Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
6147 serge 1
/*
2
 * WebP (.webp) image decoder
3
 * Copyright (c) 2013 Aneesh Dogra 
4
 * Copyright (c) 2013 Justin Ruggles 
5
 *
6
 * This file is part of FFmpeg.
7
 *
8
 * FFmpeg is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 */
22
 
23
/**
24
 * @file
25
 * WebP image decoder
26
 *
27
 * @author Aneesh Dogra 
28
 * Container and Lossy decoding
29
 *
30
 * @author Justin Ruggles 
31
 * Lossless decoder
32
 * Compressed alpha for lossy
33
 *
34
 * @author James Almer 
35
 * Exif metadata
36
 *
37
 * Unimplemented:
38
 *   - Animation
39
 *   - ICC profile
40
 *   - XMP metadata
41
 */
42
 
43
#define BITSTREAM_READER_LE
44
#include "libavutil/imgutils.h"
45
#include "avcodec.h"
46
#include "bytestream.h"
47
#include "exif.h"
48
#include "internal.h"
49
#include "get_bits.h"
50
#include "thread.h"
51
#include "vp8.h"
52
 
53
#define VP8X_FLAG_ANIMATION             0x02
54
#define VP8X_FLAG_XMP_METADATA          0x04
55
#define VP8X_FLAG_EXIF_METADATA         0x08
56
#define VP8X_FLAG_ALPHA                 0x10
57
#define VP8X_FLAG_ICC                   0x20
58
 
59
#define MAX_PALETTE_SIZE                256
60
#define MAX_CACHE_BITS                  11
61
#define NUM_CODE_LENGTH_CODES           19
62
#define HUFFMAN_CODES_PER_META_CODE     5
63
#define NUM_LITERAL_CODES               256
64
#define NUM_LENGTH_CODES                24
65
#define NUM_DISTANCE_CODES              40
66
#define NUM_SHORT_DISTANCES             120
67
#define MAX_HUFFMAN_CODE_LENGTH         15
68
 
69
static const uint16_t alphabet_sizes[HUFFMAN_CODES_PER_META_CODE] = {
70
    NUM_LITERAL_CODES + NUM_LENGTH_CODES,
71
    NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES,
72
    NUM_DISTANCE_CODES
73
};
74
 
75
static const uint8_t code_length_code_order[NUM_CODE_LENGTH_CODES] = {
76
    17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
77
};
78
 
79
static const int8_t lz77_distance_offsets[NUM_SHORT_DISTANCES][2] = {
80
    {  0, 1 }, {  1, 0 }, {  1, 1 }, { -1, 1 }, {  0, 2 }, {  2, 0 }, {  1, 2 }, { -1, 2 },
81
    {  2, 1 }, { -2, 1 }, {  2, 2 }, { -2, 2 }, {  0, 3 }, {  3, 0 }, {  1, 3 }, { -1, 3 },
82
    {  3, 1 }, { -3, 1 }, {  2, 3 }, { -2, 3 }, {  3, 2 }, { -3, 2 }, {  0, 4 }, {  4, 0 },
83
    {  1, 4 }, { -1, 4 }, {  4, 1 }, { -4, 1 }, {  3, 3 }, { -3, 3 }, {  2, 4 }, { -2, 4 },
84
    {  4, 2 }, { -4, 2 }, {  0, 5 }, {  3, 4 }, { -3, 4 }, {  4, 3 }, { -4, 3 }, {  5, 0 },
85
    {  1, 5 }, { -1, 5 }, {  5, 1 }, { -5, 1 }, {  2, 5 }, { -2, 5 }, {  5, 2 }, { -5, 2 },
86
    {  4, 4 }, { -4, 4 }, {  3, 5 }, { -3, 5 }, {  5, 3 }, { -5, 3 }, {  0, 6 }, {  6, 0 },
87
    {  1, 6 }, { -1, 6 }, {  6, 1 }, { -6, 1 }, {  2, 6 }, { -2, 6 }, {  6, 2 }, { -6, 2 },
88
    {  4, 5 }, { -4, 5 }, {  5, 4 }, { -5, 4 }, {  3, 6 }, { -3, 6 }, {  6, 3 }, { -6, 3 },
89
    {  0, 7 }, {  7, 0 }, {  1, 7 }, { -1, 7 }, {  5, 5 }, { -5, 5 }, {  7, 1 }, { -7, 1 },
90
    {  4, 6 }, { -4, 6 }, {  6, 4 }, { -6, 4 }, {  2, 7 }, { -2, 7 }, {  7, 2 }, { -7, 2 },
91
    {  3, 7 }, { -3, 7 }, {  7, 3 }, { -7, 3 }, {  5, 6 }, { -5, 6 }, {  6, 5 }, { -6, 5 },
92
    {  8, 0 }, {  4, 7 }, { -4, 7 }, {  7, 4 }, { -7, 4 }, {  8, 1 }, {  8, 2 }, {  6, 6 },
93
    { -6, 6 }, {  8, 3 }, {  5, 7 }, { -5, 7 }, {  7, 5 }, { -7, 5 }, {  8, 4 }, {  6, 7 },
94
    { -6, 7 }, {  7, 6 }, { -7, 6 }, {  8, 5 }, {  7, 7 }, { -7, 7 }, {  8, 6 }, {  8, 7 }
95
};
96
 
