Subversion Repositories Kolibri OS

Rev

Rev 5197 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
5197 serge 1
/* linker.c -- BFD linker routines
6324 serge 2
   Copyright (C) 1993-2015 Free Software Foundation, Inc.
5197 serge 3
   Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
4
 
5
   This file is part of BFD, the Binary File Descriptor library.
6
 
7
   This program is free software; you can redistribute it and/or modify
8
   it under the terms of the GNU General Public License as published by
9
   the Free Software Foundation; either version 3 of the License, or
10
   (at your option) any later version.
11
 
12
   This program is distributed in the hope that it will be useful,
13
   but WITHOUT ANY WARRANTY; without even the implied warranty of
14
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
   GNU General Public License for more details.
16
 
17
   You should have received a copy of the GNU General Public License
18
   along with this program; if not, write to the Free Software
19
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20
   MA 02110-1301, USA.  */
21
 
22
#include "sysdep.h"
23
#include "bfd.h"
24
#include "libbfd.h"
25
#include "bfdlink.h"
26
#include "genlink.h"
27
 
28
/*
29
SECTION
30
	Linker Functions
31
 
32
@cindex Linker
33
	The linker uses three special entry points in the BFD target
34
	vector.  It is not necessary to write special routines for
35
	these entry points when creating a new BFD back end, since
36
	generic versions are provided.  However, writing them can
37
	speed up linking and make it use significantly less runtime
38
	memory.
39
 
40
	The first routine creates a hash table used by the other
41
	routines.  The second routine adds the symbols from an object
42
	file to the hash table.  The third routine takes all the
43
	object files and links them together to create the output
44
	file.  These routines are designed so that the linker proper
45
	does not need to know anything about the symbols in the object
46
	files that it is linking.  The linker merely arranges the
47
	sections as directed by the linker script and lets BFD handle
48
	the details of symbols and relocs.
49
 
50
	The second routine and third routines are passed a pointer to
51
	a <> structure (defined in
52
	<>) which holds information relevant to the link,
53
	including the linker hash table (which was created by the
54
	first routine) and a set of callback functions to the linker
55
	proper.
56
 
57
	The generic linker routines are in <>, and use the
58
	header file <>.  As of this writing, the only back
59
	ends which have implemented versions of these routines are
60
	a.out (in <>) and ECOFF (in <>).  The a.out
61
	routines are used as examples throughout this section.
62
 
63
@menu
64
@* Creating a Linker Hash Table::
65
@* Adding Symbols to the Hash Table::
66
@* Performing the Final Link::
67
@end menu
68
 
69
INODE
70
Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71
SUBSECTION
72
	Creating a linker hash table
73
 
74
@cindex _bfd_link_hash_table_create in target vector
75
@cindex target vector (_bfd_link_hash_table_create)
76
	The linker routines must create a hash table, which must be
77
	derived from <> described in
78
	<>.  @xref{Hash Tables}, for information on how to
79
	create a derived hash table.  This entry point is called using
80
	the target vector of the linker output file.
81
 
82
	The <<_bfd_link_hash_table_create>> entry point must allocate
83
	and initialize an instance of the desired hash table.  If the
84
	back end does not require any additional information to be
85
	stored with the entries in the hash table, the entry point may
86
	simply create a <>.  Most likely,
87
	however, some additional information will be needed.
88
 
89
	For example, with each entry in the hash table the a.out
90
	linker keeps the index the symbol has in the final output file
91
	(this index number is used so that when doing a relocatable
92
	link the symbol index used in the output file can be quickly
93
	filled in when copying over a reloc).  The a.out linker code
94
	defines the required structures and functions for a hash table
95
	derived from <>.  The a.out linker
96
	hash table is created by the function
97
	<>; it simply allocates
98
	space for the hash table, initializes it, and returns a
99
	pointer to it.
100
 
101
	When writing the linker routines for a new back end, you will
102
	generally not know exactly which fields will be required until
103
	you have finished.  You should simply create a new hash table
104
	which defines no additional fields, and then simply add fields
105
	as they become necessary.
106
 
107
INODE
108
Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109
SUBSECTION
110
	Adding symbols to the hash table
111
 
112
@cindex _bfd_link_add_symbols in target vector
113
@cindex target vector (_bfd_link_add_symbols)
114
	The linker proper will call the <<_bfd_link_add_symbols>>
115
	entry point for each object file or archive which is to be
116
	linked (typically these are the files named on the command
117
	line, but some may also come from the linker script).  The
118
	entry point is responsible for examining the file.  For an
119
	object file, BFD must add any relevant symbol information to
120
	the hash table.  For an archive, BFD must determine which
121
	elements of the archive should be used and adding them to the
122
	link.
123
 
124
	The a.out version of this entry point is
125
	<>.
126
 
127
@menu
128
@* Differing file formats::
129
@* Adding symbols from an object file::
130
@* Adding symbols from an archive::
131
@end menu
132
 
133
INODE
134
Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135
SUBSUBSECTION
136
	Differing file formats
137
 
138
	Normally all the files involved in a link will be of the same
139
	format, but it is also possible to link together different
140
	format object files, and the back end must support that.  The
141
	<<_bfd_link_add_symbols>> entry point is called via the target
142
	vector of the file to be added.  This has an important
143
	consequence: the function may not assume that the hash table
144
	is the type created by the corresponding
145
	<<_bfd_link_hash_table_create>> vector.  All the
146
	<<_bfd_link_add_symbols>> function can assume about the hash
147
	table is that it is derived from <
148
	bfd_link_hash_table>>.
149
 
150
	Sometimes the <<_bfd_link_add_symbols>> function must store
151
	some information in the hash table entry to be used by the
152
	<<_bfd_final_link>> function.  In such a case the output bfd
153
	xvec must be checked to make sure that the hash table was
154
	created by an object file of the same format.
155
 
156
	The <<_bfd_final_link>> routine must be prepared to handle a
157
	hash entry without any extra information added by the
158
	<<_bfd_link_add_symbols>> function.  A hash entry without
159
	extra information will also occur when the linker script
160
	directs the linker to create a symbol.  Note that, regardless
161
	of how a hash table entry is added, all the fields will be
162
	initialized to some sort of null value by the hash table entry
163
	initialization function.
164
 
165
	See <> for an example of how to
166
	check the output bfd before saving information (in this
167
	case, the ECOFF external symbol debugging information) in a
168
	hash table entry.
169
 
170
INODE
171
Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172
SUBSUBSECTION
173
	Adding symbols from an object file
174
 
175
	When the <<_bfd_link_add_symbols>> routine is passed an object
176
	file, it must add all externally visible symbols in that
177
	object file to the hash table.  The actual work of adding the
178
	symbol to the hash table is normally handled by the function
179
	<<_bfd_generic_link_add_one_symbol>>.  The
180
	<<_bfd_link_add_symbols>> routine is responsible for reading
181
	all the symbols from the object file and passing the correct
182
	information to <<_bfd_generic_link_add_one_symbol>>.
183
 
184
	The <<_bfd_link_add_symbols>> routine should not use
185
	<> to read the symbols.  The point of
186
	providing this routine is to avoid the overhead of converting
187
	the symbols into generic <> structures.
188
 
189
@findex _bfd_generic_link_add_one_symbol
190
	<<_bfd_generic_link_add_one_symbol>> handles the details of
191
	combining common symbols, warning about multiple definitions,
192
	and so forth.  It takes arguments which describe the symbol to
193
	add, notably symbol flags, a section, and an offset.  The
194
	symbol flags include such things as <> or
195
	<>.  The section is a section in the object
196
	file, or something like <> for an undefined
197
	symbol or <> for a common symbol.
198
 
199
	If the <<_bfd_final_link>> routine is also going to need to
200
	read the symbol information, the <<_bfd_link_add_symbols>>
201
	routine should save it somewhere attached to the object file
202
	BFD.  However, the information should only be saved if the
203
	<> field of the <> argument is TRUE, so
204
	that the <<-no-keep-memory>> linker switch is effective.
205
 
206
	The a.out function which adds symbols from an object file is
207
	<>, and most of the interesting
208
	work is in <>.  The latter saves
209
	pointers to the hash tables entries created by
210
	<<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211
	so that the <<_bfd_final_link>> routine does not have to call
212
	the hash table lookup routine to locate the entry.
213
 
214
INODE
215
Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216
SUBSUBSECTION
217
	Adding symbols from an archive
218
 
219
	When the <<_bfd_link_add_symbols>> routine is passed an
220
	archive, it must look through the symbols defined by the
221
	archive and decide which elements of the archive should be
222
	included in the link.  For each such element it must call the
223
	<> linker callback, and it must add the
224
	symbols from the object file to the linker hash table.  (The
225
	callback may in fact indicate that a replacement BFD should be
226
	used, in which case the symbols from that BFD should be added
227
	to the linker hash table instead.)
228
 
229
@findex _bfd_generic_link_add_archive_symbols
230
	In most cases the work of looking through the symbols in the
231
	archive should be done by the
6324 serge 232
	<<_bfd_generic_link_add_archive_symbols>> function.
5197 serge 233
	<<_bfd_generic_link_add_archive_symbols>> is passed a function
234
	to call to make the final decision about adding an archive
235
	element to the link and to do the actual work of adding the
6324 serge 236
	symbols to the linker hash table.  If the element is to
5197 serge 237
	be included, the <> linker callback
238
	routine must be called with the element as an argument, and
239
	the element's symbols must be added to the linker hash table
240
	just as though the element had itself been passed to the
6324 serge 241
	<<_bfd_link_add_symbols>> function.
5197 serge 242
 
243
	When the a.out <<_bfd_link_add_symbols>> function receives an
244
	archive, it calls <<_bfd_generic_link_add_archive_symbols>>
245
	passing <> as the function
246
	argument. <> calls
247
	<>.  If the latter decides to add
248
	the element (an element is only added if it provides a real,
249
	non-common, definition for a previously undefined or common
250
	symbol) it calls the <> callback and then
251
	<> calls
252
	<> to actually add the symbols to the
253
	linker hash table - possibly those of a substitute BFD, if the
254
	<> callback avails itself of that option.
255
 
256
	The ECOFF back end is unusual in that it does not normally
257
	call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
258
	archives already contain a hash table of symbols.  The ECOFF
259
	back end searches the archive itself to avoid the overhead of
260
	creating a new hash table.
261
 
262
INODE
263
Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
264
SUBSECTION
265
	Performing the final link
266
 
267
@cindex _bfd_link_final_link in target vector
268
@cindex target vector (_bfd_final_link)
269
	When all the input files have been processed, the linker calls
270
	the <<_bfd_final_link>> entry point of the output BFD.  This
271
	routine is responsible for producing the final output file,
272
	which has several aspects.  It must relocate the contents of
273
	the input sections and copy the data into the output sections.
274
	It must build an output symbol table including any local
275
	symbols from the input files and the global symbols from the
276
	hash table.  When producing relocatable output, it must
277
	modify the input relocs and write them into the output file.
278
	There may also be object format dependent work to be done.
279
 
280
	The linker will also call the <> entry
281
	point when the BFD is closed.  The two entry points must work
282
	together in order to produce the correct output file.
283
 
284
	The details of how this works are inevitably dependent upon
285
	the specific object file format.  The a.out
286
	<<_bfd_final_link>> routine is <>.
287
 
288
@menu
289
@* Information provided by the linker::
290
@* Relocating the section contents::
291
@* Writing the symbol table::
292
@end menu
293
 
294
INODE
295
Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
296
SUBSUBSECTION
297
	Information provided by the linker
298
 
299
	Before the linker calls the <<_bfd_final_link>> entry point,
300
	it sets up some data structures for the function to use.
301
 
302
	The <> field of the <> structure
303
	will point to a list of all the input files included in the
6324 serge 304
	link.  These files are linked through the <> field
5197 serge 305
	of the <> structure.
306
 
307
	Each section in the output file will have a list of
308
	<> structures attached to the <>
309
	field (the <> structure is defined in
310
	<>).  These structures describe how to create the
311
	contents of the output section in terms of the contents of
312
	various input sections, fill constants, and, eventually, other
313
	types of information.  They also describe relocs that must be
314
	created by the BFD backend, but do not correspond to any input
315
	file; this is used to support -Ur, which builds constructors
316
	while generating a relocatable object file.
317
 
318
INODE
319
Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
320
SUBSUBSECTION
321
	Relocating the section contents
322
 
323
	The <<_bfd_final_link>> function should look through the
324
	<> structures attached to each section of the
325
	output file.  Each <> structure should either be
326
	handled specially, or it should be passed to the function
327
	<<_bfd_default_link_order>> which will do the right thing
328
	(<<_bfd_default_link_order>> is defined in <>).
329
 
330
	For efficiency, a <> of type
331
	<> whose associated section belongs
332
	to a BFD of the same format as the output BFD must be handled
333
	specially.  This type of <> describes part of an
334
	output section in terms of a section belonging to one of the
335
	input files.  The <<_bfd_final_link>> function should read the
336
	contents of the section and any associated relocs, apply the
337
	relocs to the section contents, and write out the modified
338
	section contents.  If performing a relocatable link, the
339
	relocs themselves must also be modified and written out.
340
 
341
@findex _bfd_relocate_contents
342
@findex _bfd_final_link_relocate
343
	The functions <<_bfd_relocate_contents>> and
344
	<<_bfd_final_link_relocate>> provide some general support for
345
	performing the actual relocations, notably overflow checking.
346
	Their arguments include information about the symbol the
347
	relocation is against and a <> argument
348
	which describes the relocation to perform.  These functions
349
	are defined in <>.
350
 
351
	The a.out function which handles reading, relocating, and
352
	writing section contents is <>.  The
353
	actual relocation is done in <>
354
	and <>.
355
 
356
INODE
357
Writing the symbol table, , Relocating the section contents, Performing the Final Link
358
SUBSUBSECTION
359
	Writing the symbol table
360
 
361
	The <<_bfd_final_link>> function must gather all the symbols
362
	in the input files and write them out.  It must also write out
363
	all the symbols in the global hash table.  This must be
364
	controlled by the <> and <> fields of the
365
	<> structure.
366
 
367
	The local symbols of the input files will not have been
368
	entered into the linker hash table.  The <<_bfd_final_link>>
369
	routine must consider each input file and include the symbols
370
	in the output file.  It may be convenient to do this when
371
	looking through the <> structures, or it may be
372
	done by stepping through the <> list.
373
 
374
	The <<_bfd_final_link>> routine must also traverse the global
375
	hash table to gather all the externally visible symbols.  It
376
	is possible that most of the externally visible symbols may be
377
	written out when considering the symbols of each input file,
378
	but it is still necessary to traverse the hash table since the
379
	linker script may have defined some symbols that are not in
380
	any of the input files.
381
 
382
	The <> field of the <> structure
383
	controls which symbols are written out.  The possible values
384
	are listed in <>.  If the value is <>,
385
	then the <> field of the <>
386
	structure is a hash table of symbols to keep; each symbol
387
	should be looked up in this hash table, and only symbols which
388
	are present should be included in the output file.
389
 
390
	If the <> field of the <> structure
391
	permits local symbols to be written out, the <> field
392
	is used to further controls which local symbols are included
393
	in the output file.  If the value is <>, then all
394
	local symbols which begin with a certain prefix are discarded;
395
	this is controlled by the <> entry point.
396
 
