Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4349 Serge 1
/*
2
 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3
 * Copyright (c) 2003 Michael Niedermayer 
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
 
22
/**
23
 * @file
24
 * H.264 / AVC / MPEG4 part10 codec.
25
 * @author Michael Niedermayer 
26
 */
27
 
28
#ifndef AVCODEC_H264_H
29
#define AVCODEC_H264_H
30
 
31
#include "libavutil/intreadwrite.h"
32
#include "cabac.h"
33
#include "error_resilience.h"
34
#include "get_bits.h"
35
#include "mpegvideo.h"
36
#include "h264chroma.h"
37
#include "h264dsp.h"
38
#include "h264pred.h"
39
#include "h264qpel.h"
40
#include "rectangle.h"
41
 
42
#define MAX_SPS_COUNT          32
43
#define MAX_PPS_COUNT         256
44
 
45
#define MAX_MMCO_COUNT         66
46
 
47
#define MAX_DELAYED_PIC_COUNT  16
48
 
49
#define MAX_MBPAIR_SIZE (256*1024) // a tighter bound could be calculated if someone cares about a few bytes
50
 
51
/* Compiling in interlaced support reduces the speed
52
 * of progressive decoding by about 2%. */
53
#define ALLOW_INTERLACE
54
 
55
#define FMO 0
56
 
57
/**
58
 * The maximum number of slices supported by the decoder.
59
 * must be a power of 2
60
 */
61
#define MAX_SLICES 16
62
 
63
#ifdef ALLOW_INTERLACE
64
#define MB_MBAFF(h)    h->mb_mbaff
65
#define MB_FIELD(h)    h->mb_field_decoding_flag
66
#define FRAME_MBAFF(h) h->mb_aff_frame
67
#define FIELD_PICTURE(h) (h->picture_structure != PICT_FRAME)
68
#define LEFT_MBS 2
69
#define LTOP     0
70
#define LBOT     1
71
#define LEFT(i)  (i)
72
#else
73
#define MB_MBAFF(h)      0
74
#define MB_FIELD(h)      0
75
#define FRAME_MBAFF(h)   0
76
#define FIELD_PICTURE(h) 0
77
#undef  IS_INTERLACED
78
#define IS_INTERLACED(mb_type) 0
79
#define LEFT_MBS 1
80
#define LTOP     0
81
#define LBOT     0
82
#define LEFT(i)  0
83
#endif
84
#define FIELD_OR_MBAFF_PICTURE(h) (FRAME_MBAFF(h) || FIELD_PICTURE(h))
85
 
86
#ifndef CABAC
87
#define CABAC(h) h->pps.cabac
88
#endif
89
 
90
#define CHROMA(h)    (h->sps.chroma_format_idc)
91
#define CHROMA422(h) (h->sps.chroma_format_idc == 2)
92
#define CHROMA444(h) (h->sps.chroma_format_idc == 3)
93
 
94
#define EXTENDED_SAR       255
95
 
96
#define MB_TYPE_REF0       MB_TYPE_ACPRED // dirty but it fits in 16 bit
97
#define MB_TYPE_8x8DCT     0x01000000
98
#define IS_REF0(a)         ((a) & MB_TYPE_REF0)
99
#define IS_8x8DCT(a)       ((a) & MB_TYPE_8x8DCT)
100
 
101
#define QP_MAX_NUM (51 + 6*6)           // The maximum supported qp
102
 
103
/* NAL unit types */
104
enum {
105
    NAL_SLICE = 1,
106
    NAL_DPA,
107
    NAL_DPB,
108
    NAL_DPC,
109
    NAL_IDR_SLICE,
110
    NAL_SEI,
111
    NAL_SPS,
112
    NAL_PPS,
113
    NAL_AUD,
114
    NAL_END_SEQUENCE,
115
    NAL_END_STREAM,
116
    NAL_FILLER_DATA,
117
    NAL_SPS_EXT,
118
    NAL_AUXILIARY_SLICE = 19,
119
    NAL_FF_IGNORE       = 0xff0f001,
120
};
121
 
122
/**
123
 * SEI message types
124
 */
125
typedef enum {
126
    SEI_BUFFERING_PERIOD            = 0,   ///< buffering period (H.264, D.1.1)
127
    SEI_TYPE_PIC_TIMING             = 1,   ///< picture timing
128
    SEI_TYPE_USER_DATA_ITU_T_T35    = 4,   ///< user data registered by ITU-T Recommendation T.35
129
    SEI_TYPE_USER_DATA_UNREGISTERED = 5,   ///< unregistered user data
130
    SEI_TYPE_RECOVERY_POINT         = 6,   ///< recovery point (frame # to decoder sync)
131
    SEI_TYPE_FRAME_PACKING          = 45,  ///< frame packing arrangement
132
} SEI_Type;
133
 
