Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4349 Serge 1
/*
2
 * principal component analysis (PCA)
3
 * Copyright (c) 2004 Michael Niedermayer 
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
 
22
/**
23
 * @file
24
 * principal component analysis (PCA)
25
 */
26
 
27
#include "common.h"
28
#include "pca.h"
29
 
30
typedef struct PCA{
31
    int count;
32
    int n;
33
    double *covariance;
34
    double *mean;
35
    double *z;
36
}PCA;
37
 
38
PCA *ff_pca_init(int n){
39
    PCA *pca;
40
    if(n<=0)
41
        return NULL;
42
 
43
    pca= av_mallocz(sizeof(*pca));
44
    pca->n= n;
45
    pca->z = av_malloc(sizeof(*pca->z) * n);
46
    pca->count=0;
47
    pca->covariance= av_calloc(n*n, sizeof(double));
48
    pca->mean= av_calloc(n, sizeof(double));
49
 
50
    return pca;
51
}
52
 
53
void ff_pca_free(PCA *pca){
54
    av_freep(&pca->covariance);
55
    av_freep(&pca->mean);
56
    av_freep(&pca->z);
57
    av_free(pca);
58
}
59
 
60
void ff_pca_add(PCA *pca, double *v){
61
    int i, j;
62
    const int n= pca->n;
63
 
64
    for(i=0; i
65
        pca->mean[i] += v[i];
66
        for(j=i; j
67
            pca->covariance[j + i*n] += v[i]*v[j];
68
    }
69
    pca->count++;
70
}
71
 
72
int ff_pca(PCA *pca, double *eigenvector, double *eigenvalue){
73
    int i, j, pass;
74
    int k=0;
75
    const int n= pca->n;
76
    double *z = pca->z;
77
 
78
    memset(eigenvector, 0, sizeof(double)*n*n);
79
 
80
    for(j=0; j
81
        pca->mean[j] /= pca->count;
82
        eigenvector[j + j*n] = 1.0;
83
        for(i=0; i<=j; i++){
84
            pca->covariance[j + i*n] /= pca->count;
85
            pca->covariance[j + i*n] -= pca->mean[i] * pca->mean[j];
86
            pca->covariance[i + j*n] = pca->covariance[j + i*n];
87
        }
88
        eigenvalue[j]= pca->covariance[j + j*n];
89
        z[j]= 0;
90
    }
91
 
92
    for(pass=0; pass < 50; pass++){
93
        double sum=0;
94
 
95
        for(i=0; i
96
            for(j=i+1; j
97
                sum += fabs(pca->covariance[j + i*n]);
98
 
99
        if(sum == 0){
100
            for(i=0; i
101
                double maxvalue= -1;
102
                for(j=i; j
103
                    if(eigenvalue[j] > maxvalue){
104
                        maxvalue= eigenvalue[j];
105
                        k= j;
106
                    }
107
                }
108
                eigenvalue[k]= eigenvalue[i];
109
                eigenvalue[i]= maxvalue;
110
                for(j=0; j
111
                    double tmp= eigenvector[k + j*n];
112
                    eigenvector[k + j*n]= eigenvector[i + j*n];
113
                    eigenvector[i + j*n]= tmp;
114
                }
115
            }
116
            return pass;
117
        }
118
 
119
        for(i=0; i
120
            for(j=i+1; j
121
                double covar= pca->covariance[j + i*n];
122
                double t,c,s,tau,theta, h;
123
 
124
                if(pass < 3 && fabs(covar) < sum / (5*n*n)) //FIXME why pass < 3
125
                    continue;
126
                if(fabs(covar) == 0.0) //FIXME should not be needed
127
                    continue;
128
                if(pass >=3 && fabs((eigenvalue[j]+z[j])/covar) > (1LL<<32) && fabs((eigenvalue[i]+z[i])/covar) > (1LL<<32)){
129
                    pca->covariance[j + i*n]=0.0;
130
                    continue;
131
                }
132
 