397
	The a.out backend handles symbols by calling
398
	<> on each input BFD and then
399
	traversing the global hash table with the function
400
	<>.  It builds a string table
401
	while writing out the symbols, which is written to the output
402
	file at the end of <>.
403
*/
404
 
405
static bfd_boolean generic_link_add_object_symbols
406
  (bfd *, struct bfd_link_info *, bfd_boolean collect);
407
static bfd_boolean generic_link_add_symbols
408
  (bfd *, struct bfd_link_info *, bfd_boolean);
409
static bfd_boolean generic_link_check_archive_element_no_collect
6324 serge 410
  (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
411
   bfd_boolean *);
5197 serge 412
static bfd_boolean generic_link_check_archive_element_collect
6324 serge 413
  (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
414
   bfd_boolean *);
5197 serge 415
static bfd_boolean generic_link_check_archive_element
6324 serge 416
  (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
417
   bfd_boolean *, bfd_boolean);
5197 serge 418
static bfd_boolean generic_link_add_symbol_list
419
  (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
420
   bfd_boolean);
421
static bfd_boolean generic_add_output_symbol
422
  (bfd *, size_t *psymalloc, asymbol *);
423
static bfd_boolean default_data_link_order
424
  (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
425
static bfd_boolean default_indirect_link_order
426
  (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
427
   bfd_boolean);
428
 
429
/* The link hash table structure is defined in bfdlink.h.  It provides
430
   a base hash table which the backend specific hash tables are built
431
   upon.  */
432
 
433
/* Routine to create an entry in the link hash table.  */
434
 
435
struct bfd_hash_entry *
436
_bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
437
			struct bfd_hash_table *table,
438
			const char *string)
439
{
440
  /* Allocate the structure if it has not already been allocated by a
441
     subclass.  */
442
  if (entry == NULL)
443
    {
444
      entry = (struct bfd_hash_entry *)
445
          bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
446
      if (entry == NULL)
447
	return entry;
448
    }
449
 
450
  /* Call the allocation method of the superclass.  */
451
  entry = bfd_hash_newfunc (entry, table, string);
452
  if (entry)
453
    {
454
      struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
455
 
456
      /* Initialize the local fields.  */
457
      memset ((char *) &h->root + sizeof (h->root), 0,
458
	      sizeof (*h) - sizeof (h->root));
459
    }
460
 
461
  return entry;
462
}
463
 
464
/* Initialize a link hash table.  The BFD argument is the one
465
   responsible for creating this table.  */
466
 
467
bfd_boolean
468
_bfd_link_hash_table_init
469
  (struct bfd_link_hash_table *table,
470
   bfd *abfd ATTRIBUTE_UNUSED,
471
   struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
472
				      struct bfd_hash_table *,
473
				      const char *),
474
   unsigned int entsize)
475
{
6324 serge 476
  bfd_boolean ret;
477
 
478
  BFD_ASSERT (!abfd->is_linker_output && !abfd->link.hash);
5197 serge 479
  table->undefs = NULL;
480
  table->undefs_tail = NULL;
481
  table->type = bfd_link_generic_hash_table;
482
 
6324 serge 483
  ret = bfd_hash_table_init (&table->table, newfunc, entsize);
484
  if (ret)
485
    {
486
      /* Arrange for destruction of this hash table on closing ABFD.  */
487
      table->hash_table_free = _bfd_generic_link_hash_table_free;
488
      abfd->link.hash = table;
489
      abfd->is_linker_output = TRUE;
490
    }
491
  return ret;
5197 serge 492
}
493
 
494
/* Look up a symbol in a link hash table.  If follow is TRUE, we
495
   follow bfd_link_hash_indirect and bfd_link_hash_warning links to
496
   the real symbol.  */
497
 
498
struct bfd_link_hash_entry *
499
bfd_link_hash_lookup (struct bfd_link_hash_table *table,
500
		      const char *string,
501
		      bfd_boolean create,
502
		      bfd_boolean copy,
503
		      bfd_boolean follow)
504
{
505
  struct bfd_link_hash_entry *ret;
506
 
507
  ret = ((struct bfd_link_hash_entry *)
508
	 bfd_hash_lookup (&table->table, string, create, copy));
509
 
510
  if (follow && ret != NULL)
511
    {
512
      while (ret->type == bfd_link_hash_indirect
513
	     || ret->type == bfd_link_hash_warning)
514
	ret = ret->u.i.link;
515
    }
516
 
517
  return ret;
518
}
519
 
520
/* Look up a symbol in the main linker hash table if the symbol might
521
   be wrapped.  This should only be used for references to an
522
   undefined symbol, not for definitions of a symbol.  */
523
 
524
struct bfd_link_hash_entry *
525
bfd_wrapped_link_hash_lookup (bfd *abfd,
526
			      struct bfd_link_info *info,
527
			      const char *string,
528
			      bfd_boolean create,
529
			      bfd_boolean copy,
530
			      bfd_boolean follow)
531
{
532
  bfd_size_type amt;
533
 
534
  if (info->wrap_hash != NULL)
535
    {
536
      const char *l;
537
      char prefix = '\0';
538
 
539
      l = string;
540
      if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
541
	{
542
	  prefix = *l;
543
	  ++l;
544
	}
545
 
546
#undef WRAP
547
#define WRAP "__wrap_"
548
 
549
      if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
550
	{
551
	  char *n;
552
	  struct bfd_link_hash_entry *h;
553
 
554
	  /* This symbol is being wrapped.  We want to replace all
555
             references to SYM with references to __wrap_SYM.  */
556
 
557
	  amt = strlen (l) + sizeof WRAP + 1;
558
	  n = (char *) bfd_malloc (amt);
559
	  if (n == NULL)
560
	    return NULL;
561
 
562
	  n[0] = prefix;
563
	  n[1] = '\0';
564
	  strcat (n, WRAP);
565
	  strcat (n, l);
566
	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
567
	  free (n);
568
	  return h;
569
	}
570
 
571
#undef  REAL
572
#define REAL "__real_"
573
 
574
      if (*l == '_'
575
	  && CONST_STRNEQ (l, REAL)
576
	  && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
577
			      FALSE, FALSE) != NULL)
578
	{
579
	  char *n;
580
	  struct bfd_link_hash_entry *h;
581
 
582
	  /* This is a reference to __real_SYM, where SYM is being
583
             wrapped.  We want to replace all references to __real_SYM
584
             with references to SYM.  */
585
 
586
	  amt = strlen (l + sizeof REAL - 1) + 2;
587
	  n = (char *) bfd_malloc (amt);
588
	  if (n == NULL)
589
	    return NULL;
590
 
591
	  n[0] = prefix;
592
	  n[1] = '\0';
593
	  strcat (n, l + sizeof REAL - 1);
594
	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
595
	  free (n);
596
	  return h;
597
	}
598
 
599
#undef REAL
600
    }
601
 
602
  return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
603
}
604
 
6324 serge 605
/* If H is a wrapped symbol, ie. the symbol name starts with "__wrap_"
606
   and the remainder is found in wrap_hash, return the real symbol.  */
607
 
608
struct bfd_link_hash_entry *
609
unwrap_hash_lookup (struct bfd_link_info *info,
610
		    bfd *input_bfd,
611
		    struct bfd_link_hash_entry *h)
612
{
613
  const char *l = h->root.string;
614
 
615
  if (*l == bfd_get_symbol_leading_char (input_bfd)
616
      || *l == info->wrap_char)
617
    ++l;
618
 
619
  if (CONST_STRNEQ (l, WRAP))
620
    {
621
      l += sizeof WRAP - 1;
622
 
623
      if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
624
	{
625
	  char save = 0;
626
	  if (l - (sizeof WRAP - 1) != h->root.string)
627
	    {
628
	      --l;
629
	      save = *l;
630
	      *(char *) l = *h->root.string;
631
	    }
632
	  h = bfd_link_hash_lookup (info->hash, l, FALSE, FALSE, FALSE);
633
	  if (save)
634
	    *(char *) l = save;
635
	}
636
    }
637
  return h;
638
}
639
#undef WRAP
640
 
5197 serge 641
/* Traverse a generic link hash table.  Differs from bfd_hash_traverse
642
   in the treatment of warning symbols.  When warning symbols are
643
   created they replace the real symbol, so you don't get to see the
644
   real symbol in a bfd_hash_travere.  This traversal calls func with
645
   the real symbol.  */
646
 
647
void
648
bfd_link_hash_traverse
649
  (struct bfd_link_hash_table *htab,
650
   bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
651
   void *info)
652
{
653
  unsigned int i;
654
 
655
  htab->table.frozen = 1;
656
  for (i = 0; i < htab->table.size; i++)
657
    {
658
      struct bfd_link_hash_entry *p;
659
 
660
      p = (struct bfd_link_hash_entry *) htab->table.table[i];
661
      for (; p != NULL; p = (struct bfd_link_hash_entry *) p->root.next)
662
	if (!(*func) (p->type == bfd_link_hash_warning ? p->u.i.link : p, info))
663
	  goto out;
664
    }
665
 out:
666
  htab->table.frozen = 0;
667
}
668
 
669
/* Add a symbol to the linker hash table undefs list.  */
670
 
671
void
672
bfd_link_add_undef (struct bfd_link_hash_table *table,
673
		    struct bfd_link_hash_entry *h)
674
{
675
  BFD_ASSERT (h->u.undef.next == NULL);
676
  if (table->undefs_tail != NULL)
677
    table->undefs_tail->u.undef.next = h;
678
  if (table->undefs == NULL)
679
    table->undefs = h;
680
  table->undefs_tail = h;
681
}
682
 
683
/* The undefs list was designed so that in normal use we don't need to
684
   remove entries.  However, if symbols on the list are changed from
685
   bfd_link_hash_undefined to either bfd_link_hash_undefweak or
686
   bfd_link_hash_new for some reason, then they must be removed from the
687
   list.  Failure to do so might result in the linker attempting to add
688
   the symbol to the list again at a later stage.  */
689
 
690
void
691
bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
692
{
693
  struct bfd_link_hash_entry **pun;
694
 
695
  pun = &table->undefs;
696
  while (*pun != NULL)
697
    {
698
      struct bfd_link_hash_entry *h = *pun;
699
 
700
      if (h->type == bfd_link_hash_new
701
	  || h->type == bfd_link_hash_undefweak)
702
	{
703
	  *pun = h->u.undef.next;
704
	  h->u.undef.next = NULL;
705
	  if (h == table->undefs_tail)
706
	    {
707
	      if (pun == &table->undefs)
708
		table->undefs_tail = NULL;
709
	      else
710
		/* pun points at an u.undef.next field.  Go back to
711
		   the start of the link_hash_entry.  */
712
		table->undefs_tail = (struct bfd_link_hash_entry *)
713
		  ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
714
	      break;
715
	    }
716
	}
717
      else
718
	pun = &h->u.undef.next;
719
    }
720
}
721
 
722
/* Routine to create an entry in a generic link hash table.  */
723
 
724
struct bfd_hash_entry *
725
_bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
726
				struct bfd_hash_table *table,
727
				const char *string)
728
{
729
  /* Allocate the structure if it has not already been allocated by a
730
     subclass.  */
731
  if (entry == NULL)
732
    {
733
      entry = (struct bfd_hash_entry *)
734
	bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
735
      if (entry == NULL)
736
	return entry;
737
    }
738
 
739
  /* Call the allocation method of the superclass.  */
740
  entry = _bfd_link_hash_newfunc (entry, table, string);
741
  if (entry)
742
    {
743
      struct generic_link_hash_entry *ret;
744
 
745
      /* Set local fields.  */
746
      ret = (struct generic_link_hash_entry *) entry;
747
      ret->written = FALSE;
748
      ret->sym = NULL;
749
    }
750
 
751
  return entry;
752
}
753
 
754
/* Create a generic link hash table.  */
755
 
756
struct bfd_link_hash_table *
757
_bfd_generic_link_hash_table_create (bfd *abfd)
758
{
759
  struct generic_link_hash_table *ret;
760
  bfd_size_type amt = sizeof (struct generic_link_hash_table);
761
 
762
  ret = (struct generic_link_hash_table *) bfd_malloc (amt);
763
  if (ret == NULL)
764
    return NULL;
765
  if (! _bfd_link_hash_table_init (&ret->root, abfd,
766
				   _bfd_generic_link_hash_newfunc,
767
				   sizeof (struct generic_link_hash_entry)))
768
    {
769
      free (ret);
770
      return NULL;
771
    }
772
  return &ret->root;
773
}
774
 
775
void
6324 serge 776
_bfd_generic_link_hash_table_free (bfd *obfd)
5197 serge 777
{
6324 serge 778
  struct generic_link_hash_table *ret;
5197 serge 779
 
6324 serge 780
  BFD_ASSERT (obfd->is_linker_output && obfd->link.hash);
781
  ret = (struct generic_link_hash_table *) obfd->link.hash;
5197 serge 782
  bfd_hash_table_free (&ret->root.table);
783
  free (ret);
6324 serge 784
  obfd->link.hash = NULL;
785
  obfd->is_linker_output = FALSE;
5197 serge 786
}
787
 
788
/* Grab the symbols for an object file when doing a generic link.  We
789
   store the symbols in the outsymbols field.  We need to keep them
790
   around for the entire link to ensure that we only read them once.
791
   If we read them multiple times, we might wind up with relocs and
792
   the hash table pointing to different instances of the symbol
793
   structure.  */
794
 
795
bfd_boolean
796
bfd_generic_link_read_symbols (bfd *abfd)
797
{
798
  if (bfd_get_outsymbols (abfd) == NULL)
799
    {
800
      long symsize;
801
      long symcount;
802
 
803
      symsize = bfd_get_symtab_upper_bound (abfd);
804
      if (symsize < 0)
805
	return FALSE;
806
      bfd_get_outsymbols (abfd) = (struct bfd_symbol **) bfd_alloc (abfd,
807
                                                                    symsize);
808
      if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
809
	return FALSE;
810
      symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
811
      if (symcount < 0)
812
	return FALSE;
813
      bfd_get_symcount (abfd) = symcount;
814
    }
815
 
816
  return TRUE;
817
}
818
 
819
/* Generic function to add symbols to from an object file to the
820
   global hash table.  This version does not automatically collect
821
   constructors by name.  */
822
 
823
bfd_boolean
824
_bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
825
{
826
  return generic_link_add_symbols (abfd, info, FALSE);
827
}
828
 
829
/* Generic function to add symbols from an object file to the global
830
   hash table.  This version automatically collects constructors by
831
   name, as the collect2 program does.  It should be used for any
832
   target which does not provide some other mechanism for setting up
833
   constructors and destructors; these are approximately those targets
834
   for which gcc uses collect2 and do not support stabs.  */
835
 
836
bfd_boolean
837
_bfd_generic_link_add_symbols_collect (bfd *abfd, struct bfd_link_info *info)
838
{
839
  return generic_link_add_symbols (abfd, info, TRUE);
840
}
841
 
842
/* Indicate that we are only retrieving symbol values from this
843
   section.  We want the symbols to act as though the values in the
844
   file are absolute.  */
845
 
846
void
847
_bfd_generic_link_just_syms (asection *sec,
848
			     struct bfd_link_info *info ATTRIBUTE_UNUSED)
849
{
850
  sec->sec_info_type = SEC_INFO_TYPE_JUST_SYMS;
851
  sec->output_section = bfd_abs_section_ptr;
852
  sec->output_offset = sec->vma;
853
}
854
 
