC },						\
675
  SUBTARGET_EXTRA_SPECS
676
 
677
 
678
/* Set the value of FLT_EVAL_METHOD in float.h.  When using only the
679
   FPU, assume that the fpcw is set to extended precision; when using
680
   only SSE, rounding is correct; when using both SSE and the FPU,
681
   the rounding precision is indeterminate, since either may be chosen
682
   apparently at random.  */
683
#define TARGET_FLT_EVAL_METHOD \
684
  (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
685
 
686
/* Whether to allow x87 floating-point arithmetic on MODE (one of
687
   SFmode, DFmode and XFmode) in the current excess precision
688
   configuration.  */
689
#define X87_ENABLE_ARITH(MODE) \
690
  (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
691
 
692
/* Likewise, whether to allow direct conversions from integer mode
693
   IMODE (HImode, SImode or DImode) to MODE.  */
694
#define X87_ENABLE_FLOAT(MODE, IMODE)			\
695
  (flag_excess_precision == EXCESS_PRECISION_FAST	\
696
   || (MODE) == XFmode					\
697
   || ((MODE) == DFmode && (IMODE) == SImode)		\
698
   || (IMODE) == HImode)
699
 
700
/* target machine storage layout */
701
 
702
#define SHORT_TYPE_SIZE 16
703
#define INT_TYPE_SIZE 32
704
#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
705
#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
706
#define LONG_LONG_TYPE_SIZE 64
707
#define FLOAT_TYPE_SIZE 32
708
#define DOUBLE_TYPE_SIZE 64
709
#define LONG_DOUBLE_TYPE_SIZE \
710
  (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
711
 
712
#define WIDEST_HARDWARE_FP_SIZE 80
713
 
714
#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
715
#define MAX_BITS_PER_WORD 64
716
#else
717
#define MAX_BITS_PER_WORD 32
718
#endif
719
 
720
/* Define this if most significant byte of a word is the lowest numbered.  */
721
/* That is true on the 80386.  */
722
 
723
#define BITS_BIG_ENDIAN 0
724
 
725
/* Define this if most significant byte of a word is the lowest numbered.  */
726
/* That is not true on the 80386.  */
727
#define BYTES_BIG_ENDIAN 0
728
 
729
/* Define this if most significant word of a multiword number is the lowest
730
   numbered.  */
731
/* Not true for 80386 */
732
#define WORDS_BIG_ENDIAN 0
733
 
734
/* Width of a word, in units (bytes).  */
735
#define UNITS_PER_WORD		(TARGET_64BIT ? 8 : 4)
736
 
737
#ifndef IN_LIBGCC2
738
#define MIN_UNITS_PER_WORD	4
739
#endif
740
 
741
/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
742
#define PARM_BOUNDARY BITS_PER_WORD
743
 
744
/* Boundary (in *bits*) on which stack pointer should be aligned.  */
745
#define STACK_BOUNDARY \
746
 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
747
 
748
/* Stack boundary of the main function guaranteed by OS.  */
749
#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
750
 
751
/* Minimum stack boundary.  */
752
#define MIN_STACK_BOUNDARY BITS_PER_WORD
753
 
754
/* Boundary (in *bits*) on which the stack pointer prefers to be
755
   aligned; the compiler cannot rely on having this alignment.  */
756
#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
757
 
758
/* It should be MIN_STACK_BOUNDARY.  But we set it to 128 bits for
759
   both 32bit and 64bit, to support codes that need 128 bit stack
760
   alignment for SSE instructions, but can't realign the stack.  */
761
#define PREFERRED_STACK_BOUNDARY_DEFAULT 128
762
 
763
/* 1 if -mstackrealign should be turned on by default.  It will
764
   generate an alternate prologue and epilogue that realigns the
765
   runtime stack if nessary.  This supports mixing codes that keep a
766
   4-byte aligned stack, as specified by i386 psABI, with codes that
767
   need a 16-byte aligned stack, as required by SSE instructions.  */
768
#define STACK_REALIGN_DEFAULT 0
769
 
770
/* Boundary (in *bits*) on which the incoming stack is aligned.  */
771
#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
772
 
773
/* According to Windows x64 software convention, the maximum stack allocatable
774
   in the prologue is 4G - 8 bytes.  Furthermore, there is a limited set of
775
   instructions allowed to adjust the stack pointer in the epilog, forcing the
776
   use of frame pointer for frames larger than 2 GB.  This theorical limit
777
   is reduced by 256, an over-estimated upper bound for the stack use by the
778
   prologue.
779
   We define only one threshold for both the prolog and the epilog.  When the
780
   frame size is larger than this threshold, we allocate the area to save SSE
781
   regs, then save them, and then allocate the remaining.  There is no SEH
782
   unwind info for this later allocation.  */
783
#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
784
 
785
/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack.  This is
786
   mandatory for the 64-bit ABI, and may or may not be true for other
787
   operating systems.  */
788
#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
789
 
790
/* Minimum allocation boundary for the code of a function.  */
791
#define FUNCTION_BOUNDARY 8
792
 
793
/* C++ stores the virtual bit in the lowest bit of function pointers.  */
794
#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
795
 
796
/* Minimum size in bits of the largest boundary to which any
797
   and all fundamental data types supported by the hardware
798
   might need to be aligned. No data type wants to be aligned
799
   rounder than this.
800
 
801
   Pentium+ prefers DFmode values to be aligned to 64 bit boundary
802
   and Pentium Pro XFmode values at 128 bit boundaries.
803
 
804
   When increasing the maximum, also update
805
   TARGET_ABSOLUTE_BIGGEST_ALIGNMENT.  */
806
 
807
#define BIGGEST_ALIGNMENT \
808
  (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128))
809
 
810
/* Maximum stack alignment.  */
811
#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
812
 
813
/* Alignment value for attribute ((aligned)).  It is a constant since
814
   it is the part of the ABI.  We shouldn't change it with -mavx.  */
815
#define ATTRIBUTE_ALIGNED_VALUE 128
816
 
817
/* Decide whether a variable of mode MODE should be 128 bit aligned.  */
818
#define ALIGN_MODE_128(MODE) \
819
 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
820
 
821
/* The published ABIs say that doubles should be aligned on word
822
   boundaries, so lower the alignment for structure fields unless
823
   -malign-double is set.  */
824
 
825
/* ??? Blah -- this macro is used directly by libobjc.  Since it
826
   supports no vector modes, cut out the complexity and fall back
827
   on BIGGEST_FIELD_ALIGNMENT.  */
828
#ifdef IN_TARGET_LIBS
829
#ifdef __x86_64__
830
#define BIGGEST_FIELD_ALIGNMENT 128
831
#else
832
#define BIGGEST_FIELD_ALIGNMENT 32
833
#endif
834
#else
835
#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
836
   x86_field_alignment (FIELD, COMPUTED)
837
#endif
838
 
839
/* If defined, a C expression to compute the alignment given to a
840
   constant that is being placed in memory.  EXP is the constant
841
   and ALIGN is the alignment that the object would ordinarily have.
842
   The value of this macro is used instead of that alignment to align
843
   the object.
844
 
845
   If this macro is not defined, then ALIGN is used.
846
 
847
   The typical use of this macro is to increase alignment for string
848
   constants to be word aligned so that `strcpy' calls that copy
849
   constants can be done inline.  */
850
 
851
#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
852
 
853
/* If defined, a C expression to compute the alignment for a static
854
   variable.  TYPE is the data type, and ALIGN is the alignment that
855
   the object would ordinarily have.  The value of this macro is used
856
   instead of that alignment to align the object.
857
 
858
   If this macro is not defined, then ALIGN is used.
859
 
860
   One use of this macro is to increase alignment of medium-size
861
   data to make it all fit in fewer cache lines.  Another is to
862
   cause character arrays to be word-aligned so that `strcpy' calls
863
   that copy constants to character arrays can be done inline.  */
864
 
865
#define DATA_ALIGNMENT(TYPE, ALIGN) \
866
  ix86_data_alignment ((TYPE), (ALIGN), true)
867
 
868
/* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
869
   some alignment increase, instead of optimization only purposes.  E.g.
870
   AMD x86-64 psABI says that variables with array type larger than 15 bytes
871
   must be aligned to 16 byte boundaries.
872
 
873
   If this macro is not defined, then ALIGN is used.  */
874
 
875
#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
876
  ix86_data_alignment ((TYPE), (ALIGN), false)
877
 
878
/* If defined, a C expression to compute the alignment for a local
879
   variable.  TYPE is the data type, and ALIGN is the alignment that
880
   the object would ordinarily have.  The value of this macro is used
881
   instead of that alignment to align the object.
882
 
883
   If this macro is not defined, then ALIGN is used.
884
 
885
   One use of this macro is to increase alignment of medium-size
886
   data to make it all fit in fewer cache lines.  */
887
 
888
#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
889
  ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
890
 
891
/* If defined, a C expression to compute the alignment for stack slot.
892
   TYPE is the data type, MODE is the widest mode available, and ALIGN
893
   is the alignment that the slot would ordinarily have.  The value of
894
   this macro is used instead of that alignment to align the slot.
895
 
896
   If this macro is not defined, then ALIGN is used when TYPE is NULL,
897
   Otherwise, LOCAL_ALIGNMENT will be used.
898
 
899
   One use of this macro is to set alignment of stack slot to the
900
   maximum alignment of all possible modes which the slot may have.  */
901
 
902
#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
903
  ix86_local_alignment ((TYPE), (MODE), (ALIGN))
904
 
905
/* If defined, a C expression to compute the alignment for a local
906
   variable DECL.
907
 
908
   If this macro is not defined, then
909
   LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
910
 
911
   One use of this macro is to increase alignment of medium-size
912
   data to make it all fit in fewer cache lines.  */
913
 
914
#define LOCAL_DECL_ALIGNMENT(DECL) \
915
  ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
916
 
917
/* If defined, a C expression to compute the minimum required alignment
918
   for dynamic stack realignment purposes for EXP (a TYPE or DECL),
919
   MODE, assuming normal alignment ALIGN.
920
 
921
   If this macro is not defined, then (ALIGN) will be used.  */
922
 
923
#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
924
  ix86_minimum_alignment (EXP, MODE, ALIGN)
925
 
926
 
927
/* Set this nonzero if move instructions will actually fail to work
928
   when given unaligned data.  */
929
#define STRICT_ALIGNMENT 0
930
 