97
enum AlphaCompression {
98
    ALPHA_COMPRESSION_NONE,
99
    ALPHA_COMPRESSION_VP8L,
100
};
101
 
102
enum AlphaFilter {
103
    ALPHA_FILTER_NONE,
104
    ALPHA_FILTER_HORIZONTAL,
105
    ALPHA_FILTER_VERTICAL,
106
    ALPHA_FILTER_GRADIENT,
107
};
108
 
109
enum TransformType {
110
    PREDICTOR_TRANSFORM      = 0,
111
    COLOR_TRANSFORM          = 1,
112
    SUBTRACT_GREEN           = 2,
113
    COLOR_INDEXING_TRANSFORM = 3,
114
};
115
 
116
enum PredictionMode {
117
    PRED_MODE_BLACK,
118
    PRED_MODE_L,
119
    PRED_MODE_T,
120
    PRED_MODE_TR,
121
    PRED_MODE_TL,
122
    PRED_MODE_AVG_T_AVG_L_TR,
123
    PRED_MODE_AVG_L_TL,
124
    PRED_MODE_AVG_L_T,
125
    PRED_MODE_AVG_TL_T,
126
    PRED_MODE_AVG_T_TR,
127
    PRED_MODE_AVG_AVG_L_TL_AVG_T_TR,
128
    PRED_MODE_SELECT,
129
    PRED_MODE_ADD_SUBTRACT_FULL,
130
    PRED_MODE_ADD_SUBTRACT_HALF,
131
};
132
 
133
enum HuffmanIndex {
134
    HUFF_IDX_GREEN = 0,
135
    HUFF_IDX_RED   = 1,
136
    HUFF_IDX_BLUE  = 2,
137
    HUFF_IDX_ALPHA = 3,
138
    HUFF_IDX_DIST  = 4
139
};
140
 
141
/* The structure of WebP lossless is an optional series of transformation data,
142
 * followed by the primary image. The primary image also optionally contains
143
 * an entropy group mapping if there are multiple entropy groups. There is a
144
 * basic image type called an "entropy coded image" that is used for all of
145
 * these. The type of each entropy coded image is referred to by the
146
 * specification as its role. */
147
enum ImageRole {
148
    /* Primary Image: Stores the actual pixels of the image. */
149
    IMAGE_ROLE_ARGB,
150
 
151
    /* Entropy Image: Defines which Huffman group to use for different areas of
152
     *                the primary image. */
153
    IMAGE_ROLE_ENTROPY,
154
 
155
    /* Predictors: Defines which predictor type to use for different areas of
156
     *             the primary image. */
157
    IMAGE_ROLE_PREDICTOR,
158
 
159
    /* Color Transform Data: Defines the color transformation for different
160
     *                       areas of the primary image. */
161
    IMAGE_ROLE_COLOR_TRANSFORM,
162
 
163
    /* Color Index: Stored as an image of height == 1. */
164
    IMAGE_ROLE_COLOR_INDEXING,
165
 