134
/**
135
 * pic_struct in picture timing SEI message
136
 */
137
typedef enum {
138
    SEI_PIC_STRUCT_FRAME             = 0, ///<  0: %frame
139
    SEI_PIC_STRUCT_TOP_FIELD         = 1, ///<  1: top field
140
    SEI_PIC_STRUCT_BOTTOM_FIELD      = 2, ///<  2: bottom field
141
    SEI_PIC_STRUCT_TOP_BOTTOM        = 3, ///<  3: top field, bottom field, in that order
142
    SEI_PIC_STRUCT_BOTTOM_TOP        = 4, ///<  4: bottom field, top field, in that order
143
    SEI_PIC_STRUCT_TOP_BOTTOM_TOP    = 5, ///<  5: top field, bottom field, top field repeated, in that order
144
    SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///<  6: bottom field, top field, bottom field repeated, in that order
145
    SEI_PIC_STRUCT_FRAME_DOUBLING    = 7, ///<  7: %frame doubling
146
    SEI_PIC_STRUCT_FRAME_TRIPLING    = 8  ///<  8: %frame tripling
147
} SEI_PicStructType;
148
 
149
/**
150
 * frame_packing_arrangement types
151
 */
152
typedef enum {
153
    SEI_FPA_TYPE_CHECKERBOARD        = 0,
154
    SEI_FPA_TYPE_INTERLEAVE_COLUMN   = 1,
155
    SEI_FPA_TYPE_INTERLEAVE_ROW      = 2,
156
    SEI_FPA_TYPE_SIDE_BY_SIDE        = 3,
157
    SEI_FPA_TYPE_TOP_BOTTOM          = 4,
158
    SEI_FPA_TYPE_INTERLEAVE_TEMPORAL = 5,
159
    SEI_FPA_TYPE_2D                  = 6,
160
} SEI_FpaType;
161
 
162
/**
163
 * Sequence parameter set
164
 */
165
typedef struct SPS {
166
    int profile_idc;
167
    int level_idc;
168
    int chroma_format_idc;
169
    int transform_bypass;              ///< qpprime_y_zero_transform_bypass_flag
170
    int log2_max_frame_num;            ///< log2_max_frame_num_minus4 + 4
171
    int poc_type;                      ///< pic_order_cnt_type
172
    int log2_max_poc_lsb;              ///< log2_max_pic_order_cnt_lsb_minus4
173
    int delta_pic_order_always_zero_flag;
174
    int offset_for_non_ref_pic;
175
    int offset_for_top_to_bottom_field;
176
    int poc_cycle_length;              ///< num_ref_frames_in_pic_order_cnt_cycle
177
    int ref_frame_count;               ///< num_ref_frames
178
    int gaps_in_frame_num_allowed_flag;
179
    int mb_width;                      ///< pic_width_in_mbs_minus1 + 1
180
    int mb_height;                     ///< pic_height_in_map_units_minus1 + 1
181
    int frame_mbs_only_flag;
182
    int mb_aff;                        ///< mb_adaptive_frame_field_flag
183
    int direct_8x8_inference_flag;
184
    int crop;                          ///< frame_cropping_flag
185
 
186
    /* those 4 are already in luma samples */
187
    unsigned int crop_left;            ///< frame_cropping_rect_left_offset
188
    unsigned int crop_right;           ///< frame_cropping_rect_right_offset
189
    unsigned int crop_top;             ///< frame_cropping_rect_top_offset
190
    unsigned int crop_bottom;          ///< frame_cropping_rect_bottom_offset
191
    int vui_parameters_present_flag;
192
    AVRational sar;
193
    int video_signal_type_present_flag;
194
    int full_range;
195
    int colour_description_present_flag;
196
    enum AVColorPrimaries color_primaries;
197
    enum AVColorTransferCharacteristic color_trc;
198
    enum AVColorSpace colorspace;
199
    int timing_info_present_flag;
200
    uint32_t num_units_in_tick;
201
    uint32_t time_scale;
202
    int fixed_frame_rate_flag;
203
    short offset_for_ref_frame[256]; // FIXME dyn aloc?
204
    int bitstream_restriction_flag;
205
    int num_reorder_frames;
206
    int scaling_matrix_present;
207
    uint8_t scaling_matrix4[6][16];
208
    uint8_t scaling_matrix8[6][64];
209
    int nal_hrd_parameters_present_flag;
210
    int vcl_hrd_parameters_present_flag;
211
    int pic_struct_present_flag;
212
    int time_offset_length;
213
    int cpb_cnt;                          ///< See H.264 E.1.2
214
    int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 + 1
215
    int cpb_removal_delay_length;         ///< cpb_removal_delay_length_minus1 + 1
216
    int dpb_output_delay_length;          ///< dpb_output_delay_length_minus1 + 1
217
    int bit_depth_luma;                   ///< bit_depth_luma_minus8 + 8
218
    int bit_depth_chroma;                 ///< bit_depth_chroma_minus8 + 8
219
    int residual_color_transform_flag;    ///< residual_colour_transform_flag
220
    int constraint_set_flags;             ///< constraint_set[0-3]_flag
221
    int new;                              ///< flag to keep track if the decoder context needs re-init due to changed SPS
222
} SPS;
223
 