931
/* If bit field type is int, don't let it cross an int,
932
   and give entire struct the alignment of an int.  */
933
/* Required on the 386 since it doesn't have bit-field insns.  */
934
#define PCC_BITFIELD_TYPE_MATTERS 1
935
 
936
/* Standard register usage.  */
937
 
938
/* This processor has special stack-like registers.  See reg-stack.c
939
   for details.  */
940
 
941
#define STACK_REGS
942
 
943
#define IS_STACK_MODE(MODE)					\
944
  (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH))	\
945
   || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH))	\
946
   || (MODE) == XFmode)
947
 
948
/* Number of actual hardware registers.
949
   The hardware registers are assigned numbers for the compiler
950
   from 0 to just below FIRST_PSEUDO_REGISTER.
951
   All registers that the compiler knows about must be given numbers,
952
   even those that are not normally considered general registers.
953
 
954
   In the 80386 we give the 8 general purpose registers the numbers 0-7.
955
   We number the floating point registers 8-15.
956
   Note that registers 0-7 can be accessed as a  short or int,
957
   while only 0-3 may be used with byte `mov' instructions.
958
 
959
   Reg 16 does not correspond to any hardware register, but instead
960
   appears in the RTL as an argument pointer prior to reload, and is
961
   eliminated during reloading in favor of either the stack or frame
962
   pointer.  */
963
 
964
#define FIRST_PSEUDO_REGISTER 81
965
 
966
/* Number of hardware registers that go into the DWARF-2 unwind info.
967
   If not defined, equals FIRST_PSEUDO_REGISTER.  */
968
 
969
#define DWARF_FRAME_REGISTERS 17
970
 
971
/* 1 for registers that have pervasive standard uses
972
   and are not available for the register allocator.
973
   On the 80386, the stack pointer is such, as is the arg pointer.
974
 
975
   REX registers are disabled for 32bit targets in
976
   TARGET_CONDITIONAL_REGISTER_USAGE.  */
977
 
978
#define FIXED_REGISTERS						\
979
/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
980
{  0, 0, 0, 0, 0, 0, 0, 1, 0,  0,  0,  0,  0,  0,  0,  0,	\
981
/*arg,flags,fpsr,fpcr,frame*/					\
982
    1,    1,   1,   1,    1,					\
983
/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
984
     0,   0,   0,   0,   0,   0,   0,   0,			\
985
/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/			\
986
     0,   0,   0,   0,   0,   0,   0,   0,			\
987
/*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
988
     0,   0,   0,   0,   0,   0,   0,   0,			\
989
/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
990
     0,   0,    0,    0,    0,    0,    0,    0,		\
991
/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/		\
992
     0,   0,    0,    0,    0,    0,    0,    0,		\
993
/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/		\
994
     0,   0,    0,    0,    0,    0,    0,    0,		\
995
/*  k0,  k1, k2, k3, k4, k5, k6, k7*/				\
996
     0,  0,   0,  0,  0,  0,  0,  0,				\
997
/*   b0, b1, b2, b3*/						\
998
     0,  0,  0,  0 }
999
 
1000
/* 1 for registers not available across function calls.
1001
   These must include the FIXED_REGISTERS and also any
1002
   registers that can be used without being saved.
1003
   The latter must include the registers where values are returned
1004
   and the register where structure-value addresses are passed.
1005
   Aside from that, you can include as many other registers as you like.
1006
 
1007
   Value is set to 1 if the register is call used unconditionally.
1008
   Bit one is set if the register is call used on TARGET_32BIT ABI.
1009
   Bit two is set if the register is call used on TARGET_64BIT ABI.
1010
   Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
1011
 
1012
   Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE.  */
1013
 
1014
#define CALL_USED_REGISTERS					\
1015
/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
1016
{  1, 1, 1, 0, 4, 4, 0, 1, 1,  1,  1,  1,  1,  1,  1,  1,	\
1017
/*arg,flags,fpsr,fpcr,frame*/					\
1018
    1,   1,    1,   1,    1,					\
1019
/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
1020
     1,   1,   1,   1,   1,   1,   6,   6,			\
1021
/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/			\
1022
     1,   1,   1,   1,   1,   1,   1,   1,			\
1023
/*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
1024
     1,   1,   1,   1,   2,   2,   2,   2,			\
1025
/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
1026
     6,   6,    6,    6,    6,    6,    6,    6,		\
1027
/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/		\
1028
     6,    6,     6,    6,    6,    6,    6,    6,		\
1029
/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/		\
1030
     6,    6,     6,    6,    6,    6,    6,    6,		\
1031
 /* k0,  k1,  k2,  k3,  k4,  k5,  k6,  k7*/			\
1032
     1,   1,   1,   1,   1,   1,   1,   1,			\
1033
/*   b0, b1, b2, b3*/						\
1034
     1,  1,  1,  1 }
1035
 
1036
/* Order in which to allocate registers.  Each register must be
1037
   listed once, even those in FIXED_REGISTERS.  List frame pointer
1038
   late and fixed registers last.  Note that, in general, we prefer
1039
   registers listed in CALL_USED_REGISTERS, keeping the others
1040
   available for storage of persistent values.
1041
 
1042
   The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
1043
   so this is just empty initializer for array.  */
1044
 
1045
#define REG_ALLOC_ORDER 					\
1046
{  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1047
   18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,	\
1048
   33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,  \
1049
   48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,	\
1050
   63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,  \
1051
   78, 79, 80 }
1052
 
1053
/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
1054
   to be rearranged based on a particular function.  When using sse math,
1055
   we want to allocate SSE before x87 registers and vice versa.  */
1056
 
1057
#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
1058
 
1059
 
1060
#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1061
 
1062
/* Return number of consecutive hard regs needed starting at reg REGNO
1063
   to hold something of mode MODE.
1064
   This is ordinarily the length in words of a value of mode MODE
1065
   but can be less for certain modes in special long registers.
1066
 
1067
   Actually there are no two word move instructions for consecutive
1068
   registers.  And only registers 0-3 may have mov byte instructions
1069
   applied to them.  */
1070
 
1071
#define HARD_REGNO_NREGS(REGNO, MODE)					\
1072
  (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO)	\
1073
   || MASK_REGNO_P (REGNO) || BND_REGNO_P (REGNO)			\
1074
   ? (COMPLEX_MODE_P (MODE) ? 2 : 1)					\
1075
   : ((MODE) == XFmode							\
1076
      ? (TARGET_64BIT ? 2 : 3)						\
1077
      : (MODE) == XCmode						\
1078
      ? (TARGET_64BIT ? 4 : 6)						\
1079
      : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1080
 
1081
#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE)			\
1082
  ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT)				\
1083
   ? (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1084
      ? 0								\
1085
      : ((MODE) == XFmode || (MODE) == XCmode))				\
1086
   : 0)
1087
 
1088
#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1089
 
1090
#define VALID_AVX256_REG_MODE(MODE)					\
1091
  ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode	\
1092
   || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode	\
1093
   || (MODE) == V4DFmode)
1094
 
1095
#define VALID_AVX256_REG_OR_OI_MODE(MODE)		\
1096
  (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1097
 
1098
#define VALID_AVX512F_SCALAR_MODE(MODE)					\
1099
  ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode		\
1100
   || (MODE) == SFmode)
1101
 
1102
#define VALID_AVX512F_REG_MODE(MODE)					\
1103
  ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode	\
1104
   || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1105
   || (MODE) == V4TImode)
1106
 
1107
#define VALID_AVX512VL_128_REG_MODE(MODE)					\
1108
  ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode	\
1109
   || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode)
1110
 
1111
#define VALID_SSE2_REG_MODE(MODE)					\
1112
  ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode	\
1113
   || (MODE) == V2DImode || (MODE) == DFmode)
1114
 
1115
#define VALID_SSE_REG_MODE(MODE)					\
1116
  ((MODE) == V1TImode || (MODE) == TImode				\
1117
   || (MODE) == V4SFmode || (MODE) == V4SImode				\
1118
   || (MODE) == SFmode || (MODE) == TFmode)
1119
 
1120
#define VALID_MMX_REG_MODE_3DNOW(MODE) \
1121
  ((MODE) == V2SFmode || (MODE) == SFmode)
1122
 
1123
#define VALID_MMX_REG_MODE(MODE)					\
1124
  ((MODE == V1DImode) || (MODE) == DImode				\
1125
   || (MODE) == V2SImode || (MODE) == SImode				\
1126
   || (MODE) == V4HImode || (MODE) == V8QImode)
1127
 
1128
#define VALID_BND_REG_MODE(MODE) \
1129
  (TARGET_64BIT ? (MODE) == BND64mode : (MODE) == BND32mode)
1130
 
1131
#define VALID_DFP_MODE_P(MODE) \
1132
  ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
1133
 
1134
#define VALID_FP_MODE_P(MODE)						\
1135
  ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode		\
1136
   || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode)		\
1137
 
1138
#define VALID_INT_MODE_P(MODE)						\
1139
  ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode		\
1140
   || (MODE) == DImode							\
1141
   || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode	\
1142
   || (MODE) == CDImode							\
1143
   || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode		\
1144
			|| (MODE) == TFmode || (MODE) == TCmode)))
1145
 
1146
/* Return true for modes passed in SSE registers.  */
1147
#define SSE_REG_MODE_P(MODE)						\
1148
  ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode	\
1149
   || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode	\
1150
   || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode	\
1151
   || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode	\
1152
   || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode	\
1153
   || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode	\
1154
   || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode	\
1155
   || (MODE) == V16SFmode)
1156
 
1157
#define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1158
 
1159
#define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1160
 
1161
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.  */
1162
 
1163
#define HARD_REGNO_MODE_OK(REGNO, MODE)	\
1164
   ix86_hard_regno_mode_ok ((REGNO), (MODE))
1165
 
1166
/* Value is 1 if it is a good idea to tie two pseudo registers
1167
   when one has mode MODE1 and one has mode MODE2.
1168
   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1169
   for any hard reg, then this must be 0 for correct output.  */
1170
 
1171
#define MODES_TIEABLE_P(MODE1, MODE2)  ix86_modes_tieable_p (MODE1, MODE2)
1172
 
1173
/* It is possible to write patterns to move flags; but until someone
1174
   does it,  */
1175
#define AVOID_CCMODE_COPIES
1176
 
1177
/* Specify the modes required to caller save a given hard regno.
1178
   We do this on i386 to prevent flags from being saved at all.
1179
 
