Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
5191 serge 1
/* ppc.h -- Header file for PowerPC opcode table
2
   Copyright 1994, 1995, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
3
   2007, 2008, 2009, 2010, 2012 Free Software Foundation, Inc.
4
   Written by Ian Lance Taylor, Cygnus Support
5
 
6
   This file is part of GDB, GAS, and the GNU binutils.
7
 
8
   GDB, GAS, and the GNU binutils are free software; you can redistribute
9
   them and/or modify them under the terms of the GNU General Public
10
   License as published by the Free Software Foundation; either version 3,
11
   or (at your option) any later version.
12
 
13
   GDB, GAS, and the GNU binutils are distributed in the hope that they
14
   will be useful, but WITHOUT ANY WARRANTY; without even the implied
15
   warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
16
   the GNU General Public License for more details.
17
 
18
   You should have received a copy of the GNU General Public License
19
   along with this file; see the file COPYING3.  If not, write to the Free
20
   Software Foundation, 51 Franklin Street - Fifth Floor, Boston,
21
   MA 02110-1301, USA.  */
22
 
23
#ifndef PPC_H
24
#define PPC_H
25
 
26
#include "bfd_stdint.h"
27
 
28
typedef uint64_t ppc_cpu_t;
29
 
30
/* The opcode table is an array of struct powerpc_opcode.  */
31
 
32
struct powerpc_opcode
33
{
34
  /* The opcode name.  */
35
  const char *name;
36
 
37
  /* The opcode itself.  Those bits which will be filled in with
38
     operands are zeroes.  */
39
  unsigned long opcode;
40
 
41
  /* The opcode mask.  This is used by the disassembler.  This is a
42
     mask containing ones indicating those bits which must match the
43
     opcode field, and zeroes indicating those bits which need not
44
     match (and are presumably filled in by operands).  */
45
  unsigned long mask;
46
 
47
  /* One bit flags for the opcode.  These are used to indicate which
48
     specific processors support the instructions.  The defined values
49
     are listed below.  */
50
  ppc_cpu_t flags;
51
 
52
  /* One bit flags for the opcode.  These are used to indicate which
53
     specific processors no longer support the instructions.  The defined
54
     values are listed below.  */
55
  ppc_cpu_t deprecated;
56
 
57
  /* An array of operand codes.  Each code is an index into the
58
     operand table.  They appear in the order which the operands must
59
     appear in assembly code, and are terminated by a zero.  */
60
  unsigned char operands[8];
61
};
62
 
63
/* The table itself is sorted by major opcode number, and is otherwise
64
   in the order in which the disassembler should consider
65
   instructions.  */
66
extern const struct powerpc_opcode powerpc_opcodes[];
67
extern const int powerpc_num_opcodes;
68
extern const struct powerpc_opcode vle_opcodes[];
69
extern const int vle_num_opcodes;
70
 
71
/* Values defined for the flags field of a struct powerpc_opcode.  */
72
 
73
/* Opcode is defined for the PowerPC architecture.  */
74
#define PPC_OPCODE_PPC			 1
75
 
76
/* Opcode is defined for the POWER (RS/6000) architecture.  */
77
#define PPC_OPCODE_POWER		 2
78
 
79
/* Opcode is defined for the POWER2 (Rios 2) architecture.  */
80
#define PPC_OPCODE_POWER2		 4
81
 
82
/* Opcode is supported by the Motorola PowerPC 601 processor.  The 601
83
   is assumed to support all PowerPC (PPC_OPCODE_PPC) instructions,
84
   but it also supports many additional POWER instructions.  */
85
#define PPC_OPCODE_601			 8
86
 
87
/* Opcode is supported in both the Power and PowerPC architectures
88
   (ie, compiler's -mcpu=common or assembler's -mcom).  More than just
89
   the intersection of PPC_OPCODE_PPC with the union of PPC_OPCODE_POWER
90
   and PPC_OPCODE_POWER2 because many instructions changed mnemonics
91
   between POWER and POWERPC.  */
92
#define PPC_OPCODE_COMMON	      0x10
93
 
94
/* Opcode is supported for any Power or PowerPC platform (this is
95
   for the assembler's -many option, and it eliminates duplicates).  */
96
#define PPC_OPCODE_ANY		      0x20
97
 
98
/* Opcode is only defined on 64 bit architectures.  */
99
#define PPC_OPCODE_64		      0x40
100
 
101
/* Opcode is supported as part of the 64-bit bridge.  */
102
#define PPC_OPCODE_64_BRIDGE	      0x80
103
 
104
/* Opcode is supported by Altivec Vector Unit */
105
#define PPC_OPCODE_ALTIVEC	     0x100
106
 