166
    IMAGE_ROLE_NB,
167
};
168
 
169
typedef struct HuffReader {
170
    VLC vlc;                            /* Huffman decoder context */
171
    int simple;                         /* whether to use simple mode */
172
    int nb_symbols;                     /* number of coded symbols */
173
    uint16_t simple_symbols[2];         /* symbols for simple mode */
174
} HuffReader;
175
 
176
typedef struct ImageContext {
177
    enum ImageRole role;                /* role of this image */
178
    AVFrame *frame;                     /* AVFrame for data */
179
    int color_cache_bits;               /* color cache size, log2 */
180
    uint32_t *color_cache;              /* color cache data */
181
    int nb_huffman_groups;              /* number of huffman groups */
182
    HuffReader *huffman_groups;         /* reader for each huffman group */
183
    int size_reduction;                 /* relative size compared to primary image, log2 */
184
    int is_alpha_primary;
185
} ImageContext;
186
 
187
typedef struct WebPContext {
188
    VP8Context v;                       /* VP8 Context used for lossy decoding */
189
    GetBitContext gb;                   /* bitstream reader for main image chunk */
190
    AVFrame *alpha_frame;               /* AVFrame for alpha data decompressed from VP8L */
191
    AVCodecContext *avctx;              /* parent AVCodecContext */
192
    int initialized;                    /* set once the VP8 context is initialized */
193
    int has_alpha;                      /* has a separate alpha chunk */
194
    enum AlphaCompression alpha_compression; /* compression type for alpha chunk */
195
    enum AlphaFilter alpha_filter;      /* filtering method for alpha chunk */
196
    uint8_t *alpha_data;                /* alpha chunk data */
197
    int alpha_data_size;                /* alpha chunk data size */
198
    int has_exif;                       /* set after an EXIF chunk has been processed */
199
    AVDictionary *exif_metadata;        /* EXIF chunk data */
200
    int width;                          /* image width */
201
    int height;                         /* image height */
202
    int lossless;                       /* indicates lossless or lossy */
203
 
204
    int nb_transforms;                  /* number of transforms */
205
    enum TransformType transforms[4];   /* transformations used in the image, in order */
206
    int reduced_width;                  /* reduced width for index image, if applicable */
207
    int nb_huffman_groups;              /* number of huffman groups in the primary image */
208
    ImageContext image[IMAGE_ROLE_NB];  /* image context for each role */
209
} WebPContext;
210
 
211
#define GET_PIXEL(frame, x, y) \
212
    ((frame)->data[0] + (y) * frame->linesize[0] + 4 * (x))
213
 
214
#define GET_PIXEL_COMP(frame, x, y, c) \
215
    (*((frame)->data[0] + (y) * frame->linesize[0] + 4 * (x) + c))
216
 
217
static void image_ctx_free(ImageContext *img)
218
{
219
    int i, j;
220
 
221
    av_free(img->color_cache);
222
    if (img->role != IMAGE_ROLE_ARGB && !img->is_alpha_primary)
223
        av_frame_free(&img->frame);
224
    if (img->huffman_groups) {
225
        for (i = 0; i < img->nb_huffman_groups; i++) {
226
            for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; j++)
227
                ff_free_vlc(&img->huffman_groups[i * HUFFMAN_CODES_PER_META_CODE + j].vlc);
228
        }
229
        av_free(img->huffman_groups);
230
    }
231
    memset(img, 0, sizeof(*img));
232
}
233
 
234
 
235
/* Differs from get_vlc2() in the following ways:
236
 *   - codes are bit-reversed
237
 *   - assumes 8-bit table to make reversal simpler
238
 *   - assumes max depth of 2 since the max code length for WebP is 15
239
 */
240
static av_always_inline int webp_get_vlc(GetBitContext *gb, VLC_TYPE (*table)[2])
241
{
242
    int n, nb_bits;
243
    unsigned int index;
244
    int code;
245
 
246
    OPEN_READER(re, gb);
247
    UPDATE_CACHE(re, gb);
248
 
249
    index = SHOW_UBITS(re, gb, 8);
250
    index = ff_reverse[index];
251
    code  = table[index][0];
252
    n     = table[index][1];
253
 