6324 serge 855
/* Copy the symbol type and other attributes for a linker script
856
   assignment from HSRC to HDEST.
5197 serge 857
   The default implementation does nothing.  */
858
void
859
_bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
6324 serge 860
    struct bfd_link_hash_entry *hdest ATTRIBUTE_UNUSED,
861
    struct bfd_link_hash_entry *hsrc ATTRIBUTE_UNUSED)
5197 serge 862
{
863
}
864
 
865
/* Add symbols from an object file to the global hash table.  */
866
 
867
static bfd_boolean
868
generic_link_add_symbols (bfd *abfd,
869
			  struct bfd_link_info *info,
870
			  bfd_boolean collect)
871
{
872
  bfd_boolean ret;
873
 
874
  switch (bfd_get_format (abfd))
875
    {
876
    case bfd_object:
877
      ret = generic_link_add_object_symbols (abfd, info, collect);
878
      break;
879
    case bfd_archive:
880
      ret = (_bfd_generic_link_add_archive_symbols
881
	     (abfd, info,
882
	      (collect
883
	       ? generic_link_check_archive_element_collect
884
	       : generic_link_check_archive_element_no_collect)));
885
      break;
886
    default:
887
      bfd_set_error (bfd_error_wrong_format);
888
      ret = FALSE;
889
    }
890
 
891
  return ret;
892
}
893
 
894
/* Add symbols from an object file to the global hash table.  */
895
 
896
static bfd_boolean
897
generic_link_add_object_symbols (bfd *abfd,
898
				 struct bfd_link_info *info,
899
				 bfd_boolean collect)
900
{
901
  bfd_size_type symcount;
902
  struct bfd_symbol **outsyms;
903
 
904
  if (!bfd_generic_link_read_symbols (abfd))
905
    return FALSE;
906
  symcount = _bfd_generic_link_get_symcount (abfd);
907
  outsyms = _bfd_generic_link_get_symbols (abfd);
908
  return generic_link_add_symbol_list (abfd, info, symcount, outsyms, collect);
909
}
910
 
911
/* Generic function to add symbols from an archive file to the global
912
   hash file.  This function presumes that the archive symbol table
913
   has already been read in (this is normally done by the
6324 serge 914
   bfd_check_format entry point).  It looks through the archive symbol
915
   table for symbols that are undefined or common in the linker global
916
   symbol hash table.  When one is found, the CHECKFN argument is used
917
   to see if an object file should be included.  This allows targets
918
   to customize common symbol behaviour.  CHECKFN should set *PNEEDED
919
   to TRUE if the object file should be included, and must also call
920
   the bfd_link_info add_archive_element callback function and handle
921
   adding the symbols to the global hash table.  CHECKFN must notice
922
   if the callback indicates a substitute BFD, and arrange to add
923
   those symbols instead if it does so.  CHECKFN should only return
924
   FALSE if some sort of error occurs.  */
5197 serge 925
 
926
bfd_boolean
927
_bfd_generic_link_add_archive_symbols
928
  (bfd *abfd,
929
   struct bfd_link_info *info,
6324 serge 930
   bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *,
931
			   struct bfd_link_hash_entry *, const char *,
932
			   bfd_boolean *))
5197 serge 933
{
6324 serge 934
  bfd_boolean loop;
935
  bfd_size_type amt;
936
  unsigned char *included;
5197 serge 937
 
938
  if (! bfd_has_map (abfd))
939
    {
940
      /* An empty archive is a special case.  */
941
      if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
942
	return TRUE;
943
      bfd_set_error (bfd_error_no_armap);
944
      return FALSE;
945
    }
946
 
6324 serge 947
  amt = bfd_ardata (abfd)->symdef_count;
948
  if (amt == 0)
949
    return TRUE;
950
  amt *= sizeof (*included);
951
  included = (unsigned char *) bfd_zmalloc (amt);
952
  if (included == NULL)
953
    return FALSE;
954
 
955
  do
956
    {
957
      carsym *arsyms;
958
      carsym *arsym_end;
959
      carsym *arsym;
960
      unsigned int indx;
961
      file_ptr last_ar_offset = -1;
962
      bfd_boolean needed = FALSE;
963
      bfd *element = NULL;
964
 
965
      loop = FALSE;
5197 serge 966
  arsyms = bfd_ardata (abfd)->symdefs;
967
  arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
968
  for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
969
    {
970
      struct bfd_link_hash_entry *h;
6324 serge 971
	  struct bfd_link_hash_entry *undefs_tail;
5197 serge 972
 
6324 serge 973
	  if (included[indx])
974
	    continue;
975
	  if (needed && arsym->file_offset == last_ar_offset)
5197 serge 976
	{
6324 serge 977
	      included[indx] = 1;
5197 serge 978
	  continue;
979
	}
980
 
6324 serge 981
	  h = bfd_link_hash_lookup (info->hash, arsym->name,
982
				    FALSE, FALSE, TRUE);
5197 serge 983
 
6324 serge 984
	  if (h == NULL
985
	      && info->pei386_auto_import
986
	      && CONST_STRNEQ (arsym->name, "__imp_"))
987
	    h = bfd_link_hash_lookup (info->hash, arsym->name + 6,
988
				      FALSE, FALSE, TRUE);
989
	  if (h == NULL)
5197 serge 990
	      continue;
991
 
992
	  if (h->type != bfd_link_hash_undefined
993
	      && h->type != bfd_link_hash_common)
6324 serge 994
	    {
995
	      if (h->type != bfd_link_hash_undefweak)
996
		/* Symbol must be defined.  Don't check it again.  */
997
		included[indx] = 1;
5197 serge 998
	    continue;
6324 serge 999
	    }
5197 serge 1000
 
6324 serge 1001
	  if (last_ar_offset != arsym->file_offset)
5197 serge 1002
	    {
6324 serge 1003
	      last_ar_offset = arsym->file_offset;
1004
	      element = _bfd_get_elt_at_filepos (abfd, last_ar_offset);
1005
	      if (element == NULL
1006
		  || !bfd_check_format (element, bfd_object))
1007
		goto error_return;
5197 serge 1008
	    }
1009
 
6324 serge 1010
	  undefs_tail = info->hash->undefs_tail;
1011
 
5197 serge 1012
	  /* CHECKFN will see if this element should be included, and
1013
	     go ahead and include it if appropriate.  */
6324 serge 1014
	  if (! (*checkfn) (element, info, h, arsym->name, &needed))
5197 serge 1015
	    goto error_return;
1016
 
6324 serge 1017
	  if (needed)
5197 serge 1018
	    {
6324 serge 1019
	      unsigned int mark;
5197 serge 1020
 
6324 serge 1021
	      /* Look backward to mark all symbols from this object file
1022
		 which we have already seen in this pass.  */
1023
	      mark = indx;
1024
	      do
1025
		{
1026
		  included[mark] = 1;
1027
		  if (mark == 0)
1028
		    break;
1029
		  --mark;
5197 serge 1030
	    }
6324 serge 1031
	      while (arsyms[mark].file_offset == last_ar_offset);
1032
 
1033
	      if (undefs_tail != info->hash->undefs_tail)
1034
		loop = TRUE;
5197 serge 1035
	}
1036
    }
6324 serge 1037
    } while (loop);
5197 serge 1038
 
6324 serge 1039
  free (included);
5197 serge 1040
  return TRUE;
1041
 
1042
 error_return:
6324 serge 1043
  free (included);
5197 serge 1044
  return FALSE;
1045
}
1046
 
1047
/* See if we should include an archive element.  This version is used
1048
   when we do not want to automatically collect constructors based on
1049
   the symbol name, presumably because we have some other mechanism
1050
   for finding them.  */
1051
 
1052
static bfd_boolean
6324 serge 1053
generic_link_check_archive_element_no_collect (bfd *abfd,
5197 serge 1054
					       struct bfd_link_info *info,
6324 serge 1055
					       struct bfd_link_hash_entry *h,
1056
					       const char *name,
5197 serge 1057
					       bfd_boolean *pneeded)
1058
{
6324 serge 1059
  return generic_link_check_archive_element (abfd, info, h, name, pneeded,
1060
					     FALSE);
5197 serge 1061
}
1062
 
1063
/* See if we should include an archive element.  This version is used
1064
   when we want to automatically collect constructors based on the
1065
   symbol name, as collect2 does.  */
1066
 
1067
static bfd_boolean
1068
generic_link_check_archive_element_collect (bfd *abfd,
1069
					    struct bfd_link_info *info,
6324 serge 1070
					    struct bfd_link_hash_entry *h,
1071
					    const char *name,
5197 serge 1072
					    bfd_boolean *pneeded)
1073
{
6324 serge 1074
  return generic_link_check_archive_element (abfd, info, h, name, pneeded,
1075
					     TRUE);
5197 serge 1076
}
1077
 
1078
/* See if we should include an archive element.  Optionally collect
1079
   constructors.  */
1080
 
1081
static bfd_boolean
1082
generic_link_check_archive_element (bfd *abfd,
1083
				    struct bfd_link_info *info,
6324 serge 1084
				    struct bfd_link_hash_entry *h,
1085
				    const char *name ATTRIBUTE_UNUSED,
5197 serge 1086
				    bfd_boolean *pneeded,
1087
				    bfd_boolean collect)
1088
{
1089
  asymbol **pp, **ppend;
1090
 
1091
  *pneeded = FALSE;
1092
 
1093
  if (!bfd_generic_link_read_symbols (abfd))
1094
    return FALSE;
1095
 
1096
  pp = _bfd_generic_link_get_symbols (abfd);
1097
  ppend = pp + _bfd_generic_link_get_symcount (abfd);
1098
  for (; pp < ppend; pp++)
1099
    {
1100
      asymbol *p;
1101
 
1102
      p = *pp;
1103
 
1104
      /* We are only interested in globally visible symbols.  */
1105
      if (! bfd_is_com_section (p->section)
1106
	  && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1107
	continue;
1108
 
1109
      /* We are only interested if we know something about this
1110
	 symbol, and it is undefined or common.  An undefined weak
1111
	 symbol (type bfd_link_hash_undefweak) is not considered to be
1112
	 a reference when pulling files out of an archive.  See the
1113
	 SVR4 ABI, p. 4-27.  */
1114
      h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1115
				FALSE, TRUE);
1116
      if (h == NULL
1117
	  || (h->type != bfd_link_hash_undefined
1118
	      && h->type != bfd_link_hash_common))
1119
	continue;
1120
 
1121
      /* P is a symbol we are looking for.  */
1122
 
6324 serge 1123
      if (! bfd_is_com_section (p->section)
1124
	  || (h->type == bfd_link_hash_undefined
1125
	      && h->u.undef.abfd == NULL))
5197 serge 1126
	{
6324 serge 1127
	  /* P is not a common symbol, or an undefined reference was
1128
	     created from outside BFD such as from a linker -u option.
1129
	     This object file defines the symbol, so pull it in.  */
1130
	  *pneeded = TRUE;
5197 serge 1131
	  if (!(*info->callbacks
1132
		->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1133
					&abfd))
1134
	    return FALSE;
1135
	  /* Potentially, the add_archive_element hook may have set a
1136
	     substitute BFD for us.  */
6324 serge 1137
	  return generic_link_add_object_symbols (abfd, info, collect);
5197 serge 1138
	}
1139
 
1140
      /* P is a common symbol.  */
1141
 
1142
      if (h->type == bfd_link_hash_undefined)
1143
	{
1144
	  bfd *symbfd;
1145
	  bfd_vma size;
1146
	  unsigned int power;
1147
 
1148
	  /* Turn the symbol into a common symbol but do not link in
1149
	     the object file.  This is how a.out works.  Object
1150
	     formats that require different semantics must implement
1151
	     this function differently.  This symbol is already on the
1152
	     undefs list.  We add the section to a common section
1153
	     attached to symbfd to ensure that it is in a BFD which
1154
	     will be linked in.  */
6324 serge 1155
	  symbfd = h->u.undef.abfd;
5197 serge 1156
	  h->type = bfd_link_hash_common;
1157
	  h->u.c.p = (struct bfd_link_hash_common_entry *)
1158
	    bfd_hash_allocate (&info->hash->table,
1159
			       sizeof (struct bfd_link_hash_common_entry));
1160
	  if (h->u.c.p == NULL)
1161
	    return FALSE;
1162
 
1163
	  size = bfd_asymbol_value (p);
1164
	  h->u.c.size = size;
1165
 
1166
	  power = bfd_log2 (size);
1167
	  if (power > 4)
1168
	    power = 4;
1169
	  h->u.c.p->alignment_power = power;
1170
 
1171
	  if (p->section == bfd_com_section_ptr)
1172
	    h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1173
	  else
1174
	    h->u.c.p->section = bfd_make_section_old_way (symbfd,
1175
							  p->section->name);
1176
	  h->u.c.p->section->flags |= SEC_ALLOC;
1177
	}
1178
      else
1179
	{
1180
	  /* Adjust the size of the common symbol if necessary.  This
1181
	     is how a.out works.  Object formats that require
1182
	     different semantics must implement this function
1183
	     differently.  */
1184
	  if (bfd_asymbol_value (p) > h->u.c.size)
1185
	    h->u.c.size = bfd_asymbol_value (p);
1186
	}
1187
    }
1188
 
1189
  /* This archive element is not needed.  */
1190
  return TRUE;
1191
}
1192
 
1193
/* Add the symbols from an object file to the global hash table.  ABFD
1194
   is the object file.  INFO is the linker information.  SYMBOL_COUNT
1195
   is the number of symbols.  SYMBOLS is the list of symbols.  COLLECT
1196
   is TRUE if constructors should be automatically collected by name
1197
   as is done by collect2.  */
1198
 
1199
static bfd_boolean
1200
generic_link_add_symbol_list (bfd *abfd,
1201
			      struct bfd_link_info *info,
1202
			      bfd_size_type symbol_count,
1203
			      asymbol **symbols,
1204
			      bfd_boolean collect)
1205
{
1206
  asymbol **pp, **ppend;
1207
 
1208
  pp = symbols;
1209
  ppend = symbols + symbol_count;
1210
  for (; pp < ppend; pp++)
1211
    {
1212
      asymbol *p;
1213
 
1214
      p = *pp;
1215
 
1216
      if ((p->flags & (BSF_INDIRECT
1217
		       | BSF_WARNING
1218
		       | BSF_GLOBAL
1219
		       | BSF_CONSTRUCTOR
1220
		       | BSF_WEAK)) != 0
1221
	  || bfd_is_und_section (bfd_get_section (p))
1222
	  || bfd_is_com_section (bfd_get_section (p))
1223
	  || bfd_is_ind_section (bfd_get_section (p)))
1224
	{
1225
	  const char *name;
1226
	  const char *string;
1227
	  struct generic_link_hash_entry *h;
1228
	  struct bfd_link_hash_entry *bh;
1229
 
1230
	  string = name = bfd_asymbol_name (p);
1231
	  if (((p->flags & BSF_INDIRECT) != 0
1232
	       || bfd_is_ind_section (p->section))
1233
	      && pp + 1 < ppend)
1234
	    {
1235
	      pp++;
1236
	      string = bfd_asymbol_name (*pp);
1237
	    }
1238
	  else if ((p->flags & BSF_WARNING) != 0
1239
		   && pp + 1 < ppend)
1240
	    {
1241
	      /* The name of P is actually the warning string, and the
1242
		 next symbol is the one to warn about.  */
1243
	      pp++;
1244
	      name = bfd_asymbol_name (*pp);
1245
	    }
1246
 
