Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
6417 ashmew2 1
/*
2
 * jidctflt.c
3
 *
4
 * Copyright (C) 1994-1998, Thomas G. Lane.
5
 * This file is part of the Independent JPEG Group's software.
6
 * For conditions of distribution and use, see the accompanying README file.
7
 *
8
 * This file contains a floating-point implementation of the
9
 * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
10
 * must also perform dequantization of the input coefficients.
11
 *
12
 * This implementation should be more accurate than either of the integer
13
 * IDCT implementations.  However, it may not give the same results on all
14
 * machines because of differences in roundoff behavior.  Speed will depend
15
 * on the hardware's floating point capacity.
16
 *
17
 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
18
 * on each row (or vice versa, but it's more convenient to emit a row at
19
 * a time).  Direct algorithms are also available, but they are much more
20
 * complex and seem not to be any faster when reduced to code.
21
 *
22
 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
23
 * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
24
 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
25
 * JPEG textbook (see REFERENCES section in file README).  The following code
26
 * is based directly on figure 4-8 in P&M.
27
 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
28
 * possible to arrange the computation so that many of the multiplies are
29
 * simple scalings of the final outputs.  These multiplies can then be
30
 * folded into the multiplications or divisions by the JPEG quantization
31
 * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
32
 * to be done in the DCT itself.
33
 * The primary disadvantage of this method is that with a fixed-point
34
 * implementation, accuracy is lost due to imprecise representation of the
35
 * scaled quantization values.  However, that problem does not arise if
36
 * we use floating point arithmetic.
37
 */
38
 
39
#define JPEG_INTERNALS
40
#include "jinclude.h"
41
#include "jpeglib.h"
42
#include "jdct.h"		/* Private declarations for DCT subsystem */
43
 
44
#ifdef DCT_FLOAT_SUPPORTED
45
 
46
 
47
/*
48
 * This module is specialized to the case DCTSIZE = 8.
49
 */
50
 
51
#if DCTSIZE != 8
52
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
53
#endif
54
 
55
 
56
/* Dequantize a coefficient by multiplying it by the multiplier-table
57
 * entry; produce a float result.
58
 */
59
 
60
#define DEQUANTIZE(coef,quantval)  (((FAST_FLOAT) (coef)) * (quantval))
61
 
62
 
63
/*
64
 * Perform dequantization and inverse DCT on one block of coefficients.
65
 */
66
 
67
GLOBAL(void)
68
jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
69
		 JCOEFPTR coef_block,
70
		 JSAMPARRAY output_buf, JDIMENSION output_col)
71
{
72
  FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
73
  FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
74
  FAST_FLOAT z5, z10, z11, z12, z13;
75
  JCOEFPTR inptr;
76
  FLOAT_MULT_TYPE * quantptr;
77
  FAST_FLOAT * wsptr;
78
  JSAMPROW outptr;
79
  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
80
  int ctr;
81
  FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
82
  SHIFT_TEMPS
83
 
84
  /* Pass 1: process columns from input, store into work array. */
85
 
86
  inptr = coef_block;
87
  quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
88
  wsptr = workspace;
89
  for (ctr = DCTSIZE; ctr > 0; ctr--) {
90
    /* Due to quantization, we will usually find that many of the input
91
     * coefficients are zero, especially the AC terms.  We can exploit this
92
     * by short-circuiting the IDCT calculation for any column in which all
93
     * the AC terms are zero.  In that case each output is equal to the
94
     * DC coefficient (with scale factor as needed).
95
     * With typical images and quantization tables, half or more of the
96
     * column DCT calculations can be simplified this way.
97
     */
98
 
99
    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
100
	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
101
	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
102
	inptr[DCTSIZE*7] == 0) {
103
      /* AC terms all zero */
104
      FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
105
 
106
      wsptr[DCTSIZE*0] = dcval;
107
      wsptr[DCTSIZE*1] = dcval;
108
      wsptr[DCTSIZE*2] = dcval;
109
      wsptr[DCTSIZE*3] = dcval;
110
      wsptr[DCTSIZE*4] = dcval;
111
      wsptr[DCTSIZE*5] = dcval;
112
      wsptr[DCTSIZE*6] = dcval;
113
      wsptr[DCTSIZE*7] = dcval;
114
 
115
      inptr++;			/* advance pointers to next column */
116
      quantptr++;
117
      wsptr++;
118
      continue;
119
    }
120
 