254
    if (n < 0) {
255
        LAST_SKIP_BITS(re, gb, 8);
256
        UPDATE_CACHE(re, gb);
257
 
258
        nb_bits = -n;
259
 
260
        index = SHOW_UBITS(re, gb, nb_bits);
261
        index = (ff_reverse[index] >> (8 - nb_bits)) + code;
262
        code  = table[index][0];
263
        n     = table[index][1];
264
    }
265
    SKIP_BITS(re, gb, n);
266
 
267
    CLOSE_READER(re, gb);
268
 
269
    return code;
270
}
271
 
272
static int huff_reader_get_symbol(HuffReader *r, GetBitContext *gb)
273
{
274
    if (r->simple) {
275
        if (r->nb_symbols == 1)
276
            return r->simple_symbols[0];
277
        else
278
            return r->simple_symbols[get_bits1(gb)];
279
    } else
280
        return webp_get_vlc(gb, r->vlc.table);
281
}
282
 
283
static int huff_reader_build_canonical(HuffReader *r, int *code_lengths,
284
                                       int alphabet_size)
285
{
286
    int len = 0, sym, code = 0, ret;
287
    int max_code_length = 0;
288
    uint16_t *codes;
289
 
290
    /* special-case 1 symbol since the vlc reader cannot handle it */
291
    for (sym = 0; sym < alphabet_size; sym++) {
292
        if (code_lengths[sym] > 0) {
293
            len++;
294
            code = sym;
295
            if (len > 1)
296
                break;
297
        }
298
    }
299
    if (len == 1) {
300
        r->nb_symbols = 1;
301
        r->simple_symbols[0] = code;
302
        r->simple = 1;
303
        return 0;
304
    }
305
 
306
    for (sym = 0; sym < alphabet_size; sym++)
307
        max_code_length = FFMAX(max_code_length, code_lengths[sym]);
308
 
309
    if (max_code_length == 0 || max_code_length > MAX_HUFFMAN_CODE_LENGTH)
310
        return AVERROR(EINVAL);
311
 
312
    codes = av_malloc_array(alphabet_size, sizeof(*codes));
313
    if (!codes)
314
        return AVERROR(ENOMEM);
315
 
316
    code = 0;
317
    r->nb_symbols = 0;
318
    for (len = 1; len <= max_code_length; len++) {
319
        for (sym = 0; sym < alphabet_size; sym++) {
320
            if (code_lengths[sym] != len)
321
                continue;
322
            codes[sym] = code++;
323
            r->nb_symbols++;
324
        }
325
        code <<= 1;
326
    }
327
    if (!r->nb_symbols) {
328
        av_free(codes);
329
        return AVERROR_INVALIDDATA;
330
    }
331
 
332
    ret = init_vlc(&r->vlc, 8, alphabet_size,
333
                   code_lengths, sizeof(*code_lengths), sizeof(*code_lengths),
334
                   codes, sizeof(*codes), sizeof(*codes), 0);
335
    if (ret < 0) {
336
        av_free(codes);
337
        return ret;
338
    }
339
    r->simple = 0;
340
 
341
    av_free(codes);
342
    return 0;
343
}
344
 
345
static void read_huffman_code_simple(WebPContext *s, HuffReader *hc)
346
{
347
    hc->nb_symbols = get_bits1(&s->gb) + 1;
348
 
349
    if (get_bits1(&s->gb))
350
        hc->simple_symbols[0] = get_bits(&s->gb, 8);
351
    else
352
        hc->simple_symbols[0] = get_bits1(&s->gb);
353
 
354
    if (hc->nb_symbols == 2)
355
        hc->simple_symbols[1] = get_bits(&s->gb, 8);
356
 
357
    hc->simple = 1;
358
}
359
 
360
static int read_huffman_code_normal(WebPContext *s, HuffReader *hc,
361
                                    int alphabet_size)
362
{
363
    HuffReader code_len_hc = { { 0 }, 0, 0, { 0 } };
364
    int *code_lengths = NULL;
365
    int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 };
366
    int i, symbol, max_symbol, prev_code_len, ret;
367
    int num_codes = 4 + get_bits(&s->gb, 4);
368
 
369
    if (num_codes > NUM_CODE_LENGTH_CODES)
370
        return AVERROR_INVALIDDATA;
371
 