224
/**
225
 * Picture parameter set
226
 */
227
typedef struct PPS {
228
    unsigned int sps_id;
229
    int cabac;                  ///< entropy_coding_mode_flag
230
    int pic_order_present;      ///< pic_order_present_flag
231
    int slice_group_count;      ///< num_slice_groups_minus1 + 1
232
    int mb_slice_group_map_type;
233
    unsigned int ref_count[2];  ///< num_ref_idx_l0/1_active_minus1 + 1
234
    int weighted_pred;          ///< weighted_pred_flag
235
    int weighted_bipred_idc;
236
    int init_qp;                ///< pic_init_qp_minus26 + 26
237
    int init_qs;                ///< pic_init_qs_minus26 + 26
238
    int chroma_qp_index_offset[2];
239
    int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
240
    int constrained_intra_pred;     ///< constrained_intra_pred_flag
241
    int redundant_pic_cnt_present;  ///< redundant_pic_cnt_present_flag
242
    int transform_8x8_mode;         ///< transform_8x8_mode_flag
243
    uint8_t scaling_matrix4[6][16];
244
    uint8_t scaling_matrix8[6][64];
245
    uint8_t chroma_qp_table[2][QP_MAX_NUM+1];  ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
246
    int chroma_qp_diff;
247
} PPS;
248
 
249
/**
250
 * Frame Packing Arrangement Type
251
 */
252
typedef struct FPA {
253
    int         frame_packing_arrangement_id;
254
    int         frame_packing_arrangement_cancel_flag; ///< is previous arrangement canceled, -1 if never received
255
    SEI_FpaType frame_packing_arrangement_type;
256
    int         frame_packing_arrangement_repetition_period;
257
    int         content_interpretation_type;
258
    int         quincunx_sampling_flag;
259
} FPA;
260
 
261
/**
262
 * Memory management control operation opcode.
263
 */
264
typedef enum MMCOOpcode {
265
    MMCO_END = 0,
266
    MMCO_SHORT2UNUSED,
267
    MMCO_LONG2UNUSED,
268
    MMCO_SHORT2LONG,
269
    MMCO_SET_MAX_LONG,
270
    MMCO_RESET,
271
    MMCO_LONG,
272
} MMCOOpcode;
273
 
274
/**
275
 * Memory management control operation.
276
 */
277
typedef struct MMCO {
278
    MMCOOpcode opcode;
279
    int short_pic_num;  ///< pic_num without wrapping (pic_num & max_pic_num)
280
    int long_arg;       ///< index, pic_num, or num long refs depending on opcode
281
} MMCO;
282
 
283
/**
284
 * H264Context
285
 */
286
typedef struct H264Context {
287
    AVCodecContext *avctx;
288
    VideoDSPContext vdsp;
289
    H264DSPContext h264dsp;
290
    H264ChromaContext h264chroma;
291
    H264QpelContext h264qpel;
292
    MotionEstContext me;
293
    ParseContext parse_context;
294
    GetBitContext gb;
295
    DSPContext       dsp;
296
    ERContext er;
297
 
298
    Picture *DPB;
299
    Picture *cur_pic_ptr;
300
    Picture cur_pic;
301
 
302
    int pixel_shift;    ///< 0 for 8-bit H264, 1 for high-bit-depth H264
303
    int chroma_qp[2];   // QPc
304
 
305
    int qp_thresh;      ///< QP threshold to skip loopfilter
306
 
307
    /* coded dimensions -- 16 * mb w/h */
308
    int width, height;
309
    ptrdiff_t linesize, uvlinesize;
310
    int chroma_x_shift, chroma_y_shift;
311
 
312
    int qscale;
313
    int droppable;
314
    int data_partitioning;
315
    int coded_picture_number;
316
    int low_delay;
317
 
318
    int context_initialized;
319
    int flags;
320
    int workaround_bugs;
321
 
322
    int prev_mb_skipped;
323
    int next_mb_skipped;
324
 
325
    // prediction stuff
326
    int chroma_pred_mode;
327
    int intra16x16_pred_mode;
328
 
329
    int topleft_mb_xy;
330
    int top_mb_xy;
331
    int topright_mb_xy;
332
    int left_mb_xy[LEFT_MBS];
333
 
334
    int topleft_type;
335
    int top_type;
336
    int topright_type;
337
    int left_type[LEFT_MBS];
338
 
339
    const uint8_t *left_block;
340
    int topleft_partition;
341
 
342
    int8_t intra4x4_pred_mode_cache[5 * 8];
343
    int8_t(*intra4x4_pred_mode);
344
    H264PredContext hpc;
345
    unsigned int topleft_samples_available;
346
    unsigned int top_samples_available;
347
    unsigned int topright_samples_available;
348
    unsigned int left_samples_available;
349
    uint8_t (*top_borders[2])[(16 * 3) * 2];
350
 
351
    /**
352
     * non zero coeff count cache.
353
     * is 64 if not available.
354
     */
355
    DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8];
356
 
357
    uint8_t (*non_zero_count)[48];
358
 
359
    /**
360
     * Motion vector cache.
361
     */
362
    DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2];
363
    DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5 * 8];
364
#define LIST_NOT_USED -1 // FIXME rename?
365
#define PART_NOT_AVAILABLE -2
366
 
367
    /**
368
     * number of neighbors (top and/or left) that used 8x8 dct
369
     */
370
    int neighbor_transform_size;
371
 
372
    /**
373
     * block_offset[ 0..23] for frame macroblocks
374
     * block_offset[24..47] for field macroblocks
375
     */
376
    int block_offset[2 * (16 * 3)];
377
 