107
/* Opcode is supported by PowerPC 403 processor.  */
108
#define PPC_OPCODE_403		     0x200
109
 
110
/* Opcode is supported by PowerPC BookE processor.  */
111
#define PPC_OPCODE_BOOKE	     0x400
112
 
113
/* Opcode is supported by PowerPC 440 processor.  */
114
#define PPC_OPCODE_440		     0x800
115
 
116
/* Opcode is only supported by Power4 architecture.  */
117
#define PPC_OPCODE_POWER4	    0x1000
118
 
119
/* Opcode is only supported by Power7 architecture.  */
120
#define PPC_OPCODE_POWER7	    0x2000
121
 
122
/* Opcode is only supported by e500x2 Core.  */
123
#define PPC_OPCODE_SPE		    0x4000
124
 
125
/* Opcode is supported by e500x2 Integer select APU.  */
126
#define PPC_OPCODE_ISEL		    0x8000
127
 
128
/* Opcode is an e500 SPE floating point instruction.  */
129
#define PPC_OPCODE_EFS		   0x10000
130
 
131
/* Opcode is supported by branch locking APU.  */
132
#define PPC_OPCODE_BRLOCK	   0x20000
133
 
134
/* Opcode is supported by performance monitor APU.  */
135
#define PPC_OPCODE_PMR		   0x40000
136
 
137
/* Opcode is supported by cache locking APU.  */
138
#define PPC_OPCODE_CACHELCK	   0x80000
139
 
140
/* Opcode is supported by machine check APU.  */
141
#define PPC_OPCODE_RFMCI	  0x100000
142
 
143
/* Opcode is only supported by Power5 architecture.  */
144
#define PPC_OPCODE_POWER5	  0x200000
145
 
146
/* Opcode is supported by PowerPC e300 family.  */
147
#define PPC_OPCODE_E300           0x400000
148
 
149
/* Opcode is only supported by Power6 architecture.  */
150
#define PPC_OPCODE_POWER6	  0x800000
151
 
152
/* Opcode is only supported by PowerPC Cell family.  */
153
#define PPC_OPCODE_CELL		 0x1000000
154
 
155
/* Opcode is supported by CPUs with paired singles support.  */
156
#define PPC_OPCODE_PPCPS	 0x2000000
157
 
158
/* Opcode is supported by Power E500MC */
159
#define PPC_OPCODE_E500MC        0x4000000
160
 
161
/* Opcode is supported by PowerPC 405 processor.  */
162
#define PPC_OPCODE_405		 0x8000000
163
 
164
/* Opcode is supported by Vector-Scalar (VSX) Unit */
165
#define PPC_OPCODE_VSX		0x10000000
166
 
167
/* Opcode is supported by A2.  */
168
#define PPC_OPCODE_A2	 	0x20000000
169
 
170
/* Opcode is supported by PowerPC 476 processor.  */
171
#define PPC_OPCODE_476		0x40000000
172
 
173
/* Opcode is supported by AppliedMicro Titan core */
174
#define PPC_OPCODE_TITAN        0x80000000
175
 
176
/* Opcode which is supported by the e500 family */
177
#define PPC_OPCODE_E500	       0x100000000ull
178
 
179
/* Opcode is supported by Extended Altivec Vector Unit */
180
#define PPC_OPCODE_ALTIVEC2    0x200000000ull
181
 
182
/* Opcode is supported by Power E6500 */
183
#define PPC_OPCODE_E6500       0x400000000ull
184
 
185
/* Opcode is supported by Thread management APU */
186
#define PPC_OPCODE_TMR         0x800000000ull
187
 
188
/* Opcode which is supported by the VLE extension.  */
189
#define PPC_OPCODE_VLE	      0x1000000000ull
190
 
191
/* Opcode is only supported by Power8 architecture.  */
192
#define PPC_OPCODE_POWER8     0x2000000000ull
193
 
194
/* Opcode which is supported by the Hardware Transactional Memory extension.  */
195
/* Currently, this is the same as the POWER8 mask.  If another cpu comes out
196
   that isn't a superset of POWER8, we can define this to its own mask.  */
197
#define PPC_OPCODE_HTM        PPC_OPCODE_POWER8
198
 
199
/* A macro to extract the major opcode from an instruction.  */
200
#define PPC_OP(i) (((i) >> 26) & 0x3f)
201
 
202
/* A macro to determine if the instruction is a 2-byte VLE insn.  */
203
#define PPC_OP_SE_VLE(m) ((m) <= 0xffff)
204
 
205
/* A macro to extract the major opcode from a VLE instruction.  */
206
#define VLE_OP(i,m) (((i) >> ((m) <= 0xffff ? 10 : 26)) & 0x3f)
207
 