1180
   Kill any attempts to combine saving of modes.  */
1181
 
1182
#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)			\
1183
  (CC_REGNO_P (REGNO) ? VOIDmode					\
1184
   : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode			\
1185
   : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
1186
   : (MODE) == HImode && !(TARGET_PARTIAL_REG_STALL			\
1187
			   || MASK_REGNO_P (REGNO)) ? SImode		\
1188
   : (MODE) == QImode && !(TARGET_64BIT || QI_REGNO_P (REGNO)		\
1189
			   || MASK_REGNO_P (REGNO)) ? SImode		\
1190
   : (MODE))
1191
 
1192
/* The only ABI that saves SSE registers across calls is Win64 (thus no
1193
   need to check the current ABI here), and with AVX enabled Win64 only
1194
   guarantees that the low 16 bytes are saved.  */
1195
#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE)             \
1196
  (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1197
 
1198
/* Specify the registers used for certain standard purposes.
1199
   The values of these macros are register numbers.  */
1200
 
1201
/* on the 386 the pc register is %eip, and is not usable as a general
1202
   register.  The ordinary mov instructions won't work */
1203
/* #define PC_REGNUM  */
1204
 
1205
/* Register to use for pushing function arguments.  */
1206
#define STACK_POINTER_REGNUM 7
1207
 
1208
/* Base register for access to local variables of the function.  */
1209
#define HARD_FRAME_POINTER_REGNUM 6
1210
 
1211
/* Base register for access to local variables of the function.  */
1212
#define FRAME_POINTER_REGNUM 20
1213
 
1214
/* First floating point reg */
1215
#define FIRST_FLOAT_REG 8
1216
 
1217
/* First & last stack-like regs */
1218
#define FIRST_STACK_REG FIRST_FLOAT_REG
1219
#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1220
 
1221
#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1222
#define LAST_SSE_REG  (FIRST_SSE_REG + 7)
1223
 
1224
#define FIRST_MMX_REG  (LAST_SSE_REG + 1)   /*29*/
1225
#define LAST_MMX_REG   (FIRST_MMX_REG + 7)
1226
 
1227
#define FIRST_REX_INT_REG  (LAST_MMX_REG + 1) /*37*/
1228
#define LAST_REX_INT_REG   (FIRST_REX_INT_REG + 7)
1229
 
1230
#define FIRST_REX_SSE_REG  (LAST_REX_INT_REG + 1) /*45*/
1231
#define LAST_REX_SSE_REG   (FIRST_REX_SSE_REG + 7)
1232
 
1233
#define FIRST_EXT_REX_SSE_REG  (LAST_REX_SSE_REG + 1) /*53*/
1234
#define LAST_EXT_REX_SSE_REG   (FIRST_EXT_REX_SSE_REG + 15) /*68*/
1235
 
1236
#define FIRST_MASK_REG  (LAST_EXT_REX_SSE_REG + 1) /*69*/
1237
#define LAST_MASK_REG   (FIRST_MASK_REG + 7) /*76*/
1238
 
1239
#define FIRST_BND_REG  (LAST_MASK_REG + 1) /*77*/
1240
#define LAST_BND_REG   (FIRST_BND_REG + 3) /*80*/
1241
 
1242
/* Override this in other tm.h files to cope with various OS lossage
1243
   requiring a frame pointer.  */
1244
#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1245
#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1246
#endif
1247
 
1248
/* Make sure we can access arbitrary call frames.  */
1249
#define SETUP_FRAME_ADDRESSES()  ix86_setup_frame_addresses ()
1250
 
1251
/* Base register for access to arguments of the function.  */
1252
#define ARG_POINTER_REGNUM 16
1253
 
1254
/* Register to hold the addressing base for position independent
1255
   code access to data items.  We don't use PIC pointer for 64bit
1256
   mode.  Define the regnum to dummy value to prevent gcc from
1257
   pessimizing code dealing with EBX.
1258
 
1259
   To avoid clobbering a call-saved register unnecessarily, we renumber
1260
   the pic register when possible.  The change is visible after the
1261
   prologue has been emitted.  */
1262
 
1263
#define REAL_PIC_OFFSET_TABLE_REGNUM  (TARGET_64BIT ? R15_REG : BX_REG)
1264
 
1265
#define PIC_OFFSET_TABLE_REGNUM						\
1266
  (ix86_use_pseudo_pic_reg ()						\
1267
   ? (pic_offset_table_rtx						\
1268
      ? INVALID_REGNUM							\
1269
      : REAL_PIC_OFFSET_TABLE_REGNUM)					\
1270
   : INVALID_REGNUM)
1271
 
1272
#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1273
 
1274
/* This is overridden by .  */
1275
#define MS_AGGREGATE_RETURN 0
1276
 
1277
#define KEEP_AGGREGATE_RETURN_POINTER 0
1278
 
1279
/* Define the classes of registers for register constraints in the
1280
   machine description.  Also define ranges of constants.
1281
 
1282
   One of the classes must always be named ALL_REGS and include all hard regs.
1283
   If there is more than one class, another class must be named NO_REGS
1284
   and contain no registers.
1285
 
1286
   The name GENERAL_REGS must be the name of a class (or an alias for
1287
   another name such as ALL_REGS).  This is the class of registers
1288
   that is allowed by "g" or "r" in a register constraint.
1289
   Also, registers outside this class are allocated only when
1290
   instructions express preferences for them.
1291
 
1292
   The classes must be numbered in nondecreasing order; that is,
1293
   a larger-numbered class must never be contained completely
1294
   in a smaller-numbered class.
1295
 
1296
   For any two classes, it is very desirable that there be another
1297
   class that represents their union.
1298
 
1299
   It might seem that class BREG is unnecessary, since no useful 386
1300
   opcode needs reg %ebx.  But some systems pass args to the OS in ebx,
1301
   and the "b" register constraint is useful in asms for syscalls.
1302
 
1303
   The flags, fpsr and fpcr registers are in no class.  */
1304
 
1305
enum reg_class
1306
{
1307
  NO_REGS,
1308
  AREG, DREG, CREG, BREG, SIREG, DIREG,
1309
  AD_REGS,			/* %eax/%edx for DImode */
1310
  Q_REGS,			/* %eax %ebx %ecx %edx */
1311
  NON_Q_REGS,			/* %esi %edi %ebp %esp */
1312
  INDEX_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp */
1313
  LEGACY_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1314
  CLOBBERED_REGS,		/* call-clobbered integer registers */
1315
  GENERAL_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1316
				   %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
1317
  FP_TOP_REG, FP_SECOND_REG,	/* %st(0) %st(1) */
1318
  FLOAT_REGS,
1319
  SSE_FIRST_REG,
1320
  NO_REX_SSE_REGS,
1321
  SSE_REGS,
1322
  EVEX_SSE_REGS,
1323
  BND_REGS,
1324
  ALL_SSE_REGS,
1325
  MMX_REGS,
1326
  FP_TOP_SSE_REGS,
1327
  FP_SECOND_SSE_REGS,
1328
  FLOAT_SSE_REGS,
1329
  FLOAT_INT_REGS,
1330
  INT_SSE_REGS,
1331
  FLOAT_INT_SSE_REGS,
1332
  MASK_EVEX_REGS,
1333
  MASK_REGS,
1334
  ALL_REGS, LIM_REG_CLASSES
1335
};
1336
 
1337
#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1338
 
1339
#define INTEGER_CLASS_P(CLASS) \
1340
  reg_class_subset_p ((CLASS), GENERAL_REGS)
1341
#define FLOAT_CLASS_P(CLASS) \
1342
  reg_class_subset_p ((CLASS), FLOAT_REGS)
1343
#define SSE_CLASS_P(CLASS) \
1344
  reg_class_subset_p ((CLASS), ALL_SSE_REGS)
1345
#define MMX_CLASS_P(CLASS) \
1346
  ((CLASS) == MMX_REGS)
1347
#define MAYBE_INTEGER_CLASS_P(CLASS) \
1348
  reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1349
#define MAYBE_FLOAT_CLASS_P(CLASS) \
1350
  reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1351
#define MAYBE_SSE_CLASS_P(CLASS) \
1352
  reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
1353
#define MAYBE_MMX_CLASS_P(CLASS) \
1354
  reg_classes_intersect_p ((CLASS), MMX_REGS)
1355
#define MAYBE_MASK_CLASS_P(CLASS) \
1356
  reg_classes_intersect_p ((CLASS), MASK_REGS)
1357
 
1358
#define Q_CLASS_P(CLASS) \
1359
  reg_class_subset_p ((CLASS), Q_REGS)
1360
 
1361
#define MAYBE_NON_Q_CLASS_P(CLASS) \
1362
  reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1363
 
1364
/* Give names of register classes as strings for dump file.  */
1365
 
1366
#define REG_CLASS_NAMES \
1367
{  "NO_REGS",				\
1368
   "AREG", "DREG", "CREG", "BREG",	\
1369
   "SIREG", "DIREG",			\
1370
   "AD_REGS",				\
1371
   "Q_REGS", "NON_Q_REGS",		\
1372
   "INDEX_REGS",			\
1373
   "LEGACY_REGS",			\
1374
   "CLOBBERED_REGS",			\
1375
   "GENERAL_REGS",			\
1376
   "FP_TOP_REG", "FP_SECOND_REG",	\
1377
   "FLOAT_REGS",			\
1378
   "SSE_FIRST_REG",			\
1379
   "NO_REX_SSE_REGS",			\
1380
   "SSE_REGS",				\
1381
   "EVEX_SSE_REGS",			\
1382
   "BND_REGS",				\
1383
   "ALL_SSE_REGS",			\
1384
   "MMX_REGS",				\
1385
   "FP_TOP_SSE_REGS",			\
1386
   "FP_SECOND_SSE_REGS",		\
1387
   "FLOAT_SSE_REGS",			\
1388
   "FLOAT_INT_REGS",			\
1389
   "INT_SSE_REGS",			\
1390
   "FLOAT_INT_SSE_REGS",		\
1391
   "MASK_EVEX_REGS",			\
1392
   "MASK_REGS",				\
1393
   "ALL_REGS" }
1394
 
1395
/* Define which registers fit in which classes.  This is an initializer
1396
   for a vector of HARD_REG_SET of length N_REG_CLASSES.
1397
 