378
    uint32_t *mb2b_xy;  // FIXME are these 4 a good idea?
379
    uint32_t *mb2br_xy;
380
    int b_stride;       // FIXME use s->b4_stride
381
 
382
    ptrdiff_t mb_linesize;  ///< may be equal to s->linesize or s->linesize * 2, for mbaff
383
    ptrdiff_t mb_uvlinesize;
384
 
385
    unsigned current_sps_id; ///< id of the current SPS
386
    SPS sps; ///< current sps
387
 
388
    /**
389
     * current pps
390
     */
391
    PPS pps; // FIXME move to Picture perhaps? (->no) do we need that?
392
 
393
    uint32_t dequant4_buffer[6][QP_MAX_NUM + 1][16]; // FIXME should these be moved down?
394
    uint32_t dequant8_buffer[6][QP_MAX_NUM + 1][64];
395
    uint32_t(*dequant4_coeff[6])[16];
396
    uint32_t(*dequant8_coeff[6])[64];
397
 
398
    int slice_num;
399
    uint16_t *slice_table;      ///< slice_table_base + 2*mb_stride + 1
400
    int slice_type;
401
    int slice_type_nos;         ///< S free slice type (SI/SP are remapped to I/P)
402
    int slice_type_fixed;
403
 
404
    // interlacing specific flags
405
    int mb_aff_frame;
406
    int mb_field_decoding_flag;
407
    int mb_mbaff;               ///< mb_aff_frame && mb_field_decoding_flag
408
    int picture_structure;
409
    int first_field;
410
 
411
    DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
412
 
413
    // Weighted pred stuff
414
    int use_weight;
415
    int use_weight_chroma;
416
    int luma_log2_weight_denom;
417
    int chroma_log2_weight_denom;
418
    // The following 2 can be changed to int8_t but that causes 10cpu cycles speedloss
419
    int luma_weight[48][2][2];
420
    int chroma_weight[48][2][2][2];
421
    int implicit_weight[48][48][2];
422
 
423
    int direct_spatial_mv_pred;
424
    int col_parity;
425
    int col_fieldoff;
426
    int dist_scale_factor[32];
427
    int dist_scale_factor_field[2][32];
428
    int map_col_to_list0[2][16 + 32];
429
    int map_col_to_list0_field[2][2][16 + 32];
430
 
431
    /**
432
     * num_ref_idx_l0/1_active_minus1 + 1
433
     */
434
    unsigned int ref_count[2];          ///< counts frames or fields, depending on current mb mode
435
    unsigned int list_count;
436
    uint8_t *list_counts;               ///< Array of list_count per MB specifying the slice type
437
    Picture ref_list[2][48];            /**< 0..15: frame refs, 16..47: mbaff field refs.
438
                                         *   Reordered version of default_ref_list
439
                                         *   according to picture reordering in slice header */
440
    int ref2frm[MAX_SLICES][2][64];     ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
441
 
442
    // data partitioning
443
    GetBitContext intra_gb;
444
    GetBitContext inter_gb;
445
    GetBitContext *intra_gb_ptr;
446
    GetBitContext *inter_gb_ptr;
447
 
448
    const uint8_t *intra_pcm_ptr;
449
    DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2]; ///< as a dct coeffecient is int32_t in high depth, we need to reserve twice the space.
450
    DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2];
451
    int16_t mb_padding[256 * 2];        ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
452
 
453
    /**
454
     * Cabac
455
     */
456
    CABACContext cabac;
457
    uint8_t cabac_state[1024];
458
 
459
    /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */
460
    uint16_t *cbp_table;
461
    int cbp;
462
    int top_cbp;
463
    int left_cbp;
464
    /* chroma_pred_mode for i4x4 or i16x16, else 0 */
465
    uint8_t *chroma_pred_mode_table;
466
    int last_qscale_diff;
467
    uint8_t (*mvd_table[2])[2];
468
    DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5 * 8][2];
469
    uint8_t *direct_table;
470
    uint8_t direct_cache[5 * 8];
471
 
472
    uint8_t zigzag_scan[16];
473
    uint8_t zigzag_scan8x8[64];
474
    uint8_t zigzag_scan8x8_cavlc[64];
475
    uint8_t field_scan[16];
476
    uint8_t field_scan8x8[64];
477
    uint8_t field_scan8x8_cavlc[64];
478
    uint8_t zigzag_scan_q0[16];
479
    uint8_t zigzag_scan8x8_q0[64];
480
    uint8_t zigzag_scan8x8_cavlc_q0[64];
481
    uint8_t field_scan_q0[16];
482
    uint8_t field_scan8x8_q0[64];
483
    uint8_t field_scan8x8_cavlc_q0[64];
484
 
485
    int x264_build;
486
 
487
    int mb_x, mb_y;
488
    int resync_mb_x;
489
    int resync_mb_y;
490
    int mb_skip_run;
491
    int mb_height, mb_width;
492
    int mb_stride;
493
    int mb_num;
494
    int mb_xy;
495
 
496
    int is_complex;
497
 
498
    // deblock
499
    int deblocking_filter;          ///< disable_deblocking_filter_idc with 1 <-> 0
500
    int slice_alpha_c0_offset;
501
    int slice_beta_offset;
502
 
503
    // =============================================================
504
    // Things below are not used in the MB or more inner code
505
 