208
/* A macro to convert a VLE opcode to a VLE opcode segment.  */
209
#define VLE_OP_TO_SEG(i) ((i) >> 1)
210
 
211
/* The operands table is an array of struct powerpc_operand.  */
212
 
213
struct powerpc_operand
214
{
215
  /* A bitmask of bits in the operand.  */
216
  unsigned int bitm;
217
 
218
  /* The shift operation to be applied to the operand.  No shift
219
     is made if this is zero.  For positive values, the operand
220
     is shifted left by SHIFT.  For negative values, the operand
221
     is shifted right by -SHIFT.  Use PPC_OPSHIFT_INV to indicate
222
     that BITM and SHIFT cannot be used to determine where the
223
     operand goes in the insn.  */
224
  int shift;
225
 
226
  /* Insertion function.  This is used by the assembler.  To insert an
227
     operand value into an instruction, check this field.
228
 
229
     If it is NULL, execute
230
	 if (o->shift >= 0)
231
	   i |= (op & o->bitm) << o->shift;
232
	 else
233
	   i |= (op & o->bitm) >> -o->shift;
234
     (i is the instruction which we are filling in, o is a pointer to
235
     this structure, and op is the operand value).
236
 
237
     If this field is not NULL, then simply call it with the
238
     instruction and the operand value.  It will return the new value
239
     of the instruction.  If the ERRMSG argument is not NULL, then if
240
     the operand value is illegal, *ERRMSG will be set to a warning
241
     string (the operand will be inserted in any case).  If the
242
     operand value is legal, *ERRMSG will be unchanged (most operands
243
     can accept any value).  */
244
  unsigned long (*insert)
245
    (unsigned long instruction, long op, ppc_cpu_t dialect, const char **errmsg);
246
 
247
  /* Extraction function.  This is used by the disassembler.  To
248
     extract this operand type from an instruction, check this field.
249
 
250
     If it is NULL, compute
251
	 if (o->shift >= 0)
252
	   op = (i >> o->shift) & o->bitm;
253
	 else
254
	   op = (i << -o->shift) & o->bitm;
255
	 if ((o->flags & PPC_OPERAND_SIGNED) != 0)
256
	   sign_extend (op);
257
     (i is the instruction, o is a pointer to this structure, and op
258
     is the result).
259
 
260
     If this field is not NULL, then simply call it with the
261
     instruction value.  It will return the value of the operand.  If
262
     the INVALID argument is not NULL, *INVALID will be set to
263
     non-zero if this operand type can not actually be extracted from
264
     this operand (i.e., the instruction does not match).  If the
265
     operand is valid, *INVALID will not be changed.  */
266
  long (*extract) (unsigned long instruction, ppc_cpu_t dialect, int *invalid);
267
 
268
  /* One bit syntax flags.  */
269
  unsigned long flags;
270
};
271
 
272
/* Elements in the table are retrieved by indexing with values from
273
   the operands field of the powerpc_opcodes table.  */
274
 
275
extern const struct powerpc_operand powerpc_operands[];
276
extern const unsigned int num_powerpc_operands;
277
 
278
/* Use with the shift field of a struct powerpc_operand to indicate
279
     that BITM and SHIFT cannot be used to determine where the operand
280
     goes in the insn.  */
281
#define PPC_OPSHIFT_INV (-1 << 31)
282
 
283
/* Values defined for the flags field of a struct powerpc_operand.  */
284
 
285
/* This operand takes signed values.  */
286
#define PPC_OPERAND_SIGNED (0x1)
287
 
288
/* This operand takes signed values, but also accepts a full positive
289
   range of values when running in 32 bit mode.  That is, if bits is
290
   16, it takes any value from -0x8000 to 0xffff.  In 64 bit mode,
291
   this flag is ignored.  */
292
#define PPC_OPERAND_SIGNOPT (0x2)
293
 
294
/* This operand does not actually exist in the assembler input.  This
295
   is used to support extended mnemonics such as mr, for which two
296
   operands fields are identical.  The assembler should call the
297
   insert function with any op value.  The disassembler should call
298
   the extract function, ignore the return value, and check the value
299
   placed in the valid argument.  */
300
#define PPC_OPERAND_FAKE (0x4)
301
 
302
/* The next operand should be wrapped in parentheses rather than
303
   separated from this one by a comma.  This is used for the load and
304
   store instructions which want their operands to look like
305
       reg,displacement(reg)
306
   */
307
#define PPC_OPERAND_PARENS (0x8)
308
 