1398
   Note that CLOBBERED_REGS are calculated by
1399
   TARGET_CONDITIONAL_REGISTER_USAGE.  */
1400
 
1401
#define REG_CLASS_CONTENTS                                              \
1402
{     { 0x00,       0x0,    0x0 },                                       \
1403
      { 0x01,       0x0,    0x0 },       /* AREG */                      \
1404
      { 0x02,       0x0,    0x0 },       /* DREG */                      \
1405
      { 0x04,       0x0,    0x0 },       /* CREG */                      \
1406
      { 0x08,       0x0,    0x0 },       /* BREG */                      \
1407
      { 0x10,       0x0,    0x0 },       /* SIREG */                     \
1408
      { 0x20,       0x0,    0x0 },       /* DIREG */                     \
1409
      { 0x03,       0x0,    0x0 },       /* AD_REGS */                   \
1410
      { 0x0f,       0x0,    0x0 },       /* Q_REGS */                    \
1411
  { 0x1100f0,    0x1fe0,    0x0 },       /* NON_Q_REGS */                \
1412
      { 0x7f,    0x1fe0,    0x0 },       /* INDEX_REGS */                \
1413
  { 0x1100ff,       0x0,    0x0 },       /* LEGACY_REGS */               \
1414
      { 0x07,       0x0,    0x0 },       /* CLOBBERED_REGS */            \
1415
  { 0x1100ff,    0x1fe0,    0x0 },       /* GENERAL_REGS */              \
1416
     { 0x100,       0x0,    0x0 },       /* FP_TOP_REG */                \
1417
    { 0x0200,       0x0,    0x0 },       /* FP_SECOND_REG */             \
1418
    { 0xff00,       0x0,    0x0 },       /* FLOAT_REGS */                \
1419
  { 0x200000,       0x0,    0x0 },       /* SSE_FIRST_REG */             \
1420
{ 0x1fe00000,  0x000000,    0x0 },       /* NO_REX_SSE_REGS */           \
1421
{ 0x1fe00000,  0x1fe000,    0x0 },       /* SSE_REGS */                  \
1422
       { 0x0,0xffe00000,   0x1f },       /* EVEX_SSE_REGS */             \
1423
       { 0x0,       0x0,0x1e000 },       /* BND_REGS */			 \
1424
{ 0x1fe00000,0xffffe000,   0x1f },       /* ALL_SSE_REGS */              \
1425
{ 0xe0000000,      0x1f,    0x0 },       /* MMX_REGS */                  \
1426
{ 0x1fe00100,0xffffe000,   0x1f },       /* FP_TOP_SSE_REG */            \
1427
{ 0x1fe00200,0xffffe000,   0x1f },       /* FP_SECOND_SSE_REG */         \
1428
{ 0x1fe0ff00,0xffffe000,   0x1f },       /* FLOAT_SSE_REGS */            \
1429
{   0x11ffff,    0x1fe0,    0x0 },       /* FLOAT_INT_REGS */            \
1430
{ 0x1ff100ff,0xffffffe0,   0x1f },       /* INT_SSE_REGS */              \
1431
{ 0x1ff1ffff,0xffffffe0,   0x1f },       /* FLOAT_INT_SSE_REGS */        \
1432
       { 0x0,       0x0, 0x1fc0 },       /* MASK_EVEX_REGS */           \
1433
       { 0x0,       0x0, 0x1fe0 },       /* MASK_REGS */                 \
1434
{ 0xffffffff,0xffffffff,0x1ffff }                                        \
1435
}
1436
 
1437
/* The same information, inverted:
1438
   Return the class number of the smallest class containing
1439
   reg number REGNO.  This could be a conditional expression
1440
   or could index an array.  */
1441
 
1442
#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1443
 
1444
/* When this hook returns true for MODE, the compiler allows
1445
   registers explicitly used in the rtl to be used as spill registers
1446
   but prevents the compiler from extending the lifetime of these
1447
   registers.  */
1448
#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
1449
 
1450
#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
1451
#define QI_REGNO_P(N) IN_RANGE ((N), AX_REG, BX_REG)
1452
 
1453
#define GENERAL_REG_P(X) \
1454
  (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1455
#define GENERAL_REGNO_P(N) \
1456
  (IN_RANGE ((N), AX_REG, SP_REG) || REX_INT_REGNO_P (N))
1457
 
1458
#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1459
#define ANY_QI_REGNO_P(N) \
1460
  (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
1461
 
1462
#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1463
#define REX_INT_REGNO_P(N) \
1464
  IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
1465
 
1466
#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1467
#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1468
 
1469
#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1470
#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
1471
 
1472
#define X87_FLOAT_MODE_P(MODE)	\
1473
  (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
1474
 
1475
#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
1476
#define SSE_REGNO_P(N)						\
1477
  (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG)			\
1478
   || REX_SSE_REGNO_P (N)					\
1479
   || EXT_REX_SSE_REGNO_P (N))
1480
 
1481
#define REX_SSE_REGNO_P(N) \
1482
  IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
1483
 
1484
#define EXT_REX_SSE_REGNO_P(N) \
1485
  IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1486
 
1487
#define SSE_REGNO(N) \
1488
  ((N) < 8 ? FIRST_SSE_REG + (N) \
1489
         : (N) <= LAST_REX_SSE_REG ? (FIRST_REX_SSE_REG + (N) - 8) \
1490
                                   : (FIRST_EXT_REX_SSE_REG + (N) - 16))
1491
 
1492
#define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
1493
#define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
1494
#define ANY_MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
1495
 
1496
#define SSE_FLOAT_MODE_P(MODE) \
1497
  ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1498
 
1499
#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1500
  (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1501
		  || (MODE) == V8SFmode || (MODE) == V4DFmode))
1502
 
1503
#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
1504
#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
1505
 
1506
#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_STACK_REG)
1507
 
1508
#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1509
#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1510
 
1511
#define BND_REGNO_P(N) IN_RANGE ((N), FIRST_BND_REG, LAST_BND_REG)
1512
#define ANY_BND_REG_P(X) (REG_P (X) && BND_REGNO_P (REGNO (X)))
1513
 
1514
/* The class value for index registers, and the one for base regs.  */
1515
 
1516
#define INDEX_REG_CLASS INDEX_REGS
1517
#define BASE_REG_CLASS GENERAL_REGS
1518
 
1519
/* Place additional restrictions on the register class to use when it
1520
   is necessary to be able to hold a value of mode MODE in a reload
1521
   register for which class CLASS would ordinarily be used.
1522
 
1523
   We avoid classes containing registers from multiple units due to
1524
   the limitation in ix86_secondary_memory_needed.  We limit these
1525
   classes to their "natural mode" single unit register class, depending
1526
   on the unit availability.
1527
 
1528
   Please note that reg_class_subset_p is not commutative, so these
1529
   conditions mean "... if (CLASS) includes ALL registers from the
1530
   register set."  */
1531
 
1532
#define LIMIT_RELOAD_CLASS(MODE, CLASS)					\
1533
  (((MODE) == QImode && !TARGET_64BIT					\
1534
    && reg_class_subset_p (Q_REGS, (CLASS))) ? Q_REGS			\
1535
   : (((MODE) == SImode || (MODE) == DImode)				\
1536
      && reg_class_subset_p (GENERAL_REGS, (CLASS))) ? GENERAL_REGS	\
1537
   : (SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH			\
1538
      && reg_class_subset_p (SSE_REGS, (CLASS))) ? SSE_REGS		\
1539
   : (X87_FLOAT_MODE_P (MODE)						\
1540
      && reg_class_subset_p (FLOAT_REGS, (CLASS))) ? FLOAT_REGS		\
1541
   : (CLASS))
1542
 
1543
/* If we are copying between general and FP registers, we need a memory
1544
   location. The same is true for SSE and MMX registers.  */
1545
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1546
  ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1547
 
1548
/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1549
   There is no need to emit full 64 bit move on 64 bit targets
1550
   for integral modes that can be moved using 32 bit move.  */
1551
#define SECONDARY_MEMORY_NEEDED_MODE(MODE)			\
1552
  (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE)	\
1553
   ? mode_for_size (32, GET_MODE_CLASS (MODE), 0)		\
1554
   : MODE)
1555
 
1556
/* Return a class of registers that cannot change FROM mode to TO mode.  */
1557
 
1558
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1559
  ix86_cannot_change_mode_class (FROM, TO, CLASS)
1560
 
1561
/* Stack layout; function entry, exit and calling.  */
1562
 
1563
/* Define this if pushing a word on the stack
1564
   makes the stack pointer a smaller address.  */
1565
#define STACK_GROWS_DOWNWARD
1566
 
1567
/* Define this to nonzero if the nominal address of the stack frame
1568
   is at the high-address end of the local variables;
1569
   that is, each additional local variable allocated
1570
   goes at a more negative offset in the frame.  */
1571
#define FRAME_GROWS_DOWNWARD 1
1572
 
1573
/* Offset within stack frame to start allocating local variables at.
1574
   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1575
   first local allocated.  Otherwise, it is the offset to the BEGINNING
1576
   of the first local allocated.  */
1577
#define STARTING_FRAME_OFFSET 0
1578
 
1579
/* If we generate an insn to push BYTES bytes, this says how many the stack
1580
   pointer really advances by.  On 386, we have pushw instruction that
1581
   decrements by exactly 2 no matter what the position was, there is no pushb.
1582
 
1583
   But as CIE data alignment factor on this arch is -4 for 32bit targets
1584
   and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1585
   are in multiple of 4 for 32bit targets and 8 for 64bit targets.  */
1586
 
1587
#define PUSH_ROUNDING(BYTES) \
1588
  (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
1589
 
1590
/* If defined, the maximum amount of space required for outgoing arguments
1591
   will be computed and placed into the variable `crtl->outgoing_args_size'.
1592
   No space will be pushed onto the stack for each call; instead, the
1593
   function prologue should increase the stack frame size by this amount.
1594
 
1595
   In 32bit mode enabling argument accumulation results in about 5% code size
1596
   growth becuase move instructions are less compact than push.  In 64bit
1597
   mode the difference is less drastic but visible.
1598
 
1599
   FIXME: Unlike earlier implementations, the size of unwind info seems to
1600
   actually grow with accumulation.  Is that because accumulated args
1601
   unwind info became unnecesarily bloated?
1602
 
1603
   With the 64-bit MS ABI, we can generate correct code with or without
1604
   accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1605
   generated without accumulated args is terrible.
1606
 