121
    /* Even part */
122
 
123
    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
124
    tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
125
    tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
126
    tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
127
 
128
    tmp10 = tmp0 + tmp2;	/* phase 3 */
129
    tmp11 = tmp0 - tmp2;
130
 
131
    tmp13 = tmp1 + tmp3;	/* phases 5-3 */
132
    tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
133
 
134
    tmp0 = tmp10 + tmp13;	/* phase 2 */
135
    tmp3 = tmp10 - tmp13;
136
    tmp1 = tmp11 + tmp12;
137
    tmp2 = tmp11 - tmp12;
138
 
139
    /* Odd part */
140
 
141
    tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
142
    tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
143
    tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
144
    tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
145
 
146
    z13 = tmp6 + tmp5;		/* phase 6 */
147
    z10 = tmp6 - tmp5;
148
    z11 = tmp4 + tmp7;
149
    z12 = tmp4 - tmp7;
150
 
151
    tmp7 = z11 + z13;		/* phase 5 */
152
    tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
153
 
154
    z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
155
    tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
156
    tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
157
 
158
    tmp6 = tmp12 - tmp7;	/* phase 2 */
159
    tmp5 = tmp11 - tmp6;
160
    tmp4 = tmp10 + tmp5;
161
 
162
    wsptr[DCTSIZE*0] = tmp0 + tmp7;
163
    wsptr[DCTSIZE*7] = tmp0 - tmp7;
164
    wsptr[DCTSIZE*1] = tmp1 + tmp6;
165
    wsptr[DCTSIZE*6] = tmp1 - tmp6;
166
    wsptr[DCTSIZE*2] = tmp2 + tmp5;
167
    wsptr[DCTSIZE*5] = tmp2 - tmp5;
168
    wsptr[DCTSIZE*4] = tmp3 + tmp4;
169
    wsptr[DCTSIZE*3] = tmp3 - tmp4;
170
 
171
    inptr++;			/* advance pointers to next column */
172
    quantptr++;
173
    wsptr++;
174
  }
175
 
176
  /* Pass 2: process rows from work array, store into output array. */
177
  /* Note that we must descale the results by a factor of 8 == 2**3. */
178
 
179
  wsptr = workspace;
180
  for (ctr = 0; ctr < DCTSIZE; ctr++) {
181
    outptr = output_buf[ctr] + output_col;
182
    /* Rows of zeroes can be exploited in the same way as we did with columns.
183
     * However, the column calculation has created many nonzero AC terms, so
184
     * the simplification applies less often (typically 5% to 10% of the time).
185
     * And testing floats for zero is relatively expensive, so we don't bother.
186
     */
187
 
188
    /* Even part */
189
 
190
    tmp10 = wsptr[0] + wsptr[4];
191
    tmp11 = wsptr[0] - wsptr[4];
192
 
193
    tmp13 = wsptr[2] + wsptr[6];
194
    tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
195
 
196
    tmp0 = tmp10 + tmp13;
197
    tmp3 = tmp10 - tmp13;
198
    tmp1 = tmp11 + tmp12;
199
    tmp2 = tmp11 - tmp12;
200
 
201
    /* Odd part */
202
 
203
    z13 = wsptr[5] + wsptr[3];
204
    z10 = wsptr[5] - wsptr[3];
205
    z11 = wsptr[1] + wsptr[7];
206
    z12 = wsptr[1] - wsptr[7];
207
 
208
    tmp7 = z11 + z13;
209
    tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
210
 
211
    z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
212
    tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
213
    tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
214
 
215
    tmp6 = tmp12 - tmp7;
216
    tmp5 = tmp11 - tmp6;
217
    tmp4 = tmp10 + tmp5;
218
 
219
    /* Final output stage: scale down by a factor of 8 and range-limit */
220
 
221
    outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3)
222
			    & RANGE_MASK];
223
    outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3)
224
			    & RANGE_MASK];
225
    outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3)
226
			    & RANGE_MASK];
227
    outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3)
228
			    & RANGE_MASK];
229
    outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3)
230
			    & RANGE_MASK];
231
    outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3)
232
			    & RANGE_MASK];
233
    outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3)
234
			    & RANGE_MASK];
235
    outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3)
236
			    & RANGE_MASK];
237
 
238
    wsptr += DCTSIZE;		/* advance pointer to next row */
239
  }
240
}
241
 
242
#endif /* DCT_FLOAT_SUPPORTED */