1247
	  bh = NULL;
1248
	  if (! (_bfd_generic_link_add_one_symbol
1249
		 (info, abfd, name, p->flags, bfd_get_section (p),
1250
		  p->value, string, FALSE, collect, &bh)))
1251
	    return FALSE;
1252
	  h = (struct generic_link_hash_entry *) bh;
1253
 
1254
	  /* If this is a constructor symbol, and the linker didn't do
1255
             anything with it, then we want to just pass the symbol
1256
             through to the output file.  This will happen when
1257
             linking with -r.  */
1258
	  if ((p->flags & BSF_CONSTRUCTOR) != 0
1259
	      && (h == NULL || h->root.type == bfd_link_hash_new))
1260
	    {
1261
	      p->udata.p = NULL;
1262
	      continue;
1263
	    }
1264
 
1265
	  /* Save the BFD symbol so that we don't lose any backend
1266
	     specific information that may be attached to it.  We only
1267
	     want this one if it gives more information than the
1268
	     existing one; we don't want to replace a defined symbol
1269
	     with an undefined one.  This routine may be called with a
1270
	     hash table other than the generic hash table, so we only
1271
	     do this if we are certain that the hash table is a
1272
	     generic one.  */
1273
	  if (info->output_bfd->xvec == abfd->xvec)
1274
	    {
1275
	      if (h->sym == NULL
1276
		  || (! bfd_is_und_section (bfd_get_section (p))
1277
		      && (! bfd_is_com_section (bfd_get_section (p))
1278
			  || bfd_is_und_section (bfd_get_section (h->sym)))))
1279
		{
1280
		  h->sym = p;
1281
		  /* BSF_OLD_COMMON is a hack to support COFF reloc
1282
		     reading, and it should go away when the COFF
1283
		     linker is switched to the new version.  */
1284
		  if (bfd_is_com_section (bfd_get_section (p)))
1285
		    p->flags |= BSF_OLD_COMMON;
1286
		}
1287
	    }
1288
 
1289
	  /* Store a back pointer from the symbol to the hash
1290
	     table entry for the benefit of relaxation code until
1291
	     it gets rewritten to not use asymbol structures.
1292
	     Setting this is also used to check whether these
1293
	     symbols were set up by the generic linker.  */
1294
	  p->udata.p = h;
1295
	}
1296
    }
1297
 
1298
  return TRUE;
1299
}
1300
 
1301
/* We use a state table to deal with adding symbols from an object
1302
   file.  The first index into the state table describes the symbol
1303
   from the object file.  The second index into the state table is the
1304
   type of the symbol in the hash table.  */
1305
 
1306
/* The symbol from the object file is turned into one of these row
1307
   values.  */
1308
 
1309
enum link_row
1310
{
1311
  UNDEF_ROW,		/* Undefined.  */
1312
  UNDEFW_ROW,		/* Weak undefined.  */
1313
  DEF_ROW,		/* Defined.  */
1314
  DEFW_ROW,		/* Weak defined.  */
1315
  COMMON_ROW,		/* Common.  */
1316
  INDR_ROW,		/* Indirect.  */
1317
  WARN_ROW,		/* Warning.  */
1318
  SET_ROW		/* Member of set.  */
1319
};
1320
 
1321
/* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1322
#undef FAIL
1323
 
1324
/* The actions to take in the state table.  */
1325
 
1326
enum link_action
1327
{
1328
  FAIL,		/* Abort.  */
1329
  UND,		/* Mark symbol undefined.  */
1330
  WEAK,		/* Mark symbol weak undefined.  */
1331
  DEF,		/* Mark symbol defined.  */
1332
  DEFW,		/* Mark symbol weak defined.  */
1333
  COM,		/* Mark symbol common.  */
1334
  REF,		/* Mark defined symbol referenced.  */
1335
  CREF,		/* Possibly warn about common reference to defined symbol.  */
1336
  CDEF,		/* Define existing common symbol.  */
1337
  NOACT,	/* No action.  */
1338
  BIG,		/* Mark symbol common using largest size.  */
1339
  MDEF,		/* Multiple definition error.  */
1340
  MIND,		/* Multiple indirect symbols.  */
1341
  IND,		/* Make indirect symbol.  */
1342
  CIND,		/* Make indirect symbol from existing common symbol.  */
1343
  SET,		/* Add value to set.  */
1344
  MWARN,	/* Make warning symbol.  */
6324 serge 1345
  WARN,		/* Warn if referenced, else MWARN.  */
5197 serge 1346
  CYCLE,	/* Repeat with symbol pointed to.  */
1347
  REFC,		/* Mark indirect symbol referenced and then CYCLE.  */
1348
  WARNC		/* Issue warning and then CYCLE.  */
1349
};
1350
 
1351
/* The state table itself.  The first index is a link_row and the
1352
   second index is a bfd_link_hash_type.  */
1353
 
1354
static const enum link_action link_action[8][8] =
1355
{
1356
  /* current\prev    new    undef  undefw def    defw   com    indr   warn  */
1357
  /* UNDEF_ROW 	*/  {UND,   NOACT, UND,   REF,   REF,   NOACT, REFC,  WARNC },
1358
  /* UNDEFW_ROW	*/  {WEAK,  NOACT, NOACT, REF,   REF,   NOACT, REFC,  WARNC },
1359
  /* DEF_ROW 	*/  {DEF,   DEF,   DEF,   MDEF,  DEF,   CDEF,  MDEF,  CYCLE },
1360
  /* DEFW_ROW 	*/  {DEFW,  DEFW,  DEFW,  NOACT, NOACT, NOACT, NOACT, CYCLE },
1361
  /* COMMON_ROW	*/  {COM,   COM,   COM,   CREF,  COM,   BIG,   REFC,  WARNC },
1362
  /* INDR_ROW	*/  {IND,   IND,   IND,   MDEF,  IND,   CIND,  MIND,  CYCLE },
6324 serge 1363
  /* WARN_ROW   */  {MWARN, WARN,  WARN,  WARN,  WARN,  WARN,  WARN,  NOACT },
5197 serge 1364
  /* SET_ROW	*/  {SET,   SET,   SET,   SET,   SET,   SET,   CYCLE, CYCLE }
1365
};
1366
 
1367
/* Most of the entries in the LINK_ACTION table are straightforward,
1368
   but a few are somewhat subtle.
1369
 
1370
   A reference to an indirect symbol (UNDEF_ROW/indr or
1371
   UNDEFW_ROW/indr) is counted as a reference both to the indirect
1372
   symbol and to the symbol the indirect symbol points to.
1373
 
1374
   A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1375
   causes the warning to be issued.
1376
 
1377
   A common definition of an indirect symbol (COMMON_ROW/indr) is
1378
   treated as a multiple definition error.  Likewise for an indirect
1379
   definition of a common symbol (INDR_ROW/com).
1380
 
1381
   An indirect definition of a warning (INDR_ROW/warn) does not cause
1382
   the warning to be issued.
1383
 
1384
   If a warning is created for an indirect symbol (WARN_ROW/indr) no
1385
   warning is created for the symbol the indirect symbol points to.
1386
 
1387
   Adding an entry to a set does not count as a reference to a set,
1388
   and no warning is issued (SET_ROW/warn).  */
1389
 
1390
/* Return the BFD in which a hash entry has been defined, if known.  */
1391
 
1392
static bfd *
1393
hash_entry_bfd (struct bfd_link_hash_entry *h)
1394
{
1395
  while (h->type == bfd_link_hash_warning)
1396
    h = h->u.i.link;
1397
  switch (h->type)
1398
    {
1399
    default:
1400
      return NULL;
1401
    case bfd_link_hash_undefined:
1402
    case bfd_link_hash_undefweak:
1403
      return h->u.undef.abfd;
1404
    case bfd_link_hash_defined:
1405
    case bfd_link_hash_defweak:
1406
      return h->u.def.section->owner;
1407
    case bfd_link_hash_common:
1408
      return h->u.c.p->section->owner;
1409
    }
1410
  /*NOTREACHED*/
1411
}
1412
 
1413
/* Add a symbol to the global hash table.
1414
   ABFD is the BFD the symbol comes from.
1415
   NAME is the name of the symbol.
1416
   FLAGS is the BSF_* bits associated with the symbol.
1417
   SECTION is the section in which the symbol is defined; this may be
1418
     bfd_und_section_ptr or bfd_com_section_ptr.
1419
   VALUE is the value of the symbol, relative to the section.
1420
   STRING is used for either an indirect symbol, in which case it is
1421
     the name of the symbol to indirect to, or a warning symbol, in
1422
     which case it is the warning string.
1423
   COPY is TRUE if NAME or STRING must be copied into locally
1424
     allocated memory if they need to be saved.
1425
   COLLECT is TRUE if we should automatically collect gcc constructor
1426
     or destructor names as collect2 does.
1427
   HASHP, if not NULL, is a place to store the created hash table
1428
     entry; if *HASHP is not NULL, the caller has already looked up
1429
     the hash table entry, and stored it in *HASHP.  */
1430
 
1431
bfd_boolean
1432
_bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1433
				  bfd *abfd,
1434
				  const char *name,
1435
				  flagword flags,
1436
				  asection *section,
1437
				  bfd_vma value,
1438
				  const char *string,
1439
				  bfd_boolean copy,
1440
				  bfd_boolean collect,
1441
				  struct bfd_link_hash_entry **hashp)
1442
{
1443
  enum link_row row;
1444
  struct bfd_link_hash_entry *h;
6324 serge 1445
  struct bfd_link_hash_entry *inh = NULL;
5197 serge 1446
  bfd_boolean cycle;
1447
 
1448
  BFD_ASSERT (section != NULL);
1449
 
1450
  if (bfd_is_ind_section (section)
1451
      || (flags & BSF_INDIRECT) != 0)
6324 serge 1452
    {
5197 serge 1453
    row = INDR_ROW;
6324 serge 1454
      /* Create the indirect symbol here.  This is for the benefit of
1455
	 the plugin "notice" function.
1456
	 STRING is the name of the symbol we want to indirect to.  */
1457
      inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1458
					  copy, FALSE);
1459
      if (inh == NULL)
1460
	return FALSE;
1461
    }
5197 serge 1462
  else if ((flags & BSF_WARNING) != 0)
1463
    row = WARN_ROW;
1464
  else if ((flags & BSF_CONSTRUCTOR) != 0)
1465
    row = SET_ROW;
1466
  else if (bfd_is_und_section (section))
1467
    {
1468
      if ((flags & BSF_WEAK) != 0)
1469
	row = UNDEFW_ROW;
1470
      else
1471
	row = UNDEF_ROW;
1472
    }
1473
  else if ((flags & BSF_WEAK) != 0)
1474
    row = DEFW_ROW;
1475
  else if (bfd_is_com_section (section))
6324 serge 1476
    {
5197 serge 1477
    row = COMMON_ROW;
6324 serge 1478
      if (strcmp (name, "__gnu_lto_slim") == 0)
1479
	(*_bfd_error_handler)
1480
	  (_("%s: plugin needed to handle lto object"),
1481
	   bfd_get_filename (abfd));
1482
    }
5197 serge 1483
  else
1484
    row = DEF_ROW;
1485
 
1486
  if (hashp != NULL && *hashp != NULL)
1487
    h = *hashp;
1488
  else
1489
    {
1490
      if (row == UNDEF_ROW || row == UNDEFW_ROW)
1491
	h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1492
      else
1493
	h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1494
      if (h == NULL)
1495
	{
1496
	  if (hashp != NULL)
1497
	    *hashp = NULL;
1498
	  return FALSE;
1499
	}
1500
    }
1501
 
1502
  if (info->notice_all
1503
      || (info->notice_hash != NULL
1504
	  && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1505
    {
6324 serge 1506
      if (! (*info->callbacks->notice) (info, h, inh,
1507
					abfd, section, value, flags))
5197 serge 1508
	return FALSE;
1509
    }
1510
 
1511
  if (hashp != NULL)
1512
    *hashp = h;
1513
 
1514
  do
1515
    {
1516
      enum link_action action;
1517
 
1518
      cycle = FALSE;
1519
      action = link_action[(int) row][(int) h->type];
1520
      switch (action)
1521
	{
1522
	case FAIL:
1523
	  abort ();
1524
 
1525
	case NOACT:
1526
	  /* Do nothing.  */
1527
	  break;
1528
 
1529
	case UND:
1530
	  /* Make a new undefined symbol.  */
1531
	  h->type = bfd_link_hash_undefined;
1532
	  h->u.undef.abfd = abfd;
1533
	  bfd_link_add_undef (info->hash, h);
1534
	  break;
1535
 
1536
	case WEAK:
1537
	  /* Make a new weak undefined symbol.  */
1538
	  h->type = bfd_link_hash_undefweak;
1539
	  h->u.undef.abfd = abfd;
1540
	  break;
1541
 
1542
	case CDEF:
1543
	  /* We have found a definition for a symbol which was
1544
	     previously common.  */
1545
	  BFD_ASSERT (h->type == bfd_link_hash_common);
1546
	  if (! ((*info->callbacks->multiple_common)
1547
		 (info, h, abfd, bfd_link_hash_defined, 0)))
1548
	    return FALSE;
1549
	  /* Fall through.  */
1550
	case DEF:
1551
	case DEFW:
1552
	  {
1553
	    enum bfd_link_hash_type oldtype;
1554
 
1555
	    /* Define a symbol.  */
1556
	    oldtype = h->type;
1557
	    if (action == DEFW)
1558
	      h->type = bfd_link_hash_defweak;
1559
	    else
1560
	      h->type = bfd_link_hash_defined;
1561
	    h->u.def.section = section;
1562
	    h->u.def.value = value;
6324 serge 1563
	    h->linker_def = 0;
5197 serge 1564
 
1565
	    /* If we have been asked to, we act like collect2 and
1566
	       identify all functions that might be global
1567
	       constructors and destructors and pass them up in a
1568
	       callback.  We only do this for certain object file
1569
	       types, since many object file types can handle this
1570
	       automatically.  */
1571
	    if (collect && name[0] == '_')
1572
	      {
1573
		const char *s;
1574
 
1575
		/* A constructor or destructor name starts like this:
1576
		   _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1577
		   the second are the same character (we accept any
1578
		   character there, in case a new object file format
1579
		   comes along with even worse naming restrictions).  */
1580
 
1581
#define CONS_PREFIX "GLOBAL_"
1582
#define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1583
 
1584
		s = name + 1;
1585
		while (*s == '_')
1586
		  ++s;
1587
		if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX))
1588
		  {
1589
		    char c;
1590
 
1591
		    c = s[CONS_PREFIX_LEN + 1];
1592
		    if ((c == 'I' || c == 'D')
1593
			&& s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1594
		      {
1595
			/* If this is a definition of a symbol which
1596
                           was previously weakly defined, we are in
1597
                           trouble.  We have already added a
1598
                           constructor entry for the weak defined
1599
                           symbol, and now we are trying to add one
1600
                           for the new symbol.  Fortunately, this case
1601
                           should never arise in practice.  */
1602
			if (oldtype == bfd_link_hash_defweak)
1603
			  abort ();
1604
 