1607
   If stack probes are required, the space used for large function
1608
   arguments on the stack must also be probed, so enable
1609
   -maccumulate-outgoing-args so this happens in the prologue.  */
1610
 
1611
#define ACCUMULATE_OUTGOING_ARGS \
1612
  ((TARGET_ACCUMULATE_OUTGOING_ARGS && optimize_function_for_speed_p (cfun)) \
1613
   || TARGET_STACK_PROBE || TARGET_64BIT_MS_ABI)
1614
 
1615
/* If defined, a C expression whose value is nonzero when we want to use PUSH
1616
   instructions to pass outgoing arguments.  */
1617
 
1618
#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1619
 
1620
/* We want the stack and args grow in opposite directions, even if
1621
   PUSH_ARGS is 0.  */
1622
#define PUSH_ARGS_REVERSED 1
1623
 
1624
/* Offset of first parameter from the argument pointer register value.  */
1625
#define FIRST_PARM_OFFSET(FNDECL) 0
1626
 
1627
/* Define this macro if functions should assume that stack space has been
1628
   allocated for arguments even when their values are passed in registers.
1629
 
1630
   The value of this macro is the size, in bytes, of the area reserved for
1631
   arguments passed in registers for the function represented by FNDECL.
1632
 
1633
   This space can be allocated by the caller, or be a part of the
1634
   machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1635
   which.  */
1636
#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1637
 
1638
#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1639
  (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
1640
 
1641
/* Define how to find the value returned by a library function
1642
   assuming the value has mode MODE.  */
1643
 
1644
#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
1645
 
1646
/* Define the size of the result block used for communication between
1647
   untyped_call and untyped_return.  The block contains a DImode value
1648
   followed by the block used by fnsave and frstor.  */
1649
 
1650
#define APPLY_RESULT_SIZE (8+108)
1651
 
1652
/* 1 if N is a possible register number for function argument passing.  */
1653
#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1654
 
1655
/* Define a data type for recording info about an argument list
1656
   during the scan of that argument list.  This data type should
1657
   hold all necessary information about the function itself
1658
   and about the args processed so far, enough to enable macros
1659
   such as FUNCTION_ARG to determine where the next arg should go.  */
1660
 
1661
typedef struct ix86_args {
1662
  int words;			/* # words passed so far */
1663
  int nregs;			/* # registers available for passing */
1664
  int regno;			/* next available register number */
1665
  int fastcall;			/* fastcall or thiscall calling convention
1666
				   is used */
1667
  int sse_words;		/* # sse words passed so far */
1668
  int sse_nregs;		/* # sse registers available for passing */
1669
  int warn_avx512f;		/* True when we want to warn
1670
				   about AVX512F ABI.  */
1671
  int warn_avx;			/* True when we want to warn about AVX ABI.  */
1672
  int warn_sse;			/* True when we want to warn about SSE ABI.  */
1673
  int warn_mmx;			/* True when we want to warn about MMX ABI.  */
1674
  int sse_regno;		/* next available sse register number */
1675
  int mmx_words;		/* # mmx words passed so far */
1676
  int mmx_nregs;		/* # mmx registers available for passing */
1677
  int mmx_regno;		/* next available mmx register number */
1678
  int maybe_vaarg;		/* true for calls to possibly vardic fncts.  */
1679
  int caller;			/* true if it is caller.  */
1680
  int float_in_sse;		/* Set to 1 or 2 for 32bit targets if
1681
				   SFmode/DFmode arguments should be passed
1682
				   in SSE registers.  Otherwise 0.  */
1683
  int bnd_regno;                /* next available bnd register number */
1684
  int bnds_in_bt;               /* number of bounds expected in BT.  */
1685
  int force_bnd_pass;           /* number of bounds expected for stdarg arg.  */
1686
  int stdarg;                   /* Set to 1 if function is stdarg.  */
1687
  enum calling_abi call_abi;	/* Set to SYSV_ABI for sysv abi. Otherwise
1688
 				   MS_ABI for ms abi.  */
1689
  tree decl;			/* Callee decl.  */
1690
} CUMULATIVE_ARGS;
1691
 
1692
/* Initialize a variable CUM of type CUMULATIVE_ARGS
1693
   for a call to a function whose data type is FNTYPE.
1694
   For a library call, FNTYPE is 0.  */
1695
 
1696
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1697
  init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1698
			(N_NAMED_ARGS) != -1)
1699
 
1700
/* Output assembler code to FILE to increment profiler label # LABELNO
1701
   for profiling a function entry.  */
1702
 
1703
#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1704
 
1705
#define MCOUNT_NAME "_mcount"
1706
 
1707
#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1708
 
1709
#define PROFILE_COUNT_REGISTER "edx"
1710
 
1711
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1712
   the stack pointer does not matter.  The value is tested only in
1713
   functions that have frame pointers.
1714
   No definition is equivalent to always zero.  */
1715
/* Note on the 386 it might be more efficient not to define this since
1716
   we have to restore it ourselves from the frame pointer, in order to
1717
   use pop */
1718
 
1719
#define EXIT_IGNORE_STACK 1
1720
 
1721
/* Output assembler code for a block containing the constant parts
1722
   of a trampoline, leaving space for the variable parts.  */
1723
 
1724
/* On the 386, the trampoline contains two instructions:
1725
     mov #STATIC,ecx
1726
     jmp FUNCTION
1727
   The trampoline is generated entirely at runtime.  The operand of JMP
1728
   is the address of FUNCTION relative to the instruction following the
1729
   JMP (which is 5 bytes long).  */
1730
 
1731
/* Length in units of the trampoline for entering a nested function.  */
1732
 
1733
#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
1734
 
1735
/* Definitions for register eliminations.
1736
 
1737
   This is an array of structures.  Each structure initializes one pair
1738
   of eliminable registers.  The "from" register number is given first,
1739
   followed by "to".  Eliminations of the same "from" register are listed
1740
   in order of preference.
1741
 
1742
   There are two registers that can always be eliminated on the i386.
1743
   The frame pointer and the arg pointer can be replaced by either the
1744
   hard frame pointer or to the stack pointer, depending upon the
1745
   circumstances.  The hard frame pointer is not used before reload and
1746
   so it is not eligible for elimination.  */
1747
 
1748
#define ELIMINABLE_REGS					\
1749
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1750
 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1751
 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1752
 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}	\
1753
 
1754
/* Define the offset between two registers, one to be eliminated, and the other
1755
   its replacement, at the start of a routine.  */
1756
 
1757
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1758
  ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1759
 
1760
/* Addressing modes, and classification of registers for them.  */
1761
 
1762
/* Macros to check register numbers against specific register classes.  */
1763
 
1764
/* These assume that REGNO is a hard or pseudo reg number.
1765
   They give nonzero only if REGNO is a hard reg of the suitable class
1766
   or a pseudo reg currently allocated to a suitable hard reg.
1767
   Since they use reg_renumber, they are safe only once reg_renumber
1768
   has been allocated, which happens in reginfo.c during register
1769
   allocation.  */
1770
 
1771
#define REGNO_OK_FOR_INDEX_P(REGNO) 					\
1772
  ((REGNO) < STACK_POINTER_REGNUM 					\
1773
   || REX_INT_REGNO_P (REGNO)						\
1774
   || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM		\
1775
   || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1776
 
1777
#define REGNO_OK_FOR_BASE_P(REGNO) 					\
1778
  (GENERAL_REGNO_P (REGNO)						\
1779
   || (REGNO) == ARG_POINTER_REGNUM 					\
1780
   || (REGNO) == FRAME_POINTER_REGNUM 					\
1781
   || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1782
 
1783
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1784
   and check its validity for a certain class.
1785
   We have two alternate definitions for each of them.
1786
   The usual definition accepts all pseudo regs; the other rejects
1787
   them unless they have been allocated suitable hard regs.
1788
   The symbol REG_OK_STRICT causes the latter definition to be used.
1789
 
1790
   Most source files want to accept pseudo regs in the hope that
1791
   they will get allocated to the class that the insn wants them to be in.
1792
   Source files for reload pass need to be strict.
1793
   After reload, it makes no difference, since pseudo regs have
1794
   been eliminated by then.  */
1795
 
1796
 
1797
/* Non strict versions, pseudos are ok.  */
1798
#define REG_OK_FOR_INDEX_NONSTRICT_P(X)					\
1799
  (REGNO (X) < STACK_POINTER_REGNUM					\
1800
   || REX_INT_REGNO_P (REGNO (X))					\
1801
   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1802
 
1803
#define REG_OK_FOR_BASE_NONSTRICT_P(X)					\
1804
  (GENERAL_REGNO_P (REGNO (X))						\
1805
   || REGNO (X) == ARG_POINTER_REGNUM					\
1806
   || REGNO (X) == FRAME_POINTER_REGNUM 				\
1807
   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1808
 
1809
/* Strict versions, hard registers only */
1810
#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1811
#define REG_OK_FOR_BASE_STRICT_P(X)  REGNO_OK_FOR_BASE_P (REGNO (X))
1812
 
1813
#ifndef REG_OK_STRICT
1814
#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_NONSTRICT_P (X)
1815
#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_NONSTRICT_P (X)
1816
 
1817
#else
1818
#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_STRICT_P (X)
1819
#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_STRICT_P (X)
1820
#endif
1821
 
1822
/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
1823
   that is a valid memory address for an instruction.
1824
   The MODE argument is the machine mode for the MEM expression
1825
   that wants to use this address.
1826
 
1827
   The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
1828
   except for CONSTANT_ADDRESS_P which is usually machine-independent.
1829
 
1830
   See legitimize_pic_address in i386.c for details as to what
1831
   constitutes a legitimate address when -fpic is used.  */
1832
 
1833
#define MAX_REGS_PER_ADDRESS 2
1834
 
1835
#define CONSTANT_ADDRESS_P(X)  constant_address_p (X)
1836
 
1837
/* Try a machine-dependent way of reloading an illegitimate address
1838
   operand.  If we find one, push the reload and jump to WIN.  This
1839
   macro is used in only one place: `find_reloads_address' in reload.c.  */
1840
 
1841
#define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, INDL, WIN)	\
1842
do {									\
1843
  if (ix86_legitimize_reload_address ((X), (MODE), (OPNUM),		\
1844
				      (int)(TYPE), (INDL)))		\
1845
    goto WIN;								\
1846
} while (0)
1847
 
1848
/* If defined, a C expression to determine the base term of address X.
1849
   This macro is used in only one place: `find_base_term' in alias.c.
1850
 
