Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4349 Serge 1
 
2
/*
3
 * ====================================================
4
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5
 *
6
 * Developed at SunPro, a Sun Microsystems, Inc. business.
7
 * Permission to use, copy, modify, and distribute this
8
 * software is freely granted, provided that this notice
9
 * is preserved.
10
 * ====================================================
11
 */
12
13
 
14
 * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
15
 * double x[],y[]; int e0,nx,prec; int ipio2[];
16
 *
17
 * __kernel_rem_pio2 return the last three digits of N with
18
 *		y = x - N*pi/2
19
 * so that |y| < pi/2.
20
 *
21
 * The method is to compute the integer (mod 8) and fraction parts of
22
 * (2/pi)*x without doing the full multiplication. In general we
23
 * skip the part of the product that are known to be a huge integer (
24
 * more accurately, = 0 mod 8 ). Thus the number of operations are
25
 * independent of the exponent of the input.
26
 *
27
 * (2/pi) is represented by an array of 24-bit integers in ipio2[].
28
 *
29
 * Input parameters:
30
 * 	x[]	The input value (must be positive) is broken into nx
31
 *		pieces of 24-bit integers in double precision format.
32
 *		x[i] will be the i-th 24 bit of x. The scaled exponent
33
 *		of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
34
 *		match x's up to 24 bits.
35
 *
36
 *		Example of breaking a double positive z into x[0]+x[1]+x[2]:
37
 *			e0 = ilogb(z)-23
38
 *			z  = scalbn(z,-e0)
39
 *		for i = 0,1,2
40
 *			x[i] = floor(z)
41
 *			z    = (z-x[i])*2**24
42
 *
43
 *
44
 *	y[]	ouput result in an array of double precision numbers.
45
 *		The dimension of y[] is:
46
 *			24-bit  precision	1
47
 *			53-bit  precision	2
48
 *			64-bit  precision	2
49
 *			113-bit precision	3
50
 *		The actual value is the sum of them. Thus for 113-bit
51
 *		precison, one may have to do something like:
52
 *
53
 *		long double t,w,r_head, r_tail;
54
 *		t = (long double)y[2] + (long double)y[1];
55
 *		w = (long double)y[0];
56
 *		r_head = t+w;
57
 *		r_tail = w - (r_head - t);
58
 *
59
 *	e0	The exponent of x[0]
60
 *
61
 *	nx	dimension of x[]
62
 *
63
 *  	prec	an integer indicating the precision:
64
 *			0	24  bits (single)
65
 *			1	53  bits (double)
66
 *			2	64  bits (extended)
67
 *			3	113 bits (quad)
68
 *
69
 *	ipio2[]
70
 *		integer array, contains the (24*i)-th to (24*i+23)-th
71
 *		bit of 2/pi after binary point. The corresponding
72
 *		floating value is
73
 *
74
 *			ipio2[i] * 2^(-24(i+1)).
75
 *
76
 * External function:
77
 *	double scalbn(), floor();
78
 *
79
 *
80
 * Here is the description of some local variables:
81
 *
82
 * 	jk	jk+1 is the initial number of terms of ipio2[] needed
83
 *		in the computation. The recommended value is 2,3,4,
84
 *		6 for single, double, extended,and quad.
85
 *
86
 * 	jz	local integer variable indicating the number of
87
 *		terms of ipio2[] used.
88
 *
89
 *	jx	nx - 1
90
 *
91
 *	jv	index for pointing to the suitable ipio2[] for the
92
 *		computation. In general, we want
93
 *			( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
94
 *		is an integer. Thus
95
 *			e0-3-24*jv >= 0 or (e0-3)/24 >= jv
96
 *		Hence jv = max(0,(e0-3)/24).
97
 *
98
 *	jp	jp+1 is the number of terms in PIo2[] needed, jp = jk.
99
 *
100
 * 	q[]	double array with integral value, representing the
101
 *		24-bits chunk of the product of x and 2/pi.
102
 *
103
 *	q0	the corresponding exponent of q[0]. Note that the
104
 *		exponent for q[i] would be q0-24*i.
105
 *
106
 *	PIo2[]	double precision array, obtained by cutting pi/2
107
 *		into 24 bits chunks.
108
 *
109
 *	f[]	ipio2[] in floating point
110
 *
111
 *	iq[]	integer array by breaking up q[] in 24-bits chunk.
112
 *
113
 *	fq[]	final product of x*(2/pi) in fq[0],..,fq[jk]
114
 *
115
 *	ih	integer. If >0 it indicates q[] is >= 0.5, hence
116
 *		it also indicates the *sign* of the result.
117
 *
118
 */
119
120
 
121
 
122
 * Constants:
123
 * The hexadecimal values are the intended ones for the following
124
 * constants. The decimal values may be used, provided that the
125
 * compiler will convert from decimal to binary accurately enough
126
 * to produce the hexadecimal values shown.
127
 */
128
129
 
130
131
 
132
133
 
134
static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
135
#else
136
static int init_jk[] = {2,3,4,6};
137
#endif
138
139
 
140
static const double PIo2[] = {
141
#else
142
static double PIo2[] = {
143
#endif
144
  1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
145
  7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
146
  5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
147
  3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
148
  1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
149
  1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
150
  2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
151
  2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
152
};
153
154
 