506
    int nal_ref_idc;
507
    int nal_unit_type;
508
    uint8_t *rbsp_buffer[2];
509
    unsigned int rbsp_buffer_size[2];
510
 
511
    /**
512
     * Used to parse AVC variant of h264
513
     */
514
    int is_avc;           ///< this flag is != 0 if codec is avc1
515
    int nal_length_size;  ///< Number of bytes used for nal length (1, 2 or 4)
516
    int got_first;        ///< this flag is != 0 if we've parsed a frame
517
 
518
    int bit_depth_luma;         ///< luma bit depth from sps to detect changes
519
    int chroma_format_idc;      ///< chroma format from sps to detect changes
520
 
521
    SPS *sps_buffers[MAX_SPS_COUNT];
522
    PPS *pps_buffers[MAX_PPS_COUNT];
523
 
524
    int dequant_coeff_pps;      ///< reinit tables when pps changes
525
 
526
    uint16_t *slice_table_base;
527
 
528
    // POC stuff
529
    int poc_lsb;
530
    int poc_msb;
531
    int delta_poc_bottom;
532
    int delta_poc[2];
533
    int frame_num;
534
    int prev_poc_msb;           ///< poc_msb of the last reference pic for POC type 0
535
    int prev_poc_lsb;           ///< poc_lsb of the last reference pic for POC type 0
536
    int frame_num_offset;       ///< for POC type 2
537
    int prev_frame_num_offset;  ///< for POC type 2
538
    int prev_frame_num;         ///< frame_num of the last pic for POC type 1/2
539
 
540
    /**
541
     * frame_num for frames or 2 * frame_num + 1 for field pics.
542
     */
543
    int curr_pic_num;
544
 
545
    /**
546
     * max_frame_num or 2 * max_frame_num for field pics.
547
     */
548
    int max_pic_num;
549
 
550
    int redundant_pic_count;
551
 
552
    Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
553
    Picture *short_ref[32];
554
    Picture *long_ref[32];
555
    Picture *delayed_pic[MAX_DELAYED_PIC_COUNT + 2]; // FIXME size?
556
    int last_pocs[MAX_DELAYED_PIC_COUNT];
557
    Picture *next_output_pic;
558
    int outputed_poc;
559
    int next_outputed_poc;
560
 
561
    /**
562
     * memory management control operations buffer.
563
     */
564
    MMCO mmco[MAX_MMCO_COUNT];
565
    int mmco_index;
566
    int mmco_reset;
567
 
568
    int long_ref_count;     ///< number of actual long term references
569
    int short_ref_count;    ///< number of actual short term references
570
 
571
    int cabac_init_idc;
572
 
573
    /**
574
     * @name Members for slice based multithreading
575
     * @{
576
     */
577
    struct H264Context *thread_context[MAX_THREADS];
578
 
579
    /**
580
     * current slice number, used to initialize slice_num of each thread/context
581
     */
582
    int current_slice;
583
 
584
    /**
585
     * Max number of threads / contexts.
586
     * This is equal to AVCodecContext.thread_count unless
587
     * multithreaded decoding is impossible, in which case it is
588
     * reduced to 1.
589
     */
590
    int max_contexts;
591
 
592
    int slice_context_count;
593
 
594
    /**
595
     *  1 if the single thread fallback warning has already been
596
     *  displayed, 0 otherwise.
597
     */
598
    int single_decode_warning;
599
 
600
    enum AVPictureType pict_type;
601
 
602
    int last_slice_type;
603
    unsigned int last_ref_count[2];
604
    /** @} */
605
 
606
    /**
607
     * pic_struct in picture timing SEI message
608
     */
609
    SEI_PicStructType sei_pic_struct;
610
 
611
    /**
612
     * Complement sei_pic_struct
613
     * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
614
     * However, soft telecined frames may have these values.
615
     * This is used in an attempt to flag soft telecine progressive.
616
     */
617
    int prev_interlaced_frame;
618
 
619
    /**
620
     * Bit set of clock types for fields/frames in picture timing SEI message.
621
     * For each found ct_type, appropriate bit is set (e.g., bit 1 for
622
     * interlaced).
623
     */
624
    int sei_ct_type;
625
 
626
    /**
627
     * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
628
     */
629
    int sei_dpb_output_delay;
630
 
631
    /**
632
     * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
633
     */
634
    int sei_cpb_removal_delay;
635
 
636
    /**
637
     * recovery_frame_cnt from SEI message
638
     *
639
     * Set to -1 if no recovery point SEI message found or to number of frames
640
     * before playback synchronizes. Frames having recovery point are key
641
     * frames.
642
     */
643
    int sei_recovery_frame_cnt;
644
    /**
645
     * recovery_frame is the frame_num at which the next frame should
646
     * be fully constructed.
647
     *
648
     * Set to -1 when not expecting a recovery point.
649
     */
650
    int recovery_frame;
651
 
652
    /**
653
     * Are the SEI recovery points looking valid.
654
     */
655
    int valid_recovery_point;
656
 
657
    FPA sei_fpa;
658
 
659
    int luma_weight_flag[2];    ///< 7.4.3.2 luma_weight_lX_flag
660
    int chroma_weight_flag[2];  ///< 7.4.3.2 chroma_weight_lX_flag
661
 