1851
   It is always safe for this macro to not be defined.  It exists so
1852
   that alias analysis can understand machine-dependent addresses.
1853
 
1854
   The typical use of this macro is to handle addresses containing
1855
   a label_ref or symbol_ref within an UNSPEC.  */
1856
 
1857
#define FIND_BASE_TERM(X) ix86_find_base_term (X)
1858
 
1859
/* Nonzero if the constant value X is a legitimate general operand
1860
   when generating PIC code.  It is given that flag_pic is on and
1861
   that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1862
 
1863
#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1864
 
1865
#define SYMBOLIC_CONST(X)	\
1866
  (GET_CODE (X) == SYMBOL_REF						\
1867
   || GET_CODE (X) == LABEL_REF						\
1868
   || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1869
 
1870
/* Max number of args passed in registers.  If this is more than 3, we will
1871
   have problems with ebx (register #4), since it is a caller save register and
1872
   is also used as the pic register in ELF.  So for now, don't allow more than
1873
   3 registers to be passed in registers.  */
1874
 
1875
/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1876
#define X86_64_REGPARM_MAX 6
1877
#define X86_64_MS_REGPARM_MAX 4
1878
 
1879
#define X86_32_REGPARM_MAX 3
1880
 
1881
#define REGPARM_MAX							\
1882
  (TARGET_64BIT								\
1883
   ? (TARGET_64BIT_MS_ABI						\
1884
      ? X86_64_MS_REGPARM_MAX						\
1885
      : X86_64_REGPARM_MAX)						\
1886
   : X86_32_REGPARM_MAX)
1887
 
1888
#define X86_64_SSE_REGPARM_MAX 8
1889
#define X86_64_MS_SSE_REGPARM_MAX 4
1890
 
1891
#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
1892
 
1893
#define SSE_REGPARM_MAX							\
1894
  (TARGET_64BIT								\
1895
   ? (TARGET_64BIT_MS_ABI						\
1896
      ? X86_64_MS_SSE_REGPARM_MAX					\
1897
      : X86_64_SSE_REGPARM_MAX)						\
1898
   : X86_32_SSE_REGPARM_MAX)
1899
 
1900
#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1901
 
1902
/* Specify the machine mode that this machine uses
1903
   for the index in the tablejump instruction.  */
1904
#define CASE_VECTOR_MODE \
1905
 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
1906
 
1907
/* Define this as 1 if `char' should by default be signed; else as 0.  */
1908
#define DEFAULT_SIGNED_CHAR 1
1909
 
1910
/* Max number of bytes we can move from memory to memory
1911
   in one reasonably fast instruction.  */
1912
#define MOVE_MAX 16
1913
 
1914
/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1915
   move efficiently, as opposed to  MOVE_MAX which is the maximum
1916
   number of bytes we can move with a single instruction.  */
1917
#define MOVE_MAX_PIECES UNITS_PER_WORD
1918
 
1919
/* If a memory-to-memory move would take MOVE_RATIO or more simple
1920
   move-instruction pairs, we will do a movmem or libcall instead.
1921
   Increasing the value will always make code faster, but eventually
1922
   incurs high cost in increased code size.
1923
 
1924
   If you don't define this, a reasonable default is used.  */
1925
 
1926
#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
1927
 
1928
/* If a clear memory operation would take CLEAR_RATIO or more simple
1929
   move-instruction sequences, we will do a clrmem or libcall instead.  */
1930
 
1931
#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
1932
 
1933
/* Define if shifts truncate the shift count which implies one can
1934
   omit a sign-extension or zero-extension of a shift count.
1935
 
1936
   On i386, shifts do truncate the count.  But bit test instructions
1937
   take the modulo of the bit offset operand.  */
1938
 
1939
/* #define SHIFT_COUNT_TRUNCATED */
1940
 
1941
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1942
   is done just by pretending it is already truncated.  */
1943
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1944
 
1945
/* A macro to update M and UNSIGNEDP when an object whose type is
1946
   TYPE and which has the specified mode and signedness is to be
1947
   stored in a register.  This macro is only called when TYPE is a
1948
   scalar type.
1949
 
1950
   On i386 it is sometimes useful to promote HImode and QImode
1951
   quantities to SImode.  The choice depends on target type.  */
1952
 
1953
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) 		\
1954
do {							\
1955
  if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS)	\
1956
      || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS))	\
1957
    (MODE) = SImode;					\
1958
} while (0)
1959
 
1960
/* Specify the machine mode that pointers have.
1961
   After generation of rtl, the compiler makes no further distinction
1962
   between pointers and any other objects of this machine mode.  */
1963
#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
1964
 
1965
/* Specify the machine mode that bounds have.  */
1966
#define BNDmode (ix86_pmode == PMODE_DI ? BND64mode : BND32mode)
1967
 
1968
/* A C expression whose value is zero if pointers that need to be extended
1969
   from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1970
   greater then zero if they are zero-extended and less then zero if the
1971
   ptr_extend instruction should be used.  */
1972
 
1973
#define POINTERS_EXTEND_UNSIGNED 1
1974
 
1975
/* A function address in a call instruction
1976
   is a byte address (for indexing purposes)
1977
   so give the MEM rtx a byte's mode.  */
1978
#define FUNCTION_MODE QImode
1979
 
1980
 
1981
/* A C expression for the cost of a branch instruction.  A value of 1
1982
   is the default; other values are interpreted relative to that.  */
1983
 
1984
#define BRANCH_COST(speed_p, predictable_p) \
1985
  (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
1986
 
1987
/* An integer expression for the size in bits of the largest integer machine
1988
   mode that should actually be used.  We allow pairs of registers.  */
1989
#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1990
 
1991
/* Define this macro as a C expression which is nonzero if accessing
1992
   less than a word of memory (i.e. a `char' or a `short') is no
1993
   faster than accessing a word of memory, i.e., if such access
1994
   require more than one instruction or if there is no difference in
1995
   cost between byte and (aligned) word loads.
1996
 
1997
   When this macro is not defined, the compiler will access a field by
1998
   finding the smallest containing object; when it is defined, a
1999
   fullword load will be used if alignment permits.  Unless bytes
2000
   accesses are faster than word accesses, using word accesses is
2001
   preferable since it may eliminate subsequent memory access if
2002
   subsequent accesses occur to other fields in the same word of the
2003
   structure, but to different bytes.  */
2004
 
2005
#define SLOW_BYTE_ACCESS 0
2006
 
2007
/* Nonzero if access to memory by shorts is slow and undesirable.  */
2008
#define SLOW_SHORT_ACCESS 0
2009
 
2010
/* Define this macro to be the value 1 if unaligned accesses have a
2011
   cost many times greater than aligned accesses, for example if they
2012
   are emulated in a trap handler.
2013
 
2014
   When this macro is nonzero, the compiler will act as if
2015
   `STRICT_ALIGNMENT' were nonzero when generating code for block
2016
   moves.  This can cause significantly more instructions to be
2017
   produced.  Therefore, do not set this macro nonzero if unaligned
2018
   accesses only add a cycle or two to the time for a memory access.
2019
 
2020
   If the value of this macro is always zero, it need not be defined.  */
2021
 
2022
/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2023
 
2024
/* Define this macro if it is as good or better to call a constant
2025
   function address than to call an address kept in a register.
2026
 
2027
   Desirable on the 386 because a CALL with a constant address is
2028
   faster than one with a register address.  */
2029
 
2030
#define NO_FUNCTION_CSE
2031
 
2032
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2033
   return the mode to be used for the comparison.
2034
 
2035
   For floating-point equality comparisons, CCFPEQmode should be used.
2036
   VOIDmode should be used in all other cases.
2037
 
2038
   For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2039
   possible, to allow for more combinations.  */
2040
 
2041
#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2042
 
2043
/* Return nonzero if MODE implies a floating point inequality can be
2044
   reversed.  */
2045
 
2046
#define REVERSIBLE_CC_MODE(MODE) 1
2047
 
2048
/* A C expression whose value is reversed condition code of the CODE for
2049
   comparison done in CC_MODE mode.  */
2050
#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
2051
 
2052
 
2053
/* Control the assembler format that we output, to the extent
2054
   this does not vary between assemblers.  */
2055
 
2056
/* How to refer to registers in assembler output.
2057
   This sequence is indexed by compiler's hard-register-number (see above).  */
2058
 
2059
/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
2060
   For non floating point regs, the following are the HImode names.
2061
 
2062
   For float regs, the stack top is sometimes referred to as "%st(0)"
2063
   instead of just "%st".  TARGET_PRINT_OPERAND handles this with the
2064
   "y" code.  */
2065
 
2066
#define HI_REGISTER_NAMES						\
2067
{"ax","dx","cx","bx","si","di","bp","sp",				\
2068
 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)",		\
2069
 "argp", "flags", "fpsr", "fpcr", "frame",				\
2070
 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7",		\
2071
 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7",		\
2072
 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",			\
2073
 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",	\
2074
 "xmm16", "xmm17", "xmm18", "xmm19",					\
2075
 "xmm20", "xmm21", "xmm22", "xmm23",					\
2076
 "xmm24", "xmm25", "xmm26", "xmm27",					\
2077
 "xmm28", "xmm29", "xmm30", "xmm31",					\
2078
 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7",			\
2079
 "bnd0", "bnd1", "bnd2", "bnd3" }
2080
 