1605
			if (! ((*info->callbacks->constructor)
1606
			       (info, c == 'I',
1607
				h->root.string, abfd, section, value)))
1608
			  return FALSE;
1609
		      }
1610
		  }
1611
	      }
1612
	  }
1613
 
1614
	  break;
1615
 
1616
	case COM:
1617
	  /* We have found a common definition for a symbol.  */
1618
	  if (h->type == bfd_link_hash_new)
1619
	    bfd_link_add_undef (info->hash, h);
1620
	  h->type = bfd_link_hash_common;
1621
	  h->u.c.p = (struct bfd_link_hash_common_entry *)
1622
	    bfd_hash_allocate (&info->hash->table,
1623
			       sizeof (struct bfd_link_hash_common_entry));
1624
	  if (h->u.c.p == NULL)
1625
	    return FALSE;
1626
 
1627
	  h->u.c.size = value;
1628
 
1629
	  /* Select a default alignment based on the size.  This may
1630
             be overridden by the caller.  */
1631
	  {
1632
	    unsigned int power;
1633
 
1634
	    power = bfd_log2 (value);
1635
	    if (power > 4)
1636
	      power = 4;
1637
	    h->u.c.p->alignment_power = power;
1638
	  }
1639
 
1640
	  /* The section of a common symbol is only used if the common
1641
             symbol is actually allocated.  It basically provides a
1642
             hook for the linker script to decide which output section
1643
             the common symbols should be put in.  In most cases, the
1644
             section of a common symbol will be bfd_com_section_ptr,
1645
             the code here will choose a common symbol section named
1646
             "COMMON", and the linker script will contain *(COMMON) in
1647
             the appropriate place.  A few targets use separate common
1648
             sections for small symbols, and they require special
1649
             handling.  */
1650
	  if (section == bfd_com_section_ptr)
1651
	    {
1652
	      h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1653
	      h->u.c.p->section->flags |= SEC_ALLOC;
1654
	    }
1655
	  else if (section->owner != abfd)
1656
	    {
1657
	      h->u.c.p->section = bfd_make_section_old_way (abfd,
1658
							    section->name);
1659
	      h->u.c.p->section->flags |= SEC_ALLOC;
1660
	    }
1661
	  else
1662
	    h->u.c.p->section = section;
6324 serge 1663
	  h->linker_def = 0;
5197 serge 1664
	  break;
1665
 
1666
	case REF:
1667
	  /* A reference to a defined symbol.  */
1668
	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1669
	    h->u.undef.next = h;
1670
	  break;
1671
 
1672
	case BIG:
1673
	  /* We have found a common definition for a symbol which
1674
	     already had a common definition.  Use the maximum of the
1675
	     two sizes, and use the section required by the larger symbol.  */
1676
	  BFD_ASSERT (h->type == bfd_link_hash_common);
1677
	  if (! ((*info->callbacks->multiple_common)
1678
		 (info, h, abfd, bfd_link_hash_common, value)))
1679
	    return FALSE;
1680
	  if (value > h->u.c.size)
1681
	    {
1682
	      unsigned int power;
1683
 
1684
	      h->u.c.size = value;
1685
 
1686
	      /* Select a default alignment based on the size.  This may
1687
		 be overridden by the caller.  */
1688
	      power = bfd_log2 (value);
1689
	      if (power > 4)
1690
		power = 4;
1691
	      h->u.c.p->alignment_power = power;
1692
 
1693
	      /* Some systems have special treatment for small commons,
1694
		 hence we want to select the section used by the larger
1695
		 symbol.  This makes sure the symbol does not go in a
1696
		 small common section if it is now too large.  */
1697
	      if (section == bfd_com_section_ptr)
1698
		{
1699
		  h->u.c.p->section
1700
		    = bfd_make_section_old_way (abfd, "COMMON");
1701
		  h->u.c.p->section->flags |= SEC_ALLOC;
1702
		}
1703
	      else if (section->owner != abfd)
1704
		{
1705
		  h->u.c.p->section
1706
		    = bfd_make_section_old_way (abfd, section->name);
1707
		  h->u.c.p->section->flags |= SEC_ALLOC;
1708
		}
1709
	      else
1710
		h->u.c.p->section = section;
1711
	    }
1712
	  break;
1713
 
1714
	case CREF:
1715
	  /* We have found a common definition for a symbol which
1716
	     was already defined.  */
1717
	  if (! ((*info->callbacks->multiple_common)
1718
		 (info, h, abfd, bfd_link_hash_common, value)))
1719
	    return FALSE;
1720
	  break;
1721
 
1722
	case MIND:
1723
	  /* Multiple indirect symbols.  This is OK if they both point
1724
	     to the same symbol.  */
1725
	  if (strcmp (h->u.i.link->root.string, string) == 0)
1726
	    break;
1727
	  /* Fall through.  */
1728
	case MDEF:
1729
	  /* Handle a multiple definition.  */
1730
	  if (! ((*info->callbacks->multiple_definition)
1731
		 (info, h, abfd, section, value)))
1732
	    return FALSE;
1733
	  break;
1734
 
1735
	case CIND:
1736
	  /* Create an indirect symbol from an existing common symbol.  */
1737
	  BFD_ASSERT (h->type == bfd_link_hash_common);
1738
	  if (! ((*info->callbacks->multiple_common)
1739
		 (info, h, abfd, bfd_link_hash_indirect, 0)))
1740
	    return FALSE;
1741
	  /* Fall through.  */
1742
	case IND:
1743
	    if (inh->type == bfd_link_hash_indirect
1744
		&& inh->u.i.link == h)
1745
	      {
1746
		(*_bfd_error_handler)
1747
		  (_("%B: indirect symbol `%s' to `%s' is a loop"),
1748
		   abfd, name, string);
1749
		bfd_set_error (bfd_error_invalid_operation);
1750
		return FALSE;
1751
	      }
1752
	    if (inh->type == bfd_link_hash_new)
1753
	      {
1754
		inh->type = bfd_link_hash_undefined;
1755
		inh->u.undef.abfd = abfd;
1756
		bfd_link_add_undef (info->hash, inh);
1757
	      }
1758
 
1759
	    /* If the indirect symbol has been referenced, we need to
6324 serge 1760
	     push the reference down to the symbol we are referencing.  */
5197 serge 1761
	    if (h->type != bfd_link_hash_new)
1762
	      {
6324 serge 1763
	      /* ??? If inh->type == bfd_link_hash_undefweak this
1764
		 converts inh to bfd_link_hash_undefined.  */
5197 serge 1765
		row = UNDEF_ROW;
1766
		cycle = TRUE;
1767
	      }
1768
 
1769
	    h->type = bfd_link_hash_indirect;
1770
	    h->u.i.link = inh;
6324 serge 1771
	  /* Not setting h = h->u.i.link here means that when cycle is
1772
	     set above we'll always go to REFC, and then cycle again
1773
	     to the indirected symbol.  This means that any successful
1774
	     change of an existing symbol to indirect counts as a
1775
	     reference.  ??? That may not be correct when the existing
1776
	     symbol was defweak.  */
5197 serge 1777
	  break;
1778
 
1779
	case SET:
1780
	  /* Add an entry to a set.  */
1781
	  if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1782
						abfd, section, value))
1783
	    return FALSE;
1784
	  break;
1785
 
1786
	case WARNC:
6324 serge 1787
	  /* Issue a warning and cycle, except when the reference is
1788
	     in LTO IR.  */
1789
	  if (h->u.i.warning != NULL
1790
	      && (abfd->flags & BFD_PLUGIN) == 0)
5197 serge 1791
	    {
1792
	      if (! (*info->callbacks->warning) (info, h->u.i.warning,
1793
						 h->root.string, abfd,
1794
						 NULL, 0))
1795
		return FALSE;
1796
	      /* Only issue a warning once.  */
1797
	      h->u.i.warning = NULL;
1798
	    }
1799
	  /* Fall through.  */
1800
	case CYCLE:
1801
	  /* Try again with the referenced symbol.  */
1802
	  h = h->u.i.link;
1803
	  cycle = TRUE;
1804
	  break;
1805
 
1806
	case REFC:
1807
	  /* A reference to an indirect symbol.  */
1808
	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1809
	    h->u.undef.next = h;
1810
	  h = h->u.i.link;
1811
	  cycle = TRUE;
1812
	  break;
1813
 
1814
	case WARN:
6324 serge 1815
	  /* Warn if this symbol has been referenced already from non-IR,
1816
	     otherwise add a warning.  */
1817
	  if ((!info->lto_plugin_active
1818
	       && (h->u.undef.next != NULL || info->hash->undefs_tail == h))
1819
	      || h->non_ir_ref)
5197 serge 1820
	    {
1821
	      if (! (*info->callbacks->warning) (info, string, h->root.string,
1822
						 hash_entry_bfd (h), NULL, 0))
1823
		return FALSE;
1824
	      break;
1825
	    }
1826
	  /* Fall through.  */
1827
	case MWARN:
1828
	  /* Make a warning symbol.  */
1829
	  {
1830
	    struct bfd_link_hash_entry *sub;
1831
 
1832
	    /* STRING is the warning to give.  */
1833
	    sub = ((struct bfd_link_hash_entry *)
1834
		   ((*info->hash->table.newfunc)
1835
		    (NULL, &info->hash->table, h->root.string)));
1836
	    if (sub == NULL)
1837
	      return FALSE;
1838
	    *sub = *h;
1839
	    sub->type = bfd_link_hash_warning;
1840
	    sub->u.i.link = h;
1841
	    if (! copy)
1842
	      sub->u.i.warning = string;
1843
	    else
1844
	      {
1845
		char *w;
1846
		size_t len = strlen (string) + 1;
1847
 
1848
		w = (char *) bfd_hash_allocate (&info->hash->table, len);
1849
		if (w == NULL)
1850
		  return FALSE;
1851
		memcpy (w, string, len);
1852
		sub->u.i.warning = w;
1853
	      }
1854
 
1855
	    bfd_hash_replace (&info->hash->table,
1856
			      (struct bfd_hash_entry *) h,
1857
			      (struct bfd_hash_entry *) sub);
1858
	    if (hashp != NULL)
1859
	      *hashp = sub;
1860
	  }
1861
	  break;
1862
	}
1863
    }
1864
  while (cycle);
1865
 
1866
  return TRUE;
1867
}
1868
 
1869
/* Generic final link routine.  */
1870
 
1871
bfd_boolean
1872
_bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
1873
{
1874
  bfd *sub;
1875
  asection *o;
1876
  struct bfd_link_order *p;
1877
  size_t outsymalloc;
1878
  struct generic_write_global_symbol_info wginfo;
1879
 
1880
  bfd_get_outsymbols (abfd) = NULL;
1881
  bfd_get_symcount (abfd) = 0;
1882
  outsymalloc = 0;
1883
 
1884
  /* Mark all sections which will be included in the output file.  */
1885
  for (o = abfd->sections; o != NULL; o = o->next)
1886
    for (p = o->map_head.link_order; p != NULL; p = p->next)
1887
      if (p->type == bfd_indirect_link_order)
1888
	p->u.indirect.section->linker_mark = TRUE;
1889
 
1890
  /* Build the output symbol table.  */
6324 serge 1891
  for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
5197 serge 1892
    if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1893
      return FALSE;
1894
 
1895
  /* Accumulate the global symbols.  */
1896
  wginfo.info = info;
1897
  wginfo.output_bfd = abfd;
1898
  wginfo.psymalloc = &outsymalloc;
1899
  _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1900
				   _bfd_generic_link_write_global_symbol,
1901
				   &wginfo);
1902
 
1903
  /* Make sure we have a trailing NULL pointer on OUTSYMBOLS.  We
1904
     shouldn't really need one, since we have SYMCOUNT, but some old
1905
     code still expects one.  */
1906
  if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
1907
    return FALSE;
1908
 
6324 serge 1909
  if (bfd_link_relocatable (info))
5197 serge 1910
    {
1911
      /* Allocate space for the output relocs for each section.  */
1912
      for (o = abfd->sections; o != NULL; o = o->next)
1913
	{
1914
	  o->reloc_count = 0;
1915
	  for (p = o->map_head.link_order; p != NULL; p = p->next)
1916
	    {
1917
	      if (p->type == bfd_section_reloc_link_order
1918
		  || p->type == bfd_symbol_reloc_link_order)
1919
		++o->reloc_count;
1920
	      else if (p->type == bfd_indirect_link_order)
1921
		{
1922
		  asection *input_section;
1923
		  bfd *input_bfd;
1924
		  long relsize;
1925
		  arelent **relocs;
1926
		  asymbol **symbols;
1927
		  long reloc_count;
1928
 
1929
		  input_section = p->u.indirect.section;
1930
		  input_bfd = input_section->owner;
1931
		  relsize = bfd_get_reloc_upper_bound (input_bfd,
1932
						       input_section);
1933
		  if (relsize < 0)
1934
		    return FALSE;
1935
		  relocs = (arelent **) bfd_malloc (relsize);
1936
		  if (!relocs && relsize != 0)
1937
		    return FALSE;
1938
		  symbols = _bfd_generic_link_get_symbols (input_bfd);
1939
		  reloc_count = bfd_canonicalize_reloc (input_bfd,
1940
							input_section,
1941
							relocs,
1942
							symbols);
1943
		  free (relocs);
1944
		  if (reloc_count < 0)
1945
		    return FALSE;
1946
		  BFD_ASSERT ((unsigned long) reloc_count
1947
			      == input_section->reloc_count);
1948
		  o->reloc_count += reloc_count;
1949
		}
1950
	    }
1951
	  if (o->reloc_count > 0)
1952
	    {
1953
	      bfd_size_type amt;
1954
 
1955
	      amt = o->reloc_count;
1956
	      amt *= sizeof (arelent *);
1957
	      o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt);
1958
	      if (!o->orelocation)
1959
		return FALSE;
1960
	      o->flags |= SEC_RELOC;
1961
	      /* Reset the count so that it can be used as an index
1962
		 when putting in the output relocs.  */
1963
	      o->reloc_count = 0;
1964
	    }
1965
	}
1966
    }
1967
 
1968
  /* Handle all the link order information for the sections.  */
1969
  for (o = abfd->sections; o != NULL; o = o->next)
1970
    {
1971
      for (p = o->map_head.link_order; p != NULL; p = p->next)
1972
	{
1973
	  switch (p->type)
1974
	    {
1975
	    case bfd_section_reloc_link_order:
1976
	    case bfd_symbol_reloc_link_order:
1977
	      if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
1978
		return FALSE;
1979
	      break;
1980
	    case bfd_indirect_link_order:
1981
	      if (! default_indirect_link_order (abfd, info, o, p, TRUE))
1982
		return FALSE;
1983
	      break;
1984
	    default:
1985
	      if (! _bfd_default_link_order (abfd, info, o, p))
1986
		return FALSE;
1987
	      break;
1988
	    }
1989
	}
1990
    }
1991
 
1992
  return TRUE;
1993
}
1994
 
1995
/* Add an output symbol to the output BFD.  */
1996
 
1997
static bfd_boolean
1998
generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
1999
{
2000
  if (bfd_get_symcount (output_bfd) >= *psymalloc)
2001
    {
2002
      asymbol **newsyms;
2003
      bfd_size_type amt;
2004
 