133
                h= (eigenvalue[j]+z[j]) - (eigenvalue[i]+z[i]);
134
                theta=0.5*h/covar;
135
                t=1.0/(fabs(theta)+sqrt(1.0+theta*theta));
136
                if(theta < 0.0) t = -t;
137
 
138
                c=1.0/sqrt(1+t*t);
139
                s=t*c;
140
                tau=s/(1.0+c);
141
                z[i] -= t*covar;
142
                z[j] += t*covar;
143
 
144
#define ROTATE(a,i,j,k,l) {\
145
    double g=a[j + i*n];\
146
    double h=a[l + k*n];\
147
    a[j + i*n]=g-s*(h+g*tau);\
148
    a[l + k*n]=h+s*(g-h*tau); }
149
                for(k=0; k
150
                    if(k!=i && k!=j){
151
                        ROTATE(pca->covariance,FFMIN(k,i),FFMAX(k,i),FFMIN(k,j),FFMAX(k,j))
152
                    }
153
                    ROTATE(eigenvector,k,i,k,j)
154
                }
155
                pca->covariance[j + i*n]=0.0;
156
            }
157
        }
158
        for (i=0; i
159
            eigenvalue[i] += z[i];
160
            z[i]=0.0;
161
        }
162
    }
163
 
164
    return -1;
165
}
166
 
167
#ifdef TEST
168
 
169
#undef printf
170
#include 
171
#include 
172
#include "lfg.h"
173
 
174
int main(void){
175
    PCA *pca;
176
    int i, j, k;
177
#define LEN 8
178
    double eigenvector[LEN*LEN];
179
    double eigenvalue[LEN];
180
    AVLFG prng;
181
 
182
    av_lfg_init(&prng, 1);
183
 
184
    pca= ff_pca_init(LEN);
185
 
186
    for(i=0; i<9000000; i++){
187
        double v[2*LEN+100];
188
        double sum=0;
189
        int pos = av_lfg_get(&prng) % LEN;
190
        int v2  = av_lfg_get(&prng) % 101 - 50;
191
        v[0]    = av_lfg_get(&prng) % 101 - 50;
192
        for(j=1; j<8; j++){
193
            if(j<=pos) v[j]= v[0];
194
            else       v[j]= v2;
195
            sum += v[j];
196
        }
197
/*        for(j=0; j
198
            v[j] -= v[pos];
199
        }*/
200
//        sum += av_lfg_get(&prng) % 10;
201
/*        for(j=0; j
202
            v[j] -= sum/LEN;
203
        }*/
204
//        lbt1(v+100,v+100,LEN);
205
        ff_pca_add(pca, v);
206
    }
207
 
208
 
209
    ff_pca(pca, eigenvector, eigenvalue);
210
    for(i=0; i
211
        pca->count= 1;
212
        pca->mean[i]= 0;
213
 
214
//        (0.5^|x|)^2 = 0.5^2|x| = 0.25^|x|
215
 
216
 
217
//        pca.covariance[i + i*LEN]= pow(0.5, fabs
218
        for(j=i; j
219
            printf("%f ", pca->covariance[i + j*LEN]);
220
        }
221
        printf("\n");
222
    }
223
 
224
    for(i=0; i
225
        double v[LEN];
226
        double error=0;
227
        memset(v, 0, sizeof(v));
228
        for(j=0; j
229
            for(k=0; k
230
                v[j] += pca->covariance[FFMIN(k,j) + FFMAX(k,j)*LEN] * eigenvector[i + k*LEN];
231
            }
232
            v[j] /= eigenvalue[i];
233
            error += fabs(v[j] - eigenvector[i + j*LEN]);
234
        }
235
        printf("%f ", error);
236
    }
237
    printf("\n");
238
 
239
    for(i=0; i
240
        for(j=0; j
241
            printf("%9.6f ", eigenvector[i + j*LEN]);
242
        }
243
        printf("  %9.1f %f\n", eigenvalue[i], eigenvalue[i]/eigenvalue[0]);
244
    }
245
 
246
    return 0;
247
}
248
#endif