662
    // Timestamp stuff
663
    int sei_buffering_period_present;   ///< Buffering period SEI flag
664
    int initial_cpb_removal_delay[32];  ///< Initial timestamps for CPBs
665
 
666
    int cur_chroma_format_idc;
667
    uint8_t *bipred_scratchpad;
668
 
669
    int16_t slice_row[MAX_SLICES]; ///< to detect when MAX_SLICES is too low
670
 
671
    int sync;                      ///< did we had a keyframe or recovery point
672
 
673
    uint8_t parse_history[4];
674
    int parse_history_count;
675
    int parse_last_mb;
676
    uint8_t *edge_emu_buffer;
677
    int16_t *dc_val_base;
678
 
679
    uint8_t *visualization_buffer[3]; ///< temporary buffer vor MV visualization
680
 
681
    AVBufferPool *qscale_table_pool;
682
    AVBufferPool *mb_type_pool;
683
    AVBufferPool *motion_val_pool;
684
    AVBufferPool *ref_index_pool;
685
} H264Context;
686
 
687
extern const uint8_t ff_h264_chroma_qp[7][QP_MAX_NUM + 1]; ///< One chroma qp table for each possible bit depth (8-14).
688
extern const uint16_t ff_h264_mb_sizes[4];
689
 
690
/**
691
 * Decode SEI
692
 */
693
int ff_h264_decode_sei(H264Context *h);
694
 
695
/**
696
 * Decode SPS
697
 */
698
int ff_h264_decode_seq_parameter_set(H264Context *h);
699
 
700
/**
701
 * compute profile from sps
702
 */
703
int ff_h264_get_profile(SPS *sps);
704
 
705
/**
706
 * Decode PPS
707
 */
708
int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
709
 
710
/**
711
 * Decode a network abstraction layer unit.
712
 * @param consumed is the number of bytes used as input
713
 * @param length is the length of the array
714
 * @param dst_length is the number of decoded bytes FIXME here
715
 *                   or a decode rbsp tailing?
716
 * @return decoded bytes, might be src+1 if no escapes
717
 */
718
const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src,
719
                                  int *dst_length, int *consumed, int length);
720
 
721
/**
722
 * Free any data that may have been allocated in the H264 context
723
 * like SPS, PPS etc.
724
 */
725
void ff_h264_free_context(H264Context *h);
726
 
727
/**
728
 * Reconstruct bitstream slice_type.
729
 */
730
int ff_h264_get_slice_type(const H264Context *h);
731
 
732
/**
733
 * Allocate tables.
734
 * needs width/height
735
 */
736
int ff_h264_alloc_tables(H264Context *h);
737
 
738
/**
739
 * Fill the default_ref_list.
740
 */
741
int ff_h264_fill_default_ref_list(H264Context *h);
742
 
743
int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
744
void ff_h264_fill_mbaff_ref_list(H264Context *h);
745
void ff_h264_remove_all_refs(H264Context *h);
746
 
747
/**
748
 * Execute the reference picture marking (memory management control operations).
749
 */
750
int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
751
 
752
int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb,
753
                                   int first_slice);
754
 
755
int ff_generate_sliding_window_mmcos(H264Context *h, int first_slice);
756
 
757
/**
758
 * Check if the top & left blocks are available if needed & change the
759
 * dc mode so it only uses the available blocks.
760
 */
761
int ff_h264_check_intra4x4_pred_mode(H264Context *h);
762
 
763
/**
764
 * Check if the top & left blocks are available if needed & change the
765
 * dc mode so it only uses the available blocks.
766
 */
767
int ff_h264_check_intra_pred_mode(H264Context *h, int mode, int is_chroma);
768
 
769
void ff_h264_hl_decode_mb(H264Context *h);
770
int ff_h264_decode_extradata(H264Context *h, const uint8_t *buf, int size);
771
int ff_h264_decode_init(AVCodecContext *avctx);
772
void ff_h264_decode_init_vlc(void);
773
 
774
/**
775
 * Decode a macroblock
776
 * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
777
 */
778
int ff_h264_decode_mb_cavlc(H264Context *h);
779
 
780
/**
781
 * Decode a CABAC coded macroblock
782
 * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
783
 */
784
int ff_h264_decode_mb_cabac(H264Context *h);
785
 
786
void ff_h264_init_cabac_states(H264Context *h);
787
 
788
void ff_h264_direct_dist_scale_factor(H264Context *const h);
789
void ff_h264_direct_ref_list_init(H264Context *const h);
790
void ff_h264_pred_direct_motion(H264Context *const h, int *mb_type);
791
 
792
void ff_h264_filter_mb_fast(H264Context *h, int mb_x, int mb_y,
793
                            uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
794
                            unsigned int linesize, unsigned int uvlinesize);
795
void ff_h264_filter_mb(H264Context *h, int mb_x, int mb_y,
796
                       uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
797
                       unsigned int linesize, unsigned int uvlinesize);
798
 
799
/**
800
 * Reset SEI values at the beginning of the frame.
801
 *
802
 * @param h H.264 context.
803
 */
804
void ff_h264_reset_sei(H264Context *h);
805
 
806
/**
807
 * Get stereo_mode string from the h264 frame_packing_arrangement
808
 * @param h H.264 context.
809
 */
810
const char* ff_h264_sei_stereo_mode(H264Context *h);
811
 