2005
      if (*psymalloc == 0)
2006
	*psymalloc = 124;
2007
      else
2008
	*psymalloc *= 2;
2009
      amt = *psymalloc;
2010
      amt *= sizeof (asymbol *);
2011
      newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
2012
      if (newsyms == NULL)
2013
	return FALSE;
2014
      bfd_get_outsymbols (output_bfd) = newsyms;
2015
    }
2016
 
2017
  bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2018
  if (sym != NULL)
2019
    ++ bfd_get_symcount (output_bfd);
2020
 
2021
  return TRUE;
2022
}
2023
 
2024
/* Handle the symbols for an input BFD.  */
2025
 
2026
bfd_boolean
2027
_bfd_generic_link_output_symbols (bfd *output_bfd,
2028
				  bfd *input_bfd,
2029
				  struct bfd_link_info *info,
2030
				  size_t *psymalloc)
2031
{
2032
  asymbol **sym_ptr;
2033
  asymbol **sym_end;
2034
 
2035
  if (!bfd_generic_link_read_symbols (input_bfd))
2036
    return FALSE;
2037
 
2038
  /* Create a filename symbol if we are supposed to.  */
2039
  if (info->create_object_symbols_section != NULL)
2040
    {
2041
      asection *sec;
2042
 
2043
      for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
2044
	{
2045
	  if (sec->output_section == info->create_object_symbols_section)
2046
	    {
2047
	      asymbol *newsym;
2048
 
2049
	      newsym = bfd_make_empty_symbol (input_bfd);
2050
	      if (!newsym)
2051
		return FALSE;
2052
	      newsym->name = input_bfd->filename;
2053
	      newsym->value = 0;
2054
	      newsym->flags = BSF_LOCAL | BSF_FILE;
2055
	      newsym->section = sec;
2056
 
2057
	      if (! generic_add_output_symbol (output_bfd, psymalloc,
2058
					       newsym))
2059
		return FALSE;
2060
 
2061
	      break;
2062
	    }
2063
	}
2064
    }
2065
 
2066
  /* Adjust the values of the globally visible symbols, and write out
2067
     local symbols.  */
2068
  sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2069
  sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2070
  for (; sym_ptr < sym_end; sym_ptr++)
2071
    {
2072
      asymbol *sym;
2073
      struct generic_link_hash_entry *h;
2074
      bfd_boolean output;
2075
 
2076
      h = NULL;
2077
      sym = *sym_ptr;
2078
      if ((sym->flags & (BSF_INDIRECT
2079
			 | BSF_WARNING
2080
			 | BSF_GLOBAL
2081
			 | BSF_CONSTRUCTOR
2082
			 | BSF_WEAK)) != 0
2083
	  || bfd_is_und_section (bfd_get_section (sym))
2084
	  || bfd_is_com_section (bfd_get_section (sym))
2085
	  || bfd_is_ind_section (bfd_get_section (sym)))
2086
	{
2087
	  if (sym->udata.p != NULL)
2088
	    h = (struct generic_link_hash_entry *) sym->udata.p;
2089
	  else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2090
	    {
2091
	      /* This case normally means that the main linker code
2092
                 deliberately ignored this constructor symbol.  We
2093
                 should just pass it through.  This will screw up if
2094
                 the constructor symbol is from a different,
2095
                 non-generic, object file format, but the case will
2096
                 only arise when linking with -r, which will probably
2097
                 fail anyhow, since there will be no way to represent
2098
                 the relocs in the output format being used.  */
2099
	      h = NULL;
2100
	    }
2101
	  else if (bfd_is_und_section (bfd_get_section (sym)))
2102
	    h = ((struct generic_link_hash_entry *)
2103
		 bfd_wrapped_link_hash_lookup (output_bfd, info,
2104
					       bfd_asymbol_name (sym),
2105
					       FALSE, FALSE, TRUE));
2106
	  else
2107
	    h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2108
					       bfd_asymbol_name (sym),
2109
					       FALSE, FALSE, TRUE);
2110
 
2111
	  if (h != NULL)
2112
	    {
2113
	      /* Force all references to this symbol to point to
2114
		 the same area in memory.  It is possible that
2115
		 this routine will be called with a hash table
2116
		 other than a generic hash table, so we double
2117
		 check that.  */
2118
	      if (info->output_bfd->xvec == input_bfd->xvec)
2119
		{
2120
		  if (h->sym != NULL)
2121
		    *sym_ptr = sym = h->sym;
2122
		}
2123
 
2124
	      switch (h->root.type)
2125
		{
2126
		default:
2127
		case bfd_link_hash_new:
2128
		  abort ();
2129
		case bfd_link_hash_undefined:
2130
		  break;
2131
		case bfd_link_hash_undefweak:
2132
		  sym->flags |= BSF_WEAK;
2133
		  break;
2134
		case bfd_link_hash_indirect:
2135
		  h = (struct generic_link_hash_entry *) h->root.u.i.link;
2136
		  /* fall through */
2137
		case bfd_link_hash_defined:
2138
		  sym->flags |= BSF_GLOBAL;
6324 serge 2139
		  sym->flags &=~ (BSF_WEAK | BSF_CONSTRUCTOR);
5197 serge 2140
		  sym->value = h->root.u.def.value;
2141
		  sym->section = h->root.u.def.section;
2142
		  break;
2143
		case bfd_link_hash_defweak:
2144
		  sym->flags |= BSF_WEAK;
2145
		  sym->flags &=~ BSF_CONSTRUCTOR;
2146
		  sym->value = h->root.u.def.value;
2147
		  sym->section = h->root.u.def.section;
2148
		  break;
2149
		case bfd_link_hash_common:
2150
		  sym->value = h->root.u.c.size;
2151
		  sym->flags |= BSF_GLOBAL;
2152
		  if (! bfd_is_com_section (sym->section))
2153
		    {
2154
		      BFD_ASSERT (bfd_is_und_section (sym->section));
2155
		      sym->section = bfd_com_section_ptr;
2156
		    }
2157
		  /* We do not set the section of the symbol to
2158
		     h->root.u.c.p->section.  That value was saved so
2159
		     that we would know where to allocate the symbol
2160
		     if it was defined.  In this case the type is
2161
		     still bfd_link_hash_common, so we did not define
2162
		     it, so we do not want to use that section.  */
2163
		  break;
2164
		}
2165
	    }
2166
	}
2167
 
2168
      /* This switch is straight from the old code in
2169
	 write_file_locals in ldsym.c.  */
2170
      if (info->strip == strip_all
2171
	  || (info->strip == strip_some
2172
	      && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2173
				  FALSE, FALSE) == NULL))
2174
	output = FALSE;
2175
      else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2176
	{
2177
	  /* If this symbol is marked as occurring now, rather
2178
	     than at the end, output it now.  This is used for
2179
	     COFF C_EXT FCN symbols.  FIXME: There must be a
2180
	     better way.  */
2181
	  if (bfd_asymbol_bfd (sym) == input_bfd
2182
	      && (sym->flags & BSF_NOT_AT_END) != 0)
2183
	    output = TRUE;
2184
	  else
2185
	    output = FALSE;
2186
	}
2187
      else if (bfd_is_ind_section (sym->section))
2188
	output = FALSE;
2189
      else if ((sym->flags & BSF_DEBUGGING) != 0)
2190
	{
2191
	  if (info->strip == strip_none)
2192
	    output = TRUE;
2193
	  else
2194
	    output = FALSE;
2195
	}
2196
      else if (bfd_is_und_section (sym->section)
2197
	       || bfd_is_com_section (sym->section))
2198
	output = FALSE;
2199
      else if ((sym->flags & BSF_LOCAL) != 0)
2200
	{
2201
	  if ((sym->flags & BSF_WARNING) != 0)
2202
	    output = FALSE;
2203
	  else
2204
	    {
2205
	      switch (info->discard)
2206
		{
2207
		default:
2208
		case discard_all:
2209
		  output = FALSE;
2210
		  break;
2211
		case discard_sec_merge:
2212
		  output = TRUE;
6324 serge 2213
		  if (bfd_link_relocatable (info)
5197 serge 2214
		      || ! (sym->section->flags & SEC_MERGE))
2215
		    break;
2216
		  /* FALLTHROUGH */
2217
		case discard_l:
2218
		  if (bfd_is_local_label (input_bfd, sym))
2219
		    output = FALSE;
2220
		  else
2221
		    output = TRUE;
2222
		  break;
2223
		case discard_none:
2224
		  output = TRUE;
2225
		  break;
2226
		}
2227
	    }
2228
	}
2229
      else if ((sym->flags & BSF_CONSTRUCTOR))
2230
	{
2231
	  if (info->strip != strip_all)
2232
	    output = TRUE;
2233
	  else
2234
	    output = FALSE;
2235
	}
2236
      else if (sym->flags == 0
2237
	       && (sym->section->owner->flags & BFD_PLUGIN) != 0)
2238
	/* LTO doesn't set symbol information.  We get here with the
2239
	   generic linker for a symbol that was "common" but no longer
2240
	   needs to be global.  */
2241
	output = FALSE;
2242
      else
2243
	abort ();
2244
 
2245
      /* If this symbol is in a section which is not being included
2246
	 in the output file, then we don't want to output the
2247
	 symbol.  */
2248
      if (!bfd_is_abs_section (sym->section)
2249
	  && bfd_section_removed_from_list (output_bfd,
2250
					    sym->section->output_section))
2251
	output = FALSE;
2252
 
2253
      if (output)
2254
	{
2255
	  if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2256
	    return FALSE;
2257
	  if (h != NULL)
2258
	    h->written = TRUE;
2259
	}
2260
    }
2261
 
2262
  return TRUE;
2263
}
2264
 
2265
/* Set the section and value of a generic BFD symbol based on a linker
2266
   hash table entry.  */
2267
 
2268
static void
2269
set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2270
{
2271
  switch (h->type)
2272
    {
2273
    default:
2274
      abort ();
2275
      break;
2276
    case bfd_link_hash_new:
2277
      /* This can happen when a constructor symbol is seen but we are
2278
         not building constructors.  */
2279
      if (sym->section != NULL)
2280
	{
2281
	  BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2282
	}
2283
      else
2284
	{
2285
	  sym->flags |= BSF_CONSTRUCTOR;
2286
	  sym->section = bfd_abs_section_ptr;
2287
	  sym->value = 0;
2288
	}
2289
      break;
2290
    case bfd_link_hash_undefined:
2291
      sym->section = bfd_und_section_ptr;
2292
      sym->value = 0;
2293
      break;
2294
    case bfd_link_hash_undefweak:
2295
      sym->section = bfd_und_section_ptr;
2296
      sym->value = 0;
2297
      sym->flags |= BSF_WEAK;
2298
      break;
2299
    case bfd_link_hash_defined:
2300
      sym->section = h->u.def.section;
2301
      sym->value = h->u.def.value;
2302
      break;
2303
    case bfd_link_hash_defweak:
2304
      sym->flags |= BSF_WEAK;
2305
      sym->section = h->u.def.section;
2306
      sym->value = h->u.def.value;
2307
      break;
2308
    case bfd_link_hash_common:
2309
      sym->value = h->u.c.size;
2310
      if (sym->section == NULL)
2311
	sym->section = bfd_com_section_ptr;
2312
      else if (! bfd_is_com_section (sym->section))
2313
	{
2314
	  BFD_ASSERT (bfd_is_und_section (sym->section));
2315
	  sym->section = bfd_com_section_ptr;
2316
	}
2317
      /* Do not set the section; see _bfd_generic_link_output_symbols.  */
2318
      break;
2319
    case bfd_link_hash_indirect:
2320
    case bfd_link_hash_warning:
2321
      /* FIXME: What should we do here?  */
2322
      break;
2323
    }
2324
}
2325
 
2326
/* Write out a global symbol, if it hasn't already been written out.
2327
   This is called for each symbol in the hash table.  */
2328
 
2329
bfd_boolean
2330
_bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2331
				       void *data)
2332
{
2333
  struct generic_write_global_symbol_info *wginfo =
2334
      (struct generic_write_global_symbol_info *) data;
2335
  asymbol *sym;
2336
 
2337
  if (h->written)
2338
    return TRUE;
2339
 
2340
  h->written = TRUE;
2341
 
2342
  if (wginfo->info->strip == strip_all
2343
      || (wginfo->info->strip == strip_some
2344
	  && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2345
			      FALSE, FALSE) == NULL))
2346
    return TRUE;
2347
 
2348
  if (h->sym != NULL)
2349
    sym = h->sym;
2350
  else
2351
    {
2352
      sym = bfd_make_empty_symbol (wginfo->output_bfd);
2353
      if (!sym)
2354
	return FALSE;
2355
      sym->name = h->root.root.string;
2356
      sym->flags = 0;
2357
    }
2358
 
2359
  set_symbol_from_hash (sym, &h->root);
2360
 
2361
  sym->flags |= BSF_GLOBAL;
2362
 
2363
  if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2364
				   sym))
2365
    {
2366
      /* FIXME: No way to return failure.  */
2367
      abort ();
2368
    }
2369
 
2370
  return TRUE;
2371
}
2372
 
2373
/* Create a relocation.  */
2374
 
2375
bfd_boolean
2376
_bfd_generic_reloc_link_order (bfd *abfd,
2377
			       struct bfd_link_info *info,
2378
			       asection *sec,
2379
			       struct bfd_link_order *link_order)
2380
{
2381
  arelent *r;
2382
 
6324 serge 2383
  if (! bfd_link_relocatable (info))
5197 serge 2384
    abort ();
2385
  if (sec->orelocation == NULL)
2386
    abort ();
2387
 
2388
  r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2389
  if (r == NULL)
2390
    return FALSE;
2391
 
2392
  r->address = link_order->offset;
2393
  r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2394
  if (r->howto == 0)
2395
    {
2396
      bfd_set_error (bfd_error_bad_value);
2397
      return FALSE;
2398
    }
2399
 
2400
  /* Get the symbol to use for the relocation.  */
2401
  if (link_order->type == bfd_section_reloc_link_order)
2402
    r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2403
  else
2404
    {
2405
      struct generic_link_hash_entry *h;
2406
 
2407
      h = ((struct generic_link_hash_entry *)
2408
	   bfd_wrapped_link_hash_lookup (abfd, info,
2409
					 link_order->u.reloc.p->u.name,
2410
					 FALSE, FALSE, TRUE));
2411
      if (h == NULL
2412
	  || ! h->written)
2413
	{
2414
	  if (! ((*info->callbacks->unattached_reloc)
2415
		 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
2416
	    return FALSE;
2417
	  bfd_set_error (bfd_error_bad_value);
2418
	  return FALSE;
2419
	}
2420
      r->sym_ptr_ptr = &h->sym;
2421
    }
2422
 
2423
  /* If this is an inplace reloc, write the addend to the object file.
2424
     Otherwise, store it in the reloc addend.  */
2425
  if (! r->howto->partial_inplace)
2426
    r->addend = link_order->u.reloc.p->addend;
2427
  else
2428
    {
2429
      bfd_size_type size;
2430
      bfd_reloc_status_type rstat;
2431
      bfd_byte *buf;
2432
      bfd_boolean ok;
2433
      file_ptr loc;
2434
 