155
static const double
156
#else
157
static double
158
#endif
159
zero   = 0.0,
160
one    = 1.0,
161
two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
162
twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
163
164
 
165
	int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const __int32_t *ipio2)
166
#else
167
	int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
168
	double x[], y[]; int e0,nx,prec; __int32_t ipio2[];
169
#endif
170
{
171
	__int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
172
	double z,fw,f[20],fq[20],q[20];
173
174
 
175
	jk = init_jk[prec];
176
	jp = jk;
177
178
 
179
	jx =  nx-1;
180
	jv = (e0-3)/24; if(jv<0) jv=0;
181
	q0 =  e0-24*(jv+1);
182
183
 
184
	j = jv-jx; m = jx+jk;
185
	for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
186
187
 
188
	for (i=0;i<=jk;i++) {
189
	    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
190
	}
191
192
 
193
recompute:
194
    /* distill q[] into iq[] reversingly */
195
	for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
196
	    fw    =  (double)((__int32_t)(twon24* z));
197
	    iq[i] =  (__int32_t)(z-two24*fw);
198
	    z     =  q[j-1]+fw;
199
	}
200
201
 
202
	z  = scalbn(z,(int)q0);		/* actual value of z */
203
	z -= 8.0*floor(z*0.125);		/* trim off integer >= 8 */
204
	n  = (__int32_t) z;
205
	z -= (double)n;
206
	ih = 0;
207
	if(q0>0) {	/* need iq[jz-1] to determine n */
208
	    i  = (iq[jz-1]>>(24-q0)); n += i;
209
	    iq[jz-1] -= i<<(24-q0);
210
	    ih = iq[jz-1]>>(23-q0);
211
	}
212
	else if(q0==0) ih = iq[jz-1]>>23;
213
	else if(z>=0.5) ih=2;
214
215
 
216
	    n += 1; carry = 0;
217
	    for(i=0;i
218
		j = iq[i];
219
		if(carry==0) {
220
		    if(j!=0) {
221
			carry = 1; iq[i] = 0x1000000- j;
222
		    }
223
		} else  iq[i] = 0xffffff - j;
224
	    }
225
	    if(q0>0) {		/* rare case: chance is 1 in 12 */
226
	        switch(q0) {
227
	        case 1:
228
	    	   iq[jz-1] &= 0x7fffff; break;
229
	    	case 2:
230
	    	   iq[jz-1] &= 0x3fffff; break;
231
	        }
232
	    }
233
	    if(ih==2) {
234
		z = one - z;
235
		if(carry!=0) z -= scalbn(one,(int)q0);
236
	    }
237
	}
238
239
 
240
	if(z==zero) {
241
	    j = 0;
242
	    for (i=jz-1;i>=jk;i--) j |= iq[i];
243
	    if(j==0) { /* need recomputation */
244
		for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
245
246
 
247
		    f[jx+i] = (double) ipio2[jv+i];
248
		    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
249
		    q[i] = fw;
250
		}
251
		jz += k;
252
		goto recompute;
253
	    }
254
	}
255
256
 
257
	if(z==0.0) {
258
	    jz -= 1; q0 -= 24;
259
	    while(iq[jz]==0) { jz--; q0-=24;}
260
	} else { /* break z into 24-bit if necessary */
261
	    z = scalbn(z,-(int)q0);
262
	    if(z>=two24) {
263
		fw = (double)((__int32_t)(twon24*z));
264
		iq[jz] = (__int32_t)(z-two24*fw);
265
		jz += 1; q0 += 24;
266
		iq[jz] = (__int32_t) fw;
267
	    } else iq[jz] = (__int32_t) z ;
268
	}
269
270
 
271
	fw = scalbn(one,(int)q0);
272
	for(i=jz;i>=0;i--) {
273
	    q[i] = fw*(double)iq[i]; fw*=twon24;
274
	}
275
276
 
277
	for(i=jz;i>=0;i--) {
278
	    for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
279
	    fq[jz-i] = fw;
280
	}
281
282
 
283
	switch(prec) {
284
	    case 0:
285
		fw = 0.0;
286
		for (i=jz;i>=0;i--) fw += fq[i];
287
		y[0] = (ih==0)? fw: -fw;
288
		break;
289
	    case 1:
290
	    case 2:
291
		fw = 0.0;
292
		for (i=jz;i>=0;i--) fw += fq[i];
293
		y[0] = (ih==0)? fw: -fw;
294
		fw = fq[0]-fw;
295
		for (i=1;i<=jz;i++) fw += fq[i];
296
		y[1] = (ih==0)? fw: -fw;
297
		break;
298
	    case 3:	/* painful */
299
		for (i=jz;i>0;i--) {
300
		    fw      = fq[i-1]+fq[i];
301
		    fq[i]  += fq[i-1]-fw;
302
		    fq[i-1] = fw;
303
		}
304
		for (i=jz;i>1;i--) {
305
		    fw      = fq[i-1]+fq[i];
306
		    fq[i]  += fq[i-1]-fw;
307
		    fq[i-1] = fw;
308
		}
309
		for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
310
		if(ih==0) {
311
		    y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
312
		} else {
313
		    y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
314
		}
315
	}
316
	return n&7;
317
}
318
319
 
320
>