812
/*
813
 * o-o o-o
814
 *  / / /
815
 * o-o o-o
816
 *  ,---'
817
 * o-o o-o
818
 *  / / /
819
 * o-o o-o
820
 */
821
 
822
/* Scan8 organization:
823
 *    0 1 2 3 4 5 6 7
824
 * 0  DY    y y y y y
825
 * 1        y Y Y Y Y
826
 * 2        y Y Y Y Y
827
 * 3        y Y Y Y Y
828
 * 4        y Y Y Y Y
829
 * 5  DU    u u u u u
830
 * 6        u U U U U
831
 * 7        u U U U U
832
 * 8        u U U U U
833
 * 9        u U U U U
834
 * 10 DV    v v v v v
835
 * 11       v V V V V
836
 * 12       v V V V V
837
 * 13       v V V V V
838
 * 14       v V V V V
839
 * DY/DU/DV are for luma/chroma DC.
840
 */
841
 
842
#define LUMA_DC_BLOCK_INDEX   48
843
#define CHROMA_DC_BLOCK_INDEX 49
844
 
845
// This table must be here because scan8[constant] must be known at compiletime
846
static const uint8_t scan8[16 * 3 + 3] = {
847
    4 +  1 * 8, 5 +  1 * 8, 4 +  2 * 8, 5 +  2 * 8,
848
    6 +  1 * 8, 7 +  1 * 8, 6 +  2 * 8, 7 +  2 * 8,
849
    4 +  3 * 8, 5 +  3 * 8, 4 +  4 * 8, 5 +  4 * 8,
850
    6 +  3 * 8, 7 +  3 * 8, 6 +  4 * 8, 7 +  4 * 8,
851
    4 +  6 * 8, 5 +  6 * 8, 4 +  7 * 8, 5 +  7 * 8,
852
    6 +  6 * 8, 7 +  6 * 8, 6 +  7 * 8, 7 +  7 * 8,
853
    4 +  8 * 8, 5 +  8 * 8, 4 +  9 * 8, 5 +  9 * 8,
854
    6 +  8 * 8, 7 +  8 * 8, 6 +  9 * 8, 7 +  9 * 8,
855
    4 + 11 * 8, 5 + 11 * 8, 4 + 12 * 8, 5 + 12 * 8,
856
    6 + 11 * 8, 7 + 11 * 8, 6 + 12 * 8, 7 + 12 * 8,
857
    4 + 13 * 8, 5 + 13 * 8, 4 + 14 * 8, 5 + 14 * 8,
858
    6 + 13 * 8, 7 + 13 * 8, 6 + 14 * 8, 7 + 14 * 8,
859
 
860
};
861
 
862
static av_always_inline uint32_t pack16to32(int a, int b)
863
{
864
#if HAVE_BIGENDIAN
865
    return (b & 0xFFFF) + (a << 16);
866
#else
867
    return (a & 0xFFFF) + (b << 16);
868
#endif
869
}
870
 
871
static av_always_inline uint16_t pack8to16(int a, int b)
872
{
873
#if HAVE_BIGENDIAN
874
    return (b & 0xFF) + (a << 8);
875
#else
876
    return (a & 0xFF) + (b << 8);
877
#endif
878
}
879
 
880
/**
881
 * Get the chroma qp.
882
 */
883
static av_always_inline int get_chroma_qp(H264Context *h, int t, int qscale)
884
{
885
    return h->pps.chroma_qp_table[t][qscale];
886
}
887
 
888
/**
889
 * Get the predicted intra4x4 prediction mode.
890
 */
891
static av_always_inline int pred_intra_mode(H264Context *h, int n)
892
{
893
    const int index8 = scan8[n];
894
    const int left   = h->intra4x4_pred_mode_cache[index8 - 1];
895
    const int top    = h->intra4x4_pred_mode_cache[index8 - 8];
896
    const int min    = FFMIN(left, top);
897
 
898
    tprintf(h->avctx, "mode:%d %d min:%d\n", left, top, min);
899
 
900
    if (min < 0)
901
        return DC_PRED;
902
    else
903
        return min;
904
}
905
 
906
static av_always_inline void write_back_intra_pred_mode(H264Context *h)
907
{
908
    int8_t *i4x4       = h->intra4x4_pred_mode + h->mb2br_xy[h->mb_xy];
909
    int8_t *i4x4_cache = h->intra4x4_pred_mode_cache;
910
 
911
    AV_COPY32(i4x4, i4x4_cache + 4 + 8 * 4);
912
    i4x4[4] = i4x4_cache[7 + 8 * 3];
913
    i4x4[5] = i4x4_cache[7 + 8 * 2];
914
    i4x4[6] = i4x4_cache[7 + 8 * 1];
915
}
916
 
917
static av_always_inline void write_back_non_zero_count(H264Context *h)
918
{
919
    const int mb_xy    = h->mb_xy;
920
    uint8_t *nnz       = h->non_zero_count[mb_xy];
921
    uint8_t *nnz_cache = h->non_zero_count_cache;
922
 