2435
      size = bfd_get_reloc_size (r->howto);
2436
      buf = (bfd_byte *) bfd_zmalloc (size);
6324 serge 2437
      if (buf == NULL && size != 0)
5197 serge 2438
	return FALSE;
2439
      rstat = _bfd_relocate_contents (r->howto, abfd,
2440
				      (bfd_vma) link_order->u.reloc.p->addend,
2441
				      buf);
2442
      switch (rstat)
2443
	{
2444
	case bfd_reloc_ok:
2445
	  break;
2446
	default:
2447
	case bfd_reloc_outofrange:
2448
	  abort ();
2449
	case bfd_reloc_overflow:
2450
	  if (! ((*info->callbacks->reloc_overflow)
2451
		 (info, NULL,
2452
		  (link_order->type == bfd_section_reloc_link_order
2453
		   ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2454
		   : link_order->u.reloc.p->u.name),
2455
		  r->howto->name, link_order->u.reloc.p->addend,
2456
		  NULL, NULL, 0)))
2457
	    {
2458
	      free (buf);
2459
	      return FALSE;
2460
	    }
2461
	  break;
2462
	}
2463
      loc = link_order->offset * bfd_octets_per_byte (abfd);
2464
      ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2465
      free (buf);
2466
      if (! ok)
2467
	return FALSE;
2468
 
2469
      r->addend = 0;
2470
    }
2471
 
2472
  sec->orelocation[sec->reloc_count] = r;
2473
  ++sec->reloc_count;
2474
 
2475
  return TRUE;
2476
}
2477
 
2478
/* Allocate a new link_order for a section.  */
2479
 
2480
struct bfd_link_order *
2481
bfd_new_link_order (bfd *abfd, asection *section)
2482
{
2483
  bfd_size_type amt = sizeof (struct bfd_link_order);
2484
  struct bfd_link_order *new_lo;
2485
 
2486
  new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
2487
  if (!new_lo)
2488
    return NULL;
2489
 
2490
  new_lo->type = bfd_undefined_link_order;
2491
 
2492
  if (section->map_tail.link_order != NULL)
2493
    section->map_tail.link_order->next = new_lo;
2494
  else
2495
    section->map_head.link_order = new_lo;
2496
  section->map_tail.link_order = new_lo;
2497
 
2498
  return new_lo;
2499
}
2500
 
2501
/* Default link order processing routine.  Note that we can not handle
2502
   the reloc_link_order types here, since they depend upon the details
2503
   of how the particular backends generates relocs.  */
2504
 
2505
bfd_boolean
2506
_bfd_default_link_order (bfd *abfd,
2507
			 struct bfd_link_info *info,
2508
			 asection *sec,
2509
			 struct bfd_link_order *link_order)
2510
{
2511
  switch (link_order->type)
2512
    {
2513
    case bfd_undefined_link_order:
2514
    case bfd_section_reloc_link_order:
2515
    case bfd_symbol_reloc_link_order:
2516
    default:
2517
      abort ();
2518
    case bfd_indirect_link_order:
2519
      return default_indirect_link_order (abfd, info, sec, link_order,
2520
					  FALSE);
2521
    case bfd_data_link_order:
2522
      return default_data_link_order (abfd, info, sec, link_order);
2523
    }
2524
}
2525
 
2526
/* Default routine to handle a bfd_data_link_order.  */
2527
 
2528
static bfd_boolean
2529
default_data_link_order (bfd *abfd,
2530
			 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2531
			 asection *sec,
2532
			 struct bfd_link_order *link_order)
2533
{
2534
  bfd_size_type size;
2535
  size_t fill_size;
2536
  bfd_byte *fill;
2537
  file_ptr loc;
2538
  bfd_boolean result;
2539
 
2540
  BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2541
 
2542
  size = link_order->size;
2543
  if (size == 0)
2544
    return TRUE;
2545
 
2546
  fill = link_order->u.data.contents;
2547
  fill_size = link_order->u.data.size;
2548
  if (fill_size == 0)
2549
    {
2550
      fill = abfd->arch_info->fill (size, bfd_big_endian (abfd),
2551
				    (sec->flags & SEC_CODE) != 0);
2552
      if (fill == NULL)
2553
	return FALSE;
2554
    }
2555
  else if (fill_size < size)
2556
    {
2557
      bfd_byte *p;
2558
      fill = (bfd_byte *) bfd_malloc (size);
2559
      if (fill == NULL)
2560
	return FALSE;
2561
      p = fill;
2562
      if (fill_size == 1)
2563
	memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2564
      else
2565
	{
2566
	  do
2567
	    {
2568
	      memcpy (p, link_order->u.data.contents, fill_size);
2569
	      p += fill_size;
2570
	      size -= fill_size;
2571
	    }
2572
	  while (size >= fill_size);
2573
	  if (size != 0)
2574
	    memcpy (p, link_order->u.data.contents, (size_t) size);
2575
	  size = link_order->size;
2576
	}
2577
    }
2578
 
2579
  loc = link_order->offset * bfd_octets_per_byte (abfd);
2580
  result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2581
 
2582
  if (fill != link_order->u.data.contents)
2583
    free (fill);
2584
  return result;
2585
}
2586
 
2587
/* Default routine to handle a bfd_indirect_link_order.  */
2588
 
2589
static bfd_boolean
2590
default_indirect_link_order (bfd *output_bfd,
2591
			     struct bfd_link_info *info,
2592
			     asection *output_section,
2593
			     struct bfd_link_order *link_order,
2594
			     bfd_boolean generic_linker)
2595
{
2596
  asection *input_section;
2597
  bfd *input_bfd;
2598
  bfd_byte *contents = NULL;
2599
  bfd_byte *new_contents;
2600
  bfd_size_type sec_size;
2601
  file_ptr loc;
2602
 
2603
  BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2604
 
2605
  input_section = link_order->u.indirect.section;
2606
  input_bfd = input_section->owner;
2607
  if (input_section->size == 0)
2608
    return TRUE;
2609
 
2610
  BFD_ASSERT (input_section->output_section == output_section);
2611
  BFD_ASSERT (input_section->output_offset == link_order->offset);
2612
  BFD_ASSERT (input_section->size == link_order->size);
2613
 
6324 serge 2614
  if (bfd_link_relocatable (info)
5197 serge 2615
      && input_section->reloc_count > 0
2616
      && output_section->orelocation == NULL)
2617
    {
2618
      /* Space has not been allocated for the output relocations.
2619
	 This can happen when we are called by a specific backend
2620
	 because somebody is attempting to link together different
2621
	 types of object files.  Handling this case correctly is
2622
	 difficult, and sometimes impossible.  */
2623
      (*_bfd_error_handler)
2624
	(_("Attempt to do relocatable link with %s input and %s output"),
2625
	 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2626
      bfd_set_error (bfd_error_wrong_format);
2627
      return FALSE;
2628
    }
2629
 
2630
  if (! generic_linker)
2631
    {
2632
      asymbol **sympp;
2633
      asymbol **symppend;
2634
 
2635
      /* Get the canonical symbols.  The generic linker will always
2636
	 have retrieved them by this point, but we are being called by
2637
	 a specific linker, presumably because we are linking
2638
	 different types of object files together.  */
2639
      if (!bfd_generic_link_read_symbols (input_bfd))
2640
	return FALSE;
2641
 
2642
      /* Since we have been called by a specific linker, rather than
2643
	 the generic linker, the values of the symbols will not be
2644
	 right.  They will be the values as seen in the input file,
2645
	 not the values of the final link.  We need to fix them up
2646
	 before we can relocate the section.  */
2647
      sympp = _bfd_generic_link_get_symbols (input_bfd);
2648
      symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2649
      for (; sympp < symppend; sympp++)
2650
	{
2651
	  asymbol *sym;
2652
	  struct bfd_link_hash_entry *h;
2653
 
2654
	  sym = *sympp;
2655
 
2656
	  if ((sym->flags & (BSF_INDIRECT
2657
			     | BSF_WARNING
2658
			     | BSF_GLOBAL
2659
			     | BSF_CONSTRUCTOR
2660
			     | BSF_WEAK)) != 0
2661
	      || bfd_is_und_section (bfd_get_section (sym))
2662
	      || bfd_is_com_section (bfd_get_section (sym))
2663
	      || bfd_is_ind_section (bfd_get_section (sym)))
2664
	    {
2665
	      /* sym->udata may have been set by
2666
		 generic_link_add_symbol_list.  */
2667
	      if (sym->udata.p != NULL)
2668
		h = (struct bfd_link_hash_entry *) sym->udata.p;
2669
	      else if (bfd_is_und_section (bfd_get_section (sym)))
2670
		h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2671
						  bfd_asymbol_name (sym),
2672
						  FALSE, FALSE, TRUE);
2673
	      else
2674
		h = bfd_link_hash_lookup (info->hash,
2675
					  bfd_asymbol_name (sym),
2676
					  FALSE, FALSE, TRUE);
2677
	      if (h != NULL)
2678
		set_symbol_from_hash (sym, h);
2679
	    }
2680
	}
2681
    }
2682
 
2683
  if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
2684
      && input_section->size != 0)
2685
    {
2686
      /* Group section contents are set by bfd_elf_set_group_contents.  */
2687
      if (!output_bfd->output_has_begun)
2688
	{
2689
	  /* FIXME: This hack ensures bfd_elf_set_group_contents is called.  */
2690
	  if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
2691
	    goto error_return;
2692
	}
2693
      new_contents = output_section->contents;
2694
      BFD_ASSERT (new_contents != NULL);
2695
      BFD_ASSERT (input_section->output_offset == 0);
2696
    }
2697
  else
2698
    {
2699
      /* Get and relocate the section contents.  */
2700
      sec_size = (input_section->rawsize > input_section->size
2701
		  ? input_section->rawsize
2702
		  : input_section->size);
2703
      contents = (bfd_byte *) bfd_malloc (sec_size);
2704
      if (contents == NULL && sec_size != 0)
2705
	goto error_return;
2706
      new_contents = (bfd_get_relocated_section_contents
2707
		      (output_bfd, info, link_order, contents,
6324 serge 2708
		       bfd_link_relocatable (info),
5197 serge 2709
		       _bfd_generic_link_get_symbols (input_bfd)));
2710
      if (!new_contents)
2711
	goto error_return;
2712
    }
2713
 
2714
  /* Output the section contents.  */
2715
  loc = input_section->output_offset * bfd_octets_per_byte (output_bfd);
2716
  if (! bfd_set_section_contents (output_bfd, output_section,
2717
				  new_contents, loc, input_section->size))
2718
    goto error_return;
2719
 
2720
  if (contents != NULL)
2721
    free (contents);
2722
  return TRUE;
2723
 
2724
 error_return:
2725
  if (contents != NULL)
2726
    free (contents);
2727
  return FALSE;
2728
}
2729
 
2730
/* A little routine to count the number of relocs in a link_order
2731
   list.  */
2732
 
2733
unsigned int
2734
_bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2735
{
2736
  register unsigned int c;
2737
  register struct bfd_link_order *l;
2738
 
2739
  c = 0;
2740
  for (l = link_order; l != NULL; l = l->next)
2741
    {
2742
      if (l->type == bfd_section_reloc_link_order
2743
	  || l->type == bfd_symbol_reloc_link_order)
2744
	++c;
2745
    }
2746
 
2747
  return c;
2748
}
2749
 
2750
/*
2751
FUNCTION
2752
	bfd_link_split_section
2753
 
2754
SYNOPSIS
2755
        bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2756
 
2757
DESCRIPTION
2758
	Return nonzero if @var{sec} should be split during a
2759
	reloceatable or final link.
2760
 
2761
.#define bfd_link_split_section(abfd, sec) \
2762
.       BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2763
.
2764
 
2765
*/
2766
 
2767
bfd_boolean
2768
_bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2769
				 asection *sec ATTRIBUTE_UNUSED)
2770
{
2771
  return FALSE;
2772
}
2773
 
2774
/*
2775
FUNCTION
2776
	bfd_section_already_linked
2777
 
2778
SYNOPSIS
2779
        bfd_boolean bfd_section_already_linked (bfd *abfd,
2780
						asection *sec,
2781
						struct bfd_link_info *info);
2782
 
2783
DESCRIPTION
2784
	Check if @var{data} has been already linked during a reloceatable
2785
	or final link.  Return TRUE if it has.
2786
 
2787
.#define bfd_section_already_linked(abfd, sec, info) \
2788
.       BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2789
.
2790
 
2791
*/
2792
 
2793
/* Sections marked with the SEC_LINK_ONCE flag should only be linked
2794
   once into the output.  This routine checks each section, and
2795
   arrange to discard it if a section of the same name has already
2796
   been linked.  This code assumes that all relevant sections have the
2797
   SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2798
   section name.  bfd_section_already_linked is called via
2799
   bfd_map_over_sections.  */
2800
 
2801
/* The hash table.  */
2802
 
2803
static struct bfd_hash_table _bfd_section_already_linked_table;
2804
 
2805
/* Support routines for the hash table used by section_already_linked,
2806
   initialize the table, traverse, lookup, fill in an entry and remove
2807
   the table.  */
2808
 
2809
void
2810
bfd_section_already_linked_table_traverse
2811
  (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2812
			void *), void *info)
2813
{
2814
  bfd_hash_traverse (&_bfd_section_already_linked_table,
2815
		     (bfd_boolean (*) (struct bfd_hash_entry *,
2816
				       void *)) func,
2817
		     info);
2818
}
2819
 
2820
struct bfd_section_already_linked_hash_entry *
2821
bfd_section_already_linked_table_lookup (const char *name)
2822
{
2823
  return ((struct bfd_section_already_linked_hash_entry *)
2824
	  bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2825
			   TRUE, FALSE));
2826
}
2827
 
2828
bfd_boolean
2829
bfd_section_already_linked_table_insert
2830
  (struct bfd_section_already_linked_hash_entry *already_linked_list,
2831
   asection *sec)
2832
{
2833
  struct bfd_section_already_linked *l;
2834
 
2835
  /* Allocate the memory from the same obstack as the hash table is
2836
     kept in.  */
2837
  l = (struct bfd_section_already_linked *)
2838
      bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2839
  if (l == NULL)
2840
    return FALSE;
2841
  l->sec = sec;
2842
  l->next = already_linked_list->entry;
2843
  already_linked_list->entry = l;
2844
  return TRUE;
2845
}
2846
 
2847
static struct bfd_hash_entry *
2848
already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2849
			struct bfd_hash_table *table,
2850
			const char *string ATTRIBUTE_UNUSED)
2851
{
2852
  struct bfd_section_already_linked_hash_entry *ret =
2853
    (struct bfd_section_already_linked_hash_entry *)
2854
      bfd_hash_allocate (table, sizeof *ret);
2855
 
2856
  if (ret == NULL)
2857
    return NULL;
2858
 
2859
  ret->entry = NULL;
2860
 
2861
  return &ret->root;
2862
}
2863
 
2864
bfd_boolean
2865
bfd_section_already_linked_table_init (void)
2866
{
2867
  return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2868
				already_linked_newfunc,
2869
				sizeof (struct bfd_section_already_linked_hash_entry),
2870
				42);
2871
}
2872
 
2873
void
2874
bfd_section_already_linked_table_free (void)
2875
{
2876
  bfd_hash_table_free (&_bfd_section_already_linked_table);
2877
}
2878
 
2879
/* Report warnings as appropriate for duplicate section SEC.
2880
   Return FALSE if we decide to keep SEC after all.  */
2881
 