309
/* This operand may use the symbolic names for the CR fields, which
310
   are
311
       lt  0	gt  1	eq  2	so  3	un  3
312
       cr0 0	cr1 1	cr2 2	cr3 3
313
       cr4 4	cr5 5	cr6 6	cr7 7
314
   These may be combined arithmetically, as in cr2*4+gt.  These are
315
   only supported on the PowerPC, not the POWER.  */
316
#define PPC_OPERAND_CR_BIT (0x10)
317
 
318
/* This operand names a register.  The disassembler uses this to print
319
   register names with a leading 'r'.  */
320
#define PPC_OPERAND_GPR (0x20)
321
 
322
/* Like PPC_OPERAND_GPR, but don't print a leading 'r' for r0.  */
323
#define PPC_OPERAND_GPR_0 (0x40)
324
 
325
/* This operand names a floating point register.  The disassembler
326
   prints these with a leading 'f'.  */
327
#define PPC_OPERAND_FPR (0x80)
328
 
329
/* This operand is a relative branch displacement.  The disassembler
330
   prints these symbolically if possible.  */
331
#define PPC_OPERAND_RELATIVE (0x100)
332
 
333
/* This operand is an absolute branch address.  The disassembler
334
   prints these symbolically if possible.  */
335
#define PPC_OPERAND_ABSOLUTE (0x200)
336
 
337
/* This operand is optional, and is zero if omitted.  This is used for
338
   example, in the optional BF field in the comparison instructions.  The
339
   assembler must count the number of operands remaining on the line,
340
   and the number of operands remaining for the opcode, and decide
341
   whether this operand is present or not.  The disassembler should
342
   print this operand out only if it is not zero.  */
343
#define PPC_OPERAND_OPTIONAL (0x400)
344
 
345
/* This flag is only used with PPC_OPERAND_OPTIONAL.  If this operand
346
   is omitted, then for the next operand use this operand value plus
347
   1, ignoring the next operand field for the opcode.  This wretched
348
   hack is needed because the Power rotate instructions can take
349
   either 4 or 5 operands.  The disassembler should print this operand
350
   out regardless of the PPC_OPERAND_OPTIONAL field.  */
351
#define PPC_OPERAND_NEXT (0x800)
352
 
353
/* This operand should be regarded as a negative number for the
354
   purposes of overflow checking (i.e., the normal most negative
355
   number is disallowed and one more than the normal most positive
356
   number is allowed).  This flag will only be set for a signed
357
   operand.  */
358
#define PPC_OPERAND_NEGATIVE (0x1000)
359
 
360
/* This operand names a vector unit register.  The disassembler
361
   prints these with a leading 'v'.  */
362
#define PPC_OPERAND_VR (0x2000)
363
 
364
/* This operand is for the DS field in a DS form instruction.  */
365
#define PPC_OPERAND_DS (0x4000)
366
 
367
/* This operand is for the DQ field in a DQ form instruction.  */
368
#define PPC_OPERAND_DQ (0x8000)
369
 
370
/* Valid range of operand is 0..n rather than 0..n-1.  */
371
#define PPC_OPERAND_PLUS1 (0x10000)
372
 
373
/* Xilinx APU and FSL related operands */
374
#define PPC_OPERAND_FSL (0x20000)
375
#define PPC_OPERAND_FCR (0x40000)
376
#define PPC_OPERAND_UDI (0x80000)
377
 
378
/* This operand names a vector-scalar unit register.  The disassembler
379
   prints these with a leading 'vs'.  */
380
#define PPC_OPERAND_VSR (0x100000)
381
 
382
/* This is a CR FIELD that does not use symbolic names.  */
383
#define PPC_OPERAND_CR_REG (0x200000)
384
 
385
/* The POWER and PowerPC assemblers use a few macros.  We keep them
386
   with the operands table for simplicity.  The macro table is an
387
   array of struct powerpc_macro.  */
388
 
389
struct powerpc_macro
390
{
391
  /* The macro name.  */
392
  const char *name;
393
 
394
  /* The number of operands the macro takes.  */
395
  unsigned int operands;
396
 
397
  /* One bit flags for the opcode.  These are used to indicate which
398
     specific processors support the instructions.  The values are the
399
     same as those for the struct powerpc_opcode flags field.  */
400
  ppc_cpu_t flags;
401
 
402
  /* A format string to turn the macro into a normal instruction.
403
     Each %N in the string is replaced with operand number N (zero
404
     based).  */
405
  const char *format;
406
};
407
 
408
extern const struct powerpc_macro powerpc_macros[];
409
extern const int powerpc_num_macros;
410
 
411
extern ppc_cpu_t ppc_parse_cpu (ppc_cpu_t, ppc_cpu_t *, const char *);
412
 
413
#endif /* PPC_H */