923
    AV_COPY32(&nnz[ 0], &nnz_cache[4 + 8 * 1]);
924
    AV_COPY32(&nnz[ 4], &nnz_cache[4 + 8 * 2]);
925
    AV_COPY32(&nnz[ 8], &nnz_cache[4 + 8 * 3]);
926
    AV_COPY32(&nnz[12], &nnz_cache[4 + 8 * 4]);
927
    AV_COPY32(&nnz[16], &nnz_cache[4 + 8 * 6]);
928
    AV_COPY32(&nnz[20], &nnz_cache[4 + 8 * 7]);
929
    AV_COPY32(&nnz[32], &nnz_cache[4 + 8 * 11]);
930
    AV_COPY32(&nnz[36], &nnz_cache[4 + 8 * 12]);
931
 
932
    if (!h->chroma_y_shift) {
933
        AV_COPY32(&nnz[24], &nnz_cache[4 + 8 * 8]);
934
        AV_COPY32(&nnz[28], &nnz_cache[4 + 8 * 9]);
935
        AV_COPY32(&nnz[40], &nnz_cache[4 + 8 * 13]);
936
        AV_COPY32(&nnz[44], &nnz_cache[4 + 8 * 14]);
937
    }
938
}
939
 
940
static av_always_inline void write_back_motion_list(H264Context *h,
941
                                                    int b_stride,
942
                                                    int b_xy, int b8_xy,
943
                                                    int mb_type, int list)
944
{
945
    int16_t(*mv_dst)[2] = &h->cur_pic.motion_val[list][b_xy];
946
    int16_t(*mv_src)[2] = &h->mv_cache[list][scan8[0]];
947
    AV_COPY128(mv_dst + 0 * b_stride, mv_src + 8 * 0);
948
    AV_COPY128(mv_dst + 1 * b_stride, mv_src + 8 * 1);
949
    AV_COPY128(mv_dst + 2 * b_stride, mv_src + 8 * 2);
950
    AV_COPY128(mv_dst + 3 * b_stride, mv_src + 8 * 3);
951
    if (CABAC(h)) {
952
        uint8_t (*mvd_dst)[2] = &h->mvd_table[list][FMO ? 8 * h->mb_xy
953
                                                        : h->mb2br_xy[h->mb_xy]];
954
        uint8_t(*mvd_src)[2]  = &h->mvd_cache[list][scan8[0]];
955
        if (IS_SKIP(mb_type)) {
956
            AV_ZERO128(mvd_dst);
957
        } else {
958
            AV_COPY64(mvd_dst, mvd_src + 8 * 3);
959
            AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8 * 0);
960
            AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8 * 1);
961
            AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8 * 2);
962
        }
963
    }
964
 
965
    {
966
        int8_t *ref_index = &h->cur_pic.ref_index[list][b8_xy];
967
        int8_t *ref_cache = h->ref_cache[list];
968
        ref_index[0 + 0 * 2] = ref_cache[scan8[0]];
969
        ref_index[1 + 0 * 2] = ref_cache[scan8[4]];
970
        ref_index[0 + 1 * 2] = ref_cache[scan8[8]];
971
        ref_index[1 + 1 * 2] = ref_cache[scan8[12]];
972
    }
973
}
974
 
975
static av_always_inline void write_back_motion(H264Context *h, int mb_type)
976
{
977
    const int b_stride      = h->b_stride;
978
    const int b_xy  = 4 * h->mb_x + 4 * h->mb_y * h->b_stride; // try mb2b(8)_xy
979
    const int b8_xy = 4 * h->mb_xy;
980
 
981
    if (USES_LIST(mb_type, 0)) {
982
        write_back_motion_list(h, b_stride, b_xy, b8_xy, mb_type, 0);
983
    } else {
984
        fill_rectangle(&h->cur_pic.ref_index[0][b8_xy],
985
                       2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
986
    }
987
    if (USES_LIST(mb_type, 1))
988
        write_back_motion_list(h, b_stride, b_xy, b8_xy, mb_type, 1);
989
 
990
    if (h->slice_type_nos == AV_PICTURE_TYPE_B && CABAC(h)) {
991
        if (IS_8X8(mb_type)) {
992
            uint8_t *direct_table = &h->direct_table[4 * h->mb_xy];
993
            direct_table[1] = h->sub_mb_type[1] >> 1;
994
            direct_table[2] = h->sub_mb_type[2] >> 1;
995
            direct_table[3] = h->sub_mb_type[3] >> 1;
996
        }
997
    }
998
}
999
 
1000
static av_always_inline int get_dct8x8_allowed(H264Context *h)
1001
{
1002
    if (h->sps.direct_8x8_inference_flag)
1003
        return !(AV_RN64A(h->sub_mb_type) &
1004
                 ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8) *
1005
                  0x0001000100010001ULL));
1006
    else
1007
        return !(AV_RN64A(h->sub_mb_type) &
1008
                 ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8 | MB_TYPE_DIRECT2) *
1009
                  0x0001000100010001ULL));
1010
}
1011
 
1012
void ff_h264_draw_horiz_band(H264Context *h, int y, int height);
1013
int ff_init_poc(H264Context *h, int pic_field_poc[2], int *pic_poc);
1014
int ff_pred_weight_table(H264Context *h);
1015
int ff_set_ref_count(H264Context *h);
1016
 
1017
#endif /* AVCODEC_H264_H */