2081
#define REGISTER_NAMES HI_REGISTER_NAMES
2082
 
2083
/* Table of additional register names to use in user input.  */
2084
 
2085
#define ADDITIONAL_REGISTER_NAMES \
2086
{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 },		\
2087
  { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 },		\
2088
  { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 },		\
2089
  { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 },		\
2090
  { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 },			\
2091
  { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 },			\
2092
  { "ymm0", 21}, { "ymm1", 22}, { "ymm2", 23}, { "ymm3", 24},		\
2093
  { "ymm4", 25}, { "ymm5", 26}, { "ymm6", 27}, { "ymm7", 28},		\
2094
  { "ymm8", 45}, { "ymm9", 46}, { "ymm10", 47}, { "ymm11", 48},		\
2095
  { "ymm12", 49}, { "ymm13", 50}, { "ymm14", 51}, { "ymm15", 52},	\
2096
  { "ymm16", 53}, { "ymm17", 54}, { "ymm18", 55}, { "ymm19", 56},	\
2097
  { "ymm20", 57}, { "ymm21", 58}, { "ymm22", 59}, { "ymm23", 60},	\
2098
  { "ymm24", 61}, { "ymm25", 62}, { "ymm26", 63}, { "ymm27", 64},	\
2099
  { "ymm28", 65}, { "ymm29", 66}, { "ymm30", 67}, { "ymm31", 68},	\
2100
  { "zmm0", 21}, { "zmm1", 22}, { "zmm2", 23}, { "zmm3", 24},		\
2101
  { "zmm4", 25}, { "zmm5", 26}, { "zmm6", 27}, { "zmm7", 28},		\
2102
  { "zmm8", 45}, { "zmm9", 46}, { "zmm10", 47}, { "zmm11", 48},		\
2103
  { "zmm12", 49}, { "zmm13", 50}, { "zmm14", 51}, { "zmm15", 52},	\
2104
  { "zmm16", 53}, { "zmm17", 54}, { "zmm18", 55}, { "zmm19", 56},	\
2105
  { "zmm20", 57}, { "zmm21", 58}, { "zmm22", 59}, { "zmm23", 60},	\
2106
  { "zmm24", 61}, { "zmm25", 62}, { "zmm26", 63}, { "zmm27", 64},	\
2107
  { "zmm28", 65}, { "zmm29", 66}, { "zmm30", 67}, { "zmm31", 68} }
2108
 
2109
/* Note we are omitting these since currently I don't know how
2110
to get gcc to use these, since they want the same but different
2111
number as al, and ax.
2112
*/
2113
 
2114
#define QI_REGISTER_NAMES \
2115
{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2116
 
2117
/* These parallel the array above, and can be used to access bits 8:15
2118
   of regs 0 through 3.  */
2119
 
2120
#define QI_HIGH_REGISTER_NAMES \
2121
{"ah", "dh", "ch", "bh", }
2122
 
2123
/* How to renumber registers for dbx and gdb.  */
2124
 
2125
#define DBX_REGISTER_NUMBER(N) \
2126
  (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2127
 
2128
extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2129
extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2130
extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2131
 
2132
extern int const x86_64_ms_sysv_extra_clobbered_registers[12];
2133
 
2134
/* Before the prologue, RA is at 0(%esp).  */
2135
#define INCOMING_RETURN_ADDR_RTX \
2136
  gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2137
 
2138
/* After the prologue, RA is at -4(AP) in the current frame.  */
2139
#define RETURN_ADDR_RTX(COUNT, FRAME)					   \
2140
  ((COUNT) == 0								   \
2141
   ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx,	   \
2142
					-UNITS_PER_WORD))		   \
2143
   : gen_rtx_MEM (Pmode, plus_constant (Pmode, FRAME, UNITS_PER_WORD)))
2144
 
2145
/* PC is dbx register 8; let's use that column for RA.  */
2146
#define DWARF_FRAME_RETURN_COLUMN 	(TARGET_64BIT ? 16 : 8)
2147
 
2148
/* Before the prologue, the top of the frame is at 4(%esp).  */
2149
#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2150
 
2151
/* Describe how we implement __builtin_eh_return.  */
2152
#define EH_RETURN_DATA_REGNO(N)	((N) <= DX_REG ? (N) : INVALID_REGNUM)
2153
#define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, CX_REG)
2154
 
2155
 
2156
/* Select a format to encode pointers in exception handling data.  CODE
2157
   is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
2158
   true if the symbol may be affected by dynamic relocations.
2159
 
2160
   ??? All x86 object file formats are capable of representing this.
2161
   After all, the relocation needed is the same as for the call insn.
2162
   Whether or not a particular assembler allows us to enter such, I
2163
   guess we'll have to see.  */
2164
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)       		\
2165
  asm_preferred_eh_data_format ((CODE), (GLOBAL))
2166
 
2167
/* This is how to output an insn to push a register on the stack.
2168
   It need not be very fast code.  */
2169
 
2170
#define ASM_OUTPUT_REG_PUSH(FILE, REGNO)  \
2171
do {									\
2172
  if (TARGET_64BIT)							\
2173
    asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n",				\
2174
		 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));	\
2175
  else									\
2176
    asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]);	\
2177
} while (0)
2178
 
2179
/* This is how to output an insn to pop a register from the stack.
2180
   It need not be very fast code.  */
2181
 
2182
#define ASM_OUTPUT_REG_POP(FILE, REGNO)  \
2183
do {									\
2184
  if (TARGET_64BIT)							\
2185
    asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n",				\
2186
		 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));	\
2187
  else									\
2188
    asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]);	\
2189
} while (0)
2190
 
2191
/* This is how to output an element of a case-vector that is absolute.  */
2192
 
2193
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
2194
  ix86_output_addr_vec_elt ((FILE), (VALUE))
2195
 
2196
/* This is how to output an element of a case-vector that is relative.  */
2197
 
2198
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2199
  ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2200
 
2201
/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true.  */
2202
 
2203
#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR)	\
2204
{						\
2205
  if ((PTR)[0] == '%' && (PTR)[1] == 'v')	\
2206
    (PTR) += TARGET_AVX ? 1 : 2;		\
2207
}
2208
 
2209
/* A C statement or statements which output an assembler instruction
2210
   opcode to the stdio stream STREAM.  The macro-operand PTR is a
2211
   variable of type `char *' which points to the opcode name in
2212
   its "internal" form--the form that is written in the machine
2213
   description.  */
2214
 
2215
#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2216
  ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2217
 
2218
/* A C statement to output to the stdio stream FILE an assembler
2219
   command to pad the location counter to a multiple of 1<
2220
   bytes if it is within MAX_SKIP bytes.  */
2221
 
2222
#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2223
#undef  ASM_OUTPUT_MAX_SKIP_PAD
2224
#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP)			\
2225
  if ((LOG) != 0)							\
2226
    {									\
2227
      if ((MAX_SKIP) == 0)						\
2228
        fprintf ((FILE), "\t.p2align %d\n", (LOG));			\
2229
      else								\
2230
        fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP));	\
2231
    }
2232
#endif
2233
 
2234
/* Write the extra assembler code needed to declare a function
2235
   properly.  */
2236
 
2237
#undef ASM_OUTPUT_FUNCTION_LABEL
2238
#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2239
  ix86_asm_output_function_label (FILE, NAME, DECL)
2240
 
2241
/* Under some conditions we need jump tables in the text section,
2242
   because the assembler cannot handle label differences between
2243
   sections.  This is the case for x86_64 on Mach-O for example.  */
2244
 
2245
#define JUMP_TABLES_IN_TEXT_SECTION \
2246
  (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2247
   || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
2248
 
2249
/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2250
   and switch back.  For x86 we do this only to save a few bytes that
2251
   would otherwise be unused in the text section.  */
2252
#define CRT_MKSTR2(VAL) #VAL
2253
#define CRT_MKSTR(x) CRT_MKSTR2(x)
2254
 
2255
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)		\
2256
   asm (SECTION_OP "\n\t"					\
2257
	"call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n"	\
2258
	TEXT_SECTION_ASM_OP);
2259
 
2260
/* Default threshold for putting data in large sections
2261
   with x86-64 medium memory model */
2262
#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
2263
 
2264
/* Which processor to tune code generation for.  These must be in sync
2265
   with processor_target_table in i386.c.  */
2266
 
2267
enum processor_type
2268
{
2269
  PROCESSOR_GENERIC = 0,
2270
  PROCESSOR_I386,			/* 80386 */
2271
  PROCESSOR_I486,			/* 80486DX, 80486SX, 80486DX[24] */
2272
  PROCESSOR_PENTIUM,
2273
  PROCESSOR_PENTIUMPRO,
2274
  PROCESSOR_PENTIUM4,
2275
  PROCESSOR_NOCONA,
2276
  PROCESSOR_CORE2,
2277
  PROCESSOR_NEHALEM,
2278
  PROCESSOR_SANDYBRIDGE,
2279
  PROCESSOR_HASWELL,
2280
  PROCESSOR_BONNELL,
2281
  PROCESSOR_SILVERMONT,
2282
  PROCESSOR_KNL,
2283
  PROCESSOR_INTEL,
2284
  PROCESSOR_GEODE,
2285
  PROCESSOR_K6,
2286
  PROCESSOR_ATHLON,
2287
  PROCESSOR_K8,
2288
  PROCESSOR_AMDFAM10,
2289
  PROCESSOR_BDVER1,
2290
  PROCESSOR_BDVER2,
2291
  PROCESSOR_BDVER3,
2292
  PROCESSOR_BDVER4,
2293
  PROCESSOR_BTVER1,
2294
  PROCESSOR_BTVER2,
2295
  PROCESSOR_max
2296
};
2297
 
2298
extern enum processor_type ix86_tune;
2299
extern enum processor_type ix86_arch;
2300
 
2301
/* Size of the RED_ZONE area.  */
2302
#define RED_ZONE_SIZE 128
2303
/* Reserved area of the red zone for temporaries.  */
2304
#define RED_ZONE_RESERVE 8
2305
 
2306
extern unsigned int ix86_preferred_stack_boundary;
2307
extern unsigned int ix86_incoming_stack_boundary;
2308
 
2309
/* Smallest class containing REGNO.  */
2310
extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2311
 
2312
enum ix86_fpcmp_strategy {
2313
  IX86_FPCMP_SAHF,
2314
  IX86_FPCMP_COMI,
2315
  IX86_FPCMP_ARITH
2316
};
2317
 
2318
/* To properly truncate FP values into integers, we need to set i387 control
2319
   word.  We can't emit proper mode switching code before reload, as spills
2320
   generated by reload may truncate values incorrectly, but we still can avoid
2321
   redundant computation of new control word by the mode switching pass.
2322
   The fldcw instructions are still emitted redundantly, but this is probably
2323
   not going to be noticeable problem, as most CPUs do have fast path for
2324
   the sequence.
2325
 
2326
   The machinery is to emit simple truncation instructions and split them
2327
   before reload to instructions having USEs of two memory locations that
2328
   are filled by this code to old and new control word.
2329
 
2330
   Post-reload pass may be later used to eliminate the redundant fildcw if
2331
   needed.  */
2332
 
2333
enum ix86_entity
2334
{
2335
  AVX_U128 = 0,
2336
  I387_TRUNC,
2337
  I387_FLOOR,
2338
  I387_CEIL,
2339
  I387_MASK_PM,
2340
  MAX_386_ENTITIES
2341
};
2342
 