2882
bfd_boolean
2883
_bfd_handle_already_linked (asection *sec,
2884
			    struct bfd_section_already_linked *l,
2885
			    struct bfd_link_info *info)
2886
{
2887
  switch (sec->flags & SEC_LINK_DUPLICATES)
2888
    {
2889
    default:
2890
      abort ();
2891
 
2892
    case SEC_LINK_DUPLICATES_DISCARD:
2893
      /* If we found an LTO IR match for this comdat group on
2894
	 the first pass, replace it with the LTO output on the
2895
	 second pass.  We can't simply choose real object
2896
	 files over IR because the first pass may contain a
2897
	 mix of LTO and normal objects and we must keep the
2898
	 first match, be it IR or real.  */
6324 serge 2899
      if (sec->owner->lto_output
5197 serge 2900
	  && (l->sec->owner->flags & BFD_PLUGIN) != 0)
2901
	{
2902
	  l->sec = sec;
2903
	  return FALSE;
2904
	}
2905
      break;
2906
 
2907
    case SEC_LINK_DUPLICATES_ONE_ONLY:
2908
      info->callbacks->einfo
2909
	(_("%B: ignoring duplicate section `%A'\n"),
2910
	 sec->owner, sec);
2911
      break;
2912
 
2913
    case SEC_LINK_DUPLICATES_SAME_SIZE:
2914
      if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2915
	;
2916
      else if (sec->size != l->sec->size)
2917
	info->callbacks->einfo
2918
	  (_("%B: duplicate section `%A' has different size\n"),
2919
	   sec->owner, sec);
2920
      break;
2921
 
2922
    case SEC_LINK_DUPLICATES_SAME_CONTENTS:
2923
      if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2924
	;
2925
      else if (sec->size != l->sec->size)
2926
	info->callbacks->einfo
2927
	  (_("%B: duplicate section `%A' has different size\n"),
2928
	   sec->owner, sec);
2929
      else if (sec->size != 0)
2930
	{
2931
	  bfd_byte *sec_contents, *l_sec_contents = NULL;
2932
 
2933
	  if (!bfd_malloc_and_get_section (sec->owner, sec, &sec_contents))
2934
	    info->callbacks->einfo
2935
	      (_("%B: could not read contents of section `%A'\n"),
2936
	       sec->owner, sec);
2937
	  else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
2938
						&l_sec_contents))
2939
	    info->callbacks->einfo
2940
	      (_("%B: could not read contents of section `%A'\n"),
2941
	       l->sec->owner, l->sec);
2942
	  else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
2943
	    info->callbacks->einfo
2944
	      (_("%B: duplicate section `%A' has different contents\n"),
2945
	       sec->owner, sec);
2946
 
2947
	  if (sec_contents)
2948
	    free (sec_contents);
2949
	  if (l_sec_contents)
2950
	    free (l_sec_contents);
2951
	}
2952
      break;
2953
    }
2954
 
2955
  /* Set the output_section field so that lang_add_section
2956
     does not create a lang_input_section structure for this
2957
     section.  Since there might be a symbol in the section
2958
     being discarded, we must retain a pointer to the section
2959
     which we are really going to use.  */
2960
  sec->output_section = bfd_abs_section_ptr;
2961
  sec->kept_section = l->sec;
2962
  return TRUE;
2963
}
2964
 
2965
/* This is used on non-ELF inputs.  */
2966
 
2967
bfd_boolean
2968
_bfd_generic_section_already_linked (bfd *abfd ATTRIBUTE_UNUSED,
2969
				     asection *sec,
2970
				     struct bfd_link_info *info)
2971
{
2972
  const char *name;
2973
  struct bfd_section_already_linked *l;
2974
  struct bfd_section_already_linked_hash_entry *already_linked_list;
2975
 
2976
  if ((sec->flags & SEC_LINK_ONCE) == 0)
2977
    return FALSE;
2978
 
2979
  /* The generic linker doesn't handle section groups.  */
2980
  if ((sec->flags & SEC_GROUP) != 0)
2981
    return FALSE;
2982
 
2983
  /* FIXME: When doing a relocatable link, we may have trouble
2984
     copying relocations in other sections that refer to local symbols
2985
     in the section being discarded.  Those relocations will have to
2986
     be converted somehow; as of this writing I'm not sure that any of
2987
     the backends handle that correctly.
2988
 
2989
     It is tempting to instead not discard link once sections when
2990
     doing a relocatable link (technically, they should be discarded
2991
     whenever we are building constructors).  However, that fails,
2992
     because the linker winds up combining all the link once sections
2993
     into a single large link once section, which defeats the purpose
2994
     of having link once sections in the first place.  */
2995
 
2996
  name = bfd_get_section_name (abfd, sec);
2997
 
2998
  already_linked_list = bfd_section_already_linked_table_lookup (name);
2999
 
3000
  l = already_linked_list->entry;
3001
  if (l != NULL)
3002
    {
3003
      /* The section has already been linked.  See if we should
3004
	 issue a warning.  */
3005
      return _bfd_handle_already_linked (sec, l, info);
3006
    }
3007
 
3008
  /* This is the first section with this name.  Record it.  */
3009
  if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
3010
    info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
3011
  return FALSE;
3012
}
3013
 
3014
/* Choose a neighbouring section to S in OBFD that will be output, or
3015
   the absolute section if ADDR is out of bounds of the neighbours.  */
3016
 
3017
asection *
3018
_bfd_nearby_section (bfd *obfd, asection *s, bfd_vma addr)
3019
{
3020
  asection *next, *prev, *best;
3021
 
3022
  /* Find preceding kept section.  */
3023
  for (prev = s->prev; prev != NULL; prev = prev->prev)
3024
    if ((prev->flags & SEC_EXCLUDE) == 0
3025
	&& !bfd_section_removed_from_list (obfd, prev))
3026
      break;
3027
 
3028
  /* Find following kept section.  Start at prev->next because
3029
     other sections may have been added after S was removed.  */
3030
  if (s->prev != NULL)
3031
    next = s->prev->next;
3032
  else
3033
    next = s->owner->sections;
3034
  for (; next != NULL; next = next->next)
3035
    if ((next->flags & SEC_EXCLUDE) == 0
3036
	&& !bfd_section_removed_from_list (obfd, next))
3037
      break;
3038
 
3039
  /* Choose better of two sections, based on flags.  The idea
3040
     is to choose a section that will be in the same segment
3041
     as S would have been if it was kept.  */
3042
  best = next;
3043
  if (prev == NULL)
3044
    {
3045
      if (next == NULL)
3046
	best = bfd_abs_section_ptr;
3047
    }
3048
  else if (next == NULL)
3049
    best = prev;
3050
  else if (((prev->flags ^ next->flags)
3051
	    & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0)
3052
    {
3053
      if (((next->flags ^ s->flags)
3054
	   & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0
3055
	  /* We prefer to choose a loaded section.  Section S
3056
	     doesn't have SEC_LOAD set (it being excluded, that
3057
	     part of the flag processing didn't happen) so we
3058
	     can't compare that flag to those of NEXT and PREV.  */
3059
	  || ((prev->flags & SEC_LOAD) != 0
3060
	      && (next->flags & SEC_LOAD) == 0))
3061
	best = prev;
3062
    }
3063
  else if (((prev->flags ^ next->flags) & SEC_READONLY) != 0)
3064
    {
3065
      if (((next->flags ^ s->flags) & SEC_READONLY) != 0)
3066
	best = prev;
3067
    }
3068
  else if (((prev->flags ^ next->flags) & SEC_CODE) != 0)
3069
    {
3070
      if (((next->flags ^ s->flags) & SEC_CODE) != 0)
3071
	best = prev;
3072
    }
3073
  else
3074
    {
3075
      /* Flags we care about are the same.  Prefer the following
3076
	 section if that will result in a positive valued sym.  */
3077
      if (addr < next->vma)
3078
	best = prev;
3079
    }
3080
 
3081
  return best;
3082
}
3083
 
3084
/* Convert symbols in excluded output sections to use a kept section.  */
3085
 
3086
static bfd_boolean
3087
fix_syms (struct bfd_link_hash_entry *h, void *data)
3088
{
3089
  bfd *obfd = (bfd *) data;
3090
 
3091
  if (h->type == bfd_link_hash_defined
3092
      || h->type == bfd_link_hash_defweak)
3093
    {
3094
      asection *s = h->u.def.section;
3095
      if (s != NULL
3096
	  && s->output_section != NULL
3097
	  && (s->output_section->flags & SEC_EXCLUDE) != 0
3098
	  && bfd_section_removed_from_list (obfd, s->output_section))
3099
	{
3100
	  asection *op;
3101
 
3102
	  h->u.def.value += s->output_offset + s->output_section->vma;
3103
	  op = _bfd_nearby_section (obfd, s->output_section, h->u.def.value);
3104
	  h->u.def.value -= op->vma;
3105
	  h->u.def.section = op;
3106
	}
3107
    }
3108
 
3109
  return TRUE;
3110
}
3111
 
3112
void
3113
_bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3114
{
3115
  bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3116
}
3117
 
3118
/*
3119
FUNCTION
3120
	bfd_generic_define_common_symbol
3121
 
3122
SYNOPSIS
3123
	bfd_boolean bfd_generic_define_common_symbol
3124
	  (bfd *output_bfd, struct bfd_link_info *info,
3125
	   struct bfd_link_hash_entry *h);
3126
 
3127
DESCRIPTION
3128
	Convert common symbol @var{h} into a defined symbol.
3129
	Return TRUE on success and FALSE on failure.
3130
 
3131
.#define bfd_define_common_symbol(output_bfd, info, h) \
3132
.       BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3133
.
3134
*/
3135
 
3136
bfd_boolean
3137
bfd_generic_define_common_symbol (bfd *output_bfd,
3138
				  struct bfd_link_info *info ATTRIBUTE_UNUSED,
3139
				  struct bfd_link_hash_entry *h)
3140
{
3141
  unsigned int power_of_two;
3142
  bfd_vma alignment, size;
3143
  asection *section;
3144
 
3145
  BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common);
3146
 
3147
  size = h->u.c.size;
3148
  power_of_two = h->u.c.p->alignment_power;
3149
  section = h->u.c.p->section;
3150
 
3151
  /* Increase the size of the section to align the common symbol.
3152
     The alignment must be a power of two.  */
3153
  alignment = bfd_octets_per_byte (output_bfd) << power_of_two;
3154
  BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment);
3155
  section->size += alignment - 1;
3156
  section->size &= -alignment;
3157
 
3158
  /* Adjust the section's overall alignment if necessary.  */
3159
  if (power_of_two > section->alignment_power)
3160
    section->alignment_power = power_of_two;
3161
 
3162
  /* Change the symbol from common to defined.  */
3163
  h->type = bfd_link_hash_defined;
3164
  h->u.def.section = section;
3165
  h->u.def.value = section->size;
3166
 
3167
  /* Increase the size of the section.  */
3168
  section->size += size;
3169
 
3170
  /* Make sure the section is allocated in memory, and make sure that
3171
     it is no longer a common section.  */
3172
  section->flags |= SEC_ALLOC;
3173
  section->flags &= ~SEC_IS_COMMON;
3174
  return TRUE;
3175
}
3176
 
3177
/*
3178
FUNCTION
3179
	bfd_find_version_for_sym
3180
 
3181
SYNOPSIS
3182
	struct bfd_elf_version_tree * bfd_find_version_for_sym
3183
	  (struct bfd_elf_version_tree *verdefs,
3184
	   const char *sym_name, bfd_boolean *hide);
3185
 
3186
DESCRIPTION
3187
	Search an elf version script tree for symbol versioning
3188
	info and export / don't-export status for a given symbol.
3189
	Return non-NULL on success and NULL on failure; also sets
3190
	the output @samp{hide} boolean parameter.
3191
 
3192
*/
3193
 
3194
struct bfd_elf_version_tree *
3195
bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs,
3196
			  const char *sym_name,
3197
			  bfd_boolean *hide)
3198
{
3199
  struct bfd_elf_version_tree *t;
3200
  struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
3201
  struct bfd_elf_version_tree *star_local_ver, *star_global_ver;
3202
 
3203
  local_ver = NULL;
3204
  global_ver = NULL;
3205
  star_local_ver = NULL;
3206
  star_global_ver = NULL;
3207
  exist_ver = NULL;
3208
  for (t = verdefs; t != NULL; t = t->next)
3209
    {
3210
      if (t->globals.list != NULL)
3211
	{
3212
	  struct bfd_elf_version_expr *d = NULL;
3213
 
3214
	  while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
3215
	    {
3216
	      if (d->literal || strcmp (d->pattern, "*") != 0)
3217
		global_ver = t;
3218
	      else
3219
		star_global_ver = t;
3220
	      if (d->symver)
3221
		exist_ver = t;
3222
	      d->script = 1;
3223
	      /* If the match is a wildcard pattern, keep looking for
3224
		 a more explicit, perhaps even local, match.  */
3225
	      if (d->literal)
3226
		break;
3227
	    }
3228
 
3229
	  if (d != NULL)
3230
	    break;
3231
	}
3232
 
3233
      if (t->locals.list != NULL)
3234
	{
3235
	  struct bfd_elf_version_expr *d = NULL;
3236
 
3237
	  while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
3238
	    {
3239
	      if (d->literal || strcmp (d->pattern, "*") != 0)
3240
		local_ver = t;
3241
	      else
3242
		star_local_ver = t;
3243
	      /* If the match is a wildcard pattern, keep looking for
3244
		 a more explicit, perhaps even global, match.  */
3245
	      if (d->literal)
3246
		{
3247
		  /* An exact match overrides a global wildcard.  */
3248
		  global_ver = NULL;
3249
		  star_global_ver = NULL;
3250
		  break;
3251
		}
3252
	    }
3253
 
3254
	  if (d != NULL)
3255
	    break;
3256
	}
3257
    }
3258
 
3259
  if (global_ver == NULL && local_ver == NULL)
3260
    global_ver = star_global_ver;
3261
 
3262
  if (global_ver != NULL)
3263
    {
3264
      /* If we already have a versioned symbol that matches the
3265
	 node for this symbol, then we don't want to create a
3266
	 duplicate from the unversioned symbol.  Instead hide the
3267
	 unversioned symbol.  */
3268
      *hide = exist_ver == global_ver;
3269
      return global_ver;
3270
    }
3271
 
3272
  if (local_ver == NULL)
3273
    local_ver = star_local_ver;
3274
 
3275
  if (local_ver != NULL)
3276
    {
3277
      *hide = TRUE;
3278
      return local_ver;
3279
    }
3280
 
3281
  return NULL;
3282
}
3283
 
3284
/*
3285
FUNCTION
3286
	bfd_hide_sym_by_version
3287
 
3288
SYNOPSIS
3289
	bfd_boolean bfd_hide_sym_by_version
3290
	  (struct bfd_elf_version_tree *verdefs, const char *sym_name);
3291
 
3292
DESCRIPTION
3293
	Search an elf version script tree for symbol versioning
3294
	info for a given symbol.  Return TRUE if the symbol is hidden.
3295
 
3296
*/
3297
 
3298
bfd_boolean
3299
bfd_hide_sym_by_version (struct bfd_elf_version_tree *verdefs,
3300
			 const char *sym_name)
3301
{
3302
  bfd_boolean hidden = FALSE;
3303
  bfd_find_version_for_sym (verdefs, sym_name, &hidden);
3304
  return hidden;
3305
}