Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
6417 ashmew2 1
/*
2
 * jddctmgr.c
3
 *
4
 * Copyright (C) 1994-1996, Thomas G. Lane.
5
 * This file is part of the Independent JPEG Group's software.
6
 * For conditions of distribution and use, see the accompanying README file.
7
 *
8
 * This file contains the inverse-DCT management logic.
9
 * This code selects a particular IDCT implementation to be used,
10
 * and it performs related housekeeping chores.  No code in this file
11
 * is executed per IDCT step, only during output pass setup.
12
 *
13
 * Note that the IDCT routines are responsible for performing coefficient
14
 * dequantization as well as the IDCT proper.  This module sets up the
15
 * dequantization multiplier table needed by the IDCT routine.
16
 */
17
 
18
#define JPEG_INTERNALS
19
#include "jinclude.h"
20
#include "jpeglib.h"
21
#include "jdct.h"		/* Private declarations for DCT subsystem */
22
 
23
 
24
/*
25
 * The decompressor input side (jdinput.c) saves away the appropriate
26
 * quantization table for each component at the start of the first scan
27
 * involving that component.  (This is necessary in order to correctly
28
 * decode files that reuse Q-table slots.)
29
 * When we are ready to make an output pass, the saved Q-table is converted
30
 * to a multiplier table that will actually be used by the IDCT routine.
31
 * The multiplier table contents are IDCT-method-dependent.  To support
32
 * application changes in IDCT method between scans, we can remake the
33
 * multiplier tables if necessary.
34
 * In buffered-image mode, the first output pass may occur before any data
35
 * has been seen for some components, and thus before their Q-tables have
36
 * been saved away.  To handle this case, multiplier tables are preset
37
 * to zeroes; the result of the IDCT will be a neutral gray level.
38
 */
39
 
40
 
41
/* Private subobject for this module */
42
 
43
typedef struct {
44
  struct jpeg_inverse_dct pub;	/* public fields */
45
 
46
  /* This array contains the IDCT method code that each multiplier table
47
   * is currently set up for, or -1 if it's not yet set up.
48
   * The actual multiplier tables are pointed to by dct_table in the
49
   * per-component comp_info structures.
50
   */
51
  int cur_method[MAX_COMPONENTS];
52
} my_idct_controller;
53
 
54
typedef my_idct_controller * my_idct_ptr;
55
 
56
 
57
/* Allocated multiplier tables: big enough for any supported variant */
58
 
59
typedef union {
60
  ISLOW_MULT_TYPE islow_array[DCTSIZE2];
61
#ifdef DCT_IFAST_SUPPORTED
62
  IFAST_MULT_TYPE ifast_array[DCTSIZE2];
63
#endif
64
#ifdef DCT_FLOAT_SUPPORTED
65
  FLOAT_MULT_TYPE float_array[DCTSIZE2];
66
#endif
67
} multiplier_table;
68
 
69
 
70
/* The current scaled-IDCT routines require ISLOW-style multiplier tables,
71
 * so be sure to compile that code if either ISLOW or SCALING is requested.
72
 */
73
#ifdef DCT_ISLOW_SUPPORTED
74
#define PROVIDE_ISLOW_TABLES
75
#else
76
#ifdef IDCT_SCALING_SUPPORTED
77
#define PROVIDE_ISLOW_TABLES
78
#endif
79
#endif
80
 
81
 
82
/*
83
 * Prepare for an output pass.
84
 * Here we select the proper IDCT routine for each component and build
85
 * a matching multiplier table.
86
 */
87
 
88
METHODDEF(void)
89
start_pass (j_decompress_ptr cinfo)
90
{
91
  my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
92
  int ci, i;
93
  jpeg_component_info *compptr;
94
  int method = 0;
95
  inverse_DCT_method_ptr method_ptr = NULL;
96
  JQUANT_TBL * qtbl;
97
 