2343
enum ix86_stack_slot
2344
{
2345
  SLOT_TEMP = 0,
2346
  SLOT_CW_STORED,
2347
  SLOT_CW_TRUNC,
2348
  SLOT_CW_FLOOR,
2349
  SLOT_CW_CEIL,
2350
  SLOT_CW_MASK_PM,
2351
  MAX_386_STACK_LOCALS
2352
};
2353
 
2354
enum avx_u128_state
2355
{
2356
  AVX_U128_CLEAN,
2357
  AVX_U128_DIRTY,
2358
  AVX_U128_ANY
2359
};
2360
 
2361
/* Define this macro if the port needs extra instructions inserted
2362
   for mode switching in an optimizing compilation.  */
2363
 
2364
#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2365
   ix86_optimize_mode_switching[(ENTITY)]
2366
 
2367
/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2368
   initializer for an array of integers.  Each initializer element N
2369
   refers to an entity that needs mode switching, and specifies the
2370
   number of different modes that might need to be set for this
2371
   entity.  The position of the initializer in the initializer -
2372
   starting counting at zero - determines the integer that is used to
2373
   refer to the mode-switched entity in question.  */
2374
 
2375
#define NUM_MODES_FOR_MODE_SWITCHING \
2376
  { AVX_U128_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2377
 
2378
 
2379
/* Avoid renaming of stack registers, as doing so in combination with
2380
   scheduling just increases amount of live registers at time and in
2381
   the turn amount of fxch instructions needed.
2382
 
2383
   ??? Maybe Pentium chips benefits from renaming, someone can try....
2384
 
2385
   Don't rename evex to non-evex sse registers.  */
2386
 
2387
#define HARD_REGNO_RENAME_OK(SRC, TARGET) (!STACK_REGNO_P (SRC) &&	 \
2388
					   (EXT_REX_SSE_REGNO_P (SRC) == \
2389
					    EXT_REX_SSE_REGNO_P (TARGET)))
2390
 
2391
 
2392
#define FASTCALL_PREFIX '@'
2393
 
2394
/* Machine specific frame tracking during prologue/epilogue generation.  */
2395
 
2396
#ifndef USED_FOR_TARGET
2397
struct GTY(()) machine_frame_state
2398
{
2399
  /* This pair tracks the currently active CFA as reg+offset.  When reg
2400
     is drap_reg, we don't bother trying to record here the real CFA when
2401
     it might really be a DW_CFA_def_cfa_expression.  */
2402
  rtx cfa_reg;
2403
  HOST_WIDE_INT cfa_offset;
2404
 
2405
  /* The current offset (canonically from the CFA) of ESP and EBP.
2406
     When stack frame re-alignment is active, these may not be relative
2407
     to the CFA.  However, in all cases they are relative to the offsets
2408
     of the saved registers stored in ix86_frame.  */
2409
  HOST_WIDE_INT sp_offset;
2410
  HOST_WIDE_INT fp_offset;
2411
 
2412
  /* The size of the red-zone that may be assumed for the purposes of
2413
     eliding register restore notes in the epilogue.  This may be zero
2414
     if no red-zone is in effect, or may be reduced from the real
2415
     red-zone value by a maximum runtime stack re-alignment value.  */
2416
  int red_zone_offset;
2417
 
2418
  /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2419
     value within the frame.  If false then the offset above should be
2420
     ignored.  Note that DRAP, if valid, *always* points to the CFA and
2421
     thus has an offset of zero.  */
2422
  BOOL_BITFIELD sp_valid : 1;
2423
  BOOL_BITFIELD fp_valid : 1;
2424
  BOOL_BITFIELD drap_valid : 1;
2425
 
2426
  /* Indicate whether the local stack frame has been re-aligned.  When
2427
     set, the SP/FP offsets above are relative to the aligned frame
2428
     and not the CFA.  */
2429
  BOOL_BITFIELD realigned : 1;
2430
};
2431
 
2432
/* Private to winnt.c.  */
2433
struct seh_frame_state;
2434
 
2435
struct GTY(()) machine_function {
2436
  struct stack_local_entry *stack_locals;
2437
  const char *some_ld_name;
2438
  int varargs_gpr_size;
2439
  int varargs_fpr_size;
2440
  int optimize_mode_switching[MAX_386_ENTITIES];
2441
 
2442
  /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2443
     has been computed for.  */
2444
  int use_fast_prologue_epilogue_nregs;
2445
 
2446
  /* For -fsplit-stack support: A stack local which holds a pointer to
2447
     the stack arguments for a function with a variable number of
2448
     arguments.  This is set at the start of the function and is used
2449
     to initialize the overflow_arg_area field of the va_list
2450
     structure.  */
2451
  rtx split_stack_varargs_pointer;
2452
 
2453
  /* This value is used for amd64 targets and specifies the current abi
2454
     to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi.  */
2455
  ENUM_BITFIELD(calling_abi) call_abi : 8;
2456
 
2457
  /* Nonzero if the function accesses a previous frame.  */
2458
  BOOL_BITFIELD accesses_prev_frame : 1;
2459
 
2460
  /* Nonzero if the function requires a CLD in the prologue.  */
2461
  BOOL_BITFIELD needs_cld : 1;
2462
 
2463
  /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2464
     expander to determine the style used.  */
2465
  BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2466
 
2467
  /* If true, the current function needs the default PIC register, not
2468
     an alternate register (on x86) and must not use the red zone (on
2469
     x86_64), even if it's a leaf function.  We don't want the
2470
     function to be regarded as non-leaf because TLS calls need not
2471
     affect register allocation.  This flag is set when a TLS call
2472
     instruction is expanded within a function, and never reset, even
2473
     if all such instructions are optimized away.  Use the
2474
     ix86_current_function_calls_tls_descriptor macro for a better
2475
     approximation.  */
2476
  BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2477
 
2478
  /* If true, the current function has a STATIC_CHAIN is placed on the
2479
     stack below the return address.  */
2480
  BOOL_BITFIELD static_chain_on_stack : 1;
2481
 
2482
  /* If true, it is safe to not save/restore DRAP register.  */
2483
  BOOL_BITFIELD no_drap_save_restore : 1;
2484
 
2485
  /* During prologue/epilogue generation, the current frame state.
2486
     Otherwise, the frame state at the end of the prologue.  */
2487
  struct machine_frame_state fs;
2488
 
2489
  /* During SEH output, this is non-null.  */
2490
  struct seh_frame_state * GTY((skip(""))) seh;
2491
};
2492
#endif
2493
 
2494
#define ix86_stack_locals (cfun->machine->stack_locals)
2495
#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2496
#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
2497
#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2498
#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
2499
#define ix86_tls_descriptor_calls_expanded_in_cfun \
2500
  (cfun->machine->tls_descriptor_call_expanded_p)
2501
/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2502
   calls are optimized away, we try to detect cases in which it was
2503
   optimized away.  Since such instructions (use (reg REG_SP)), we can
2504
   verify whether there's any such instruction live by testing that
2505
   REG_SP is live.  */
2506
#define ix86_current_function_calls_tls_descriptor \
2507
  (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
2508
#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2509
 
2510
/* Control behavior of x86_file_start.  */
2511
#define X86_FILE_START_VERSION_DIRECTIVE false
2512
#define X86_FILE_START_FLTUSED false
2513
 
2514
/* Flag to mark data that is in the large address area.  */
2515
#define SYMBOL_FLAG_FAR_ADDR		(SYMBOL_FLAG_MACH_DEP << 0)
2516
#define SYMBOL_REF_FAR_ADDR_P(X)	\
2517
	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2518
 
2519
/* Flags to mark dllimport/dllexport.  Used by PE ports, but handy to
2520
   have defined always, to avoid ifdefing.  */
2521
#define SYMBOL_FLAG_DLLIMPORT		(SYMBOL_FLAG_MACH_DEP << 1)
2522
#define SYMBOL_REF_DLLIMPORT_P(X) \
2523
	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2524
 
2525
#define SYMBOL_FLAG_DLLEXPORT		(SYMBOL_FLAG_MACH_DEP << 2)
2526
#define SYMBOL_REF_DLLEXPORT_P(X) \
2527
	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2528
 
2529
#define SYMBOL_FLAG_STUBVAR	(SYMBOL_FLAG_MACH_DEP << 4)
2530
#define SYMBOL_REF_STUBVAR_P(X) \
2531
	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2532
 
2533
extern void debug_ready_dispatch (void);
2534
extern void debug_dispatch_window (int);
2535
 
2536
/* The value at zero is only defined for the BMI instructions
2537
   LZCNT and TZCNT, not the BSR/BSF insns in the original isa.  */
2538
#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2539
	((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 1 : 0)
2540
#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2541
	((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 1 : 0)
2542
 
2543
 
2544
/* Flags returned by ix86_get_callcvt ().  */
2545
#define IX86_CALLCVT_CDECL	0x1
2546
#define IX86_CALLCVT_STDCALL	0x2
2547
#define IX86_CALLCVT_FASTCALL	0x4
2548
#define IX86_CALLCVT_THISCALL	0x8
2549
#define IX86_CALLCVT_REGPARM	0x10
2550
#define IX86_CALLCVT_SSEREGPARM	0x20
2551
 
2552
#define IX86_BASE_CALLCVT(FLAGS) \
2553
	((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2554
		    | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2555
 
2556
#define RECIP_MASK_NONE		0x00
2557
#define RECIP_MASK_DIV		0x01
2558
#define RECIP_MASK_SQRT		0x02
2559
#define RECIP_MASK_VEC_DIV	0x04
2560
#define RECIP_MASK_VEC_SQRT	0x08
2561
#define RECIP_MASK_ALL	(RECIP_MASK_DIV | RECIP_MASK_SQRT \
2562
			 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2563
#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2564
 
2565
#define TARGET_RECIP_DIV	((recip_mask & RECIP_MASK_DIV) != 0)
2566
#define TARGET_RECIP_SQRT	((recip_mask & RECIP_MASK_SQRT) != 0)
2567
#define TARGET_RECIP_VEC_DIV	((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2568
#define TARGET_RECIP_VEC_SQRT	((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2569
 
2570
#define IX86_HLE_ACQUIRE (1 << 16)
2571
#define IX86_HLE_RELEASE (1 << 17)
2572
 
2573
/* For switching between functions with different target attributes.  */
2574
#define SWITCHABLE_TARGET 1
2575
 
2576
/*
2577
Local variables:
2578
version-control: t
2579
End:
2580
*/