98
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
99
       ci++, compptr++) {
100
    /* Select the proper IDCT routine for this component's scaling */
101
    switch (compptr->DCT_scaled_size) {
102
#ifdef IDCT_SCALING_SUPPORTED
103
    case 1:
104
      method_ptr = jpeg_idct_1x1;
105
      method = JDCT_ISLOW;	/* jidctred uses islow-style table */
106
      break;
107
    case 2:
108
      method_ptr = jpeg_idct_2x2;
109
      method = JDCT_ISLOW;	/* jidctred uses islow-style table */
110
      break;
111
    case 4:
112
      method_ptr = jpeg_idct_4x4;
113
      method = JDCT_ISLOW;	/* jidctred uses islow-style table */
114
      break;
115
#endif
116
    case DCTSIZE:
117
      switch (cinfo->dct_method) {
118
#ifdef DCT_ISLOW_SUPPORTED
119
      case JDCT_ISLOW:
120
	method_ptr = jpeg_idct_islow;
121
	method = JDCT_ISLOW;
122
	break;
123
#endif
124
#ifdef DCT_IFAST_SUPPORTED
125
      case JDCT_IFAST:
126
	method_ptr = jpeg_idct_ifast;
127
	method = JDCT_IFAST;
128
	break;
129
#endif
130
#ifdef DCT_FLOAT_SUPPORTED
131
      case JDCT_FLOAT:
132
	method_ptr = jpeg_idct_float;
133
	method = JDCT_FLOAT;
134
	break;
135
#endif
136
      default:
137
	ERREXIT(cinfo, JERR_NOT_COMPILED);
138
	break;
139
      }
140
      break;
141
    default:
142
      ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size);
143
      break;
144
    }
145
    idct->pub.inverse_DCT[ci] = method_ptr;
146
    /* Create multiplier table from quant table.
147
     * However, we can skip this if the component is uninteresting
148
     * or if we already built the table.  Also, if no quant table
149
     * has yet been saved for the component, we leave the
150
     * multiplier table all-zero; we'll be reading zeroes from the
151
     * coefficient controller's buffer anyway.
152
     */
153
    if (! compptr->component_needed || idct->cur_method[ci] == method)
154
      continue;
155
    qtbl = compptr->quant_table;
156
    if (qtbl == NULL)		/* happens if no data yet for component */
157
      continue;
158
    idct->cur_method[ci] = method;
159
    switch (method) {
160
#ifdef PROVIDE_ISLOW_TABLES
161
    case JDCT_ISLOW:
162
      {
163
	/* For LL&M IDCT method, multipliers are equal to raw quantization
164
	 * coefficients, but are stored as ints to ensure access efficiency.
165
	 */
166
	ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
167
	for (i = 0; i < DCTSIZE2; i++) {
168
	  ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i];
169
	}
170
      }
171
      break;
172
#endif
173
#ifdef DCT_IFAST_SUPPORTED
174
    case JDCT_IFAST:
175
      {
176
	/* For AA&N IDCT method, multipliers are equal to quantization
177
	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
178
	 *   scalefactor[0] = 1
179
	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
180
	 * For integer operation, the multiplier table is to be scaled by
181
	 * IFAST_SCALE_BITS.
182
	 */
183
	IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
184
#define CONST_BITS 14
185
	static const INT16 aanscales[DCTSIZE2] = {
186
	  /* precomputed values scaled up by 14 bits */
187
	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
188
	  22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,
189
	  21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,
190
	  19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,
191
	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
192
	  12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,
193
	   8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446,
194
	   4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247
195
	};
196
	SHIFT_TEMPS
197
 
198
	for (i = 0; i < DCTSIZE2; i++) {
199
	  ifmtbl[i] = (IFAST_MULT_TYPE)
200
	    DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
201
				  (INT32) aanscales[i]),
202
		    CONST_BITS-IFAST_SCALE_BITS);
203
	}
204
      }
205
      break;
206
#endif
207
#ifdef DCT_FLOAT_SUPPORTED
208
    case JDCT_FLOAT:
209
      {
210
	/* For float AA&N IDCT method, multipliers are equal to quantization
211
	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
212
	 *   scalefactor[0] = 1
213
	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
214
	 */
215
	FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
216
	int row, col;
217
	static const double aanscalefactor[DCTSIZE] = {
218
	  1.0, 1.387039845, 1.306562965, 1.175875602,
219
	  1.0, 0.785694958, 0.541196100, 0.275899379
220
	};
221
 
222
	i = 0;
223
	for (row = 0; row < DCTSIZE; row++) {
224
	  for (col = 0; col < DCTSIZE; col++) {
225
	    fmtbl[i] = (FLOAT_MULT_TYPE)
226
	      ((double) qtbl->quantval[i] *
227
	       aanscalefactor[row] * aanscalefactor[col]);
228
	    i++;
229
	  }
230
	}
231
      }
232
      break;
233
#endif
234
    default:
235
      ERREXIT(cinfo, JERR_NOT_COMPILED);
236
      break;
237
    }
238
  }
239
}
240
 
241
 
242
/*
243
 * Initialize IDCT manager.
244
 */
245
 
246
GLOBAL(void)
247
jinit_inverse_dct (j_decompress_ptr cinfo)
248
{
249
  my_idct_ptr idct;
250
  int ci;
251
  jpeg_component_info *compptr;
252
 
253
  idct = (my_idct_ptr)
254
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
255
				SIZEOF(my_idct_controller));
256
  cinfo->idct = (struct jpeg_inverse_dct *) idct;
257
  idct->pub.start_pass = start_pass;
258
 
259
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
260
       ci++, compptr++) {
261
    /* Allocate and pre-zero a multiplier table for each component */
262
    compptr->dct_table =
263
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
264
				  SIZEOF(multiplier_table));
265
    MEMZERO(compptr->dct_table, SIZEOF(multiplier_table));
266
    /* Mark multiplier table not yet set up for any method */
267
    idct->cur_method[ci] = -1;
268
  }
269
}