372
    for (i = 0; i < num_codes; i++)
373
        code_length_code_lengths[code_length_code_order[i]] = get_bits(&s->gb, 3);
374
 
375
    ret = huff_reader_build_canonical(&code_len_hc, code_length_code_lengths,
376
                                      NUM_CODE_LENGTH_CODES);
377
    if (ret < 0)
378
        goto finish;
379
 
380
    code_lengths = av_mallocz_array(alphabet_size, sizeof(*code_lengths));
381
    if (!code_lengths) {
382
        ret = AVERROR(ENOMEM);
383
        goto finish;
384
    }
385
 
386
    if (get_bits1(&s->gb)) {
387
        int bits   = 2 + 2 * get_bits(&s->gb, 3);
388
        max_symbol = 2 + get_bits(&s->gb, bits);
389
        if (max_symbol > alphabet_size) {
390
            av_log(s->avctx, AV_LOG_ERROR, "max symbol %d > alphabet size %d\n",
391
                   max_symbol, alphabet_size);
392
            ret = AVERROR_INVALIDDATA;
393
            goto finish;
394
        }
395
    } else {
396
        max_symbol = alphabet_size;
397
    }
398
 
399
    prev_code_len = 8;
400
    symbol        = 0;
401
    while (symbol < alphabet_size) {
402
        int code_len;
403
 
404
        if (!max_symbol--)
405
            break;
406
        code_len = huff_reader_get_symbol(&code_len_hc, &s->gb);
407
        if (code_len < 16) {
408
            /* Code length code [0..15] indicates literal code lengths. */
409
            code_lengths[symbol++] = code_len;
410
            if (code_len)
411
                prev_code_len = code_len;
412
        } else {
413
            int repeat = 0, length = 0;
414
            switch (code_len) {
415
            case 16:
416
                /* Code 16 repeats the previous non-zero value [3..6] times,
417
                 * i.e., 3 + ReadBits(2) times. If code 16 is used before a
418
                 * non-zero value has been emitted, a value of 8 is repeated. */
419
                repeat = 3 + get_bits(&s->gb, 2);
420
                length = prev_code_len;
421
                break;
422
            case 17:
423
                /* Code 17 emits a streak of zeros [3..10], i.e.,
424
                 * 3 + ReadBits(3) times. */
425
                repeat = 3 + get_bits(&s->gb, 3);
426
                break;
427
            case 18:
428
                /* Code 18 emits a streak of zeros of length [11..138], i.e.,
429
                 * 11 + ReadBits(7) times. */
430
                repeat = 11 + get_bits(&s->gb, 7);
431
                break;
432
            }
433
            if (symbol + repeat > alphabet_size) {
434
                av_log(s->avctx, AV_LOG_ERROR,
435
                       "invalid symbol %d + repeat %d > alphabet size %d\n",
436
                       symbol, repeat, alphabet_size);
437
                ret = AVERROR_INVALIDDATA;
438
                goto finish;
439
            }
440
            while (repeat-- > 0)
441
                code_lengths[symbol++] = length;
442
        }
443
    }
444
 
445
    ret = huff_reader_build_canonical(hc, code_lengths, alphabet_size);
446
 
447
finish:
448
    ff_free_vlc(&code_len_hc.vlc);
449
    av_free(code_lengths);
450
    return ret;
451
}
452
 
453
static int decode_entropy_coded_image(WebPContext *s, enum ImageRole role,
454
                                      int w, int h);
455
 
456
#define PARSE_BLOCK_SIZE(w, h) do {                                         \
457
    block_bits = get_bits(&s->gb, 3) + 2;                                   \
458
    blocks_w   = FFALIGN((w), 1 << block_bits) >> block_bits;               \
459
    blocks_h   = FFALIGN((h), 1 << block_bits) >> block_bits;               \
460
} while (0)
461
 
462
static int decode_entropy_image(WebPContext *s)
463
{
464
    ImageContext *img;
465
    int ret, block_bits, width, blocks_w, blocks_h, x, y, max;
466
 
467
    width = s->width;
468
    if (s->reduced_width > 0)
469
        width = s->reduced_width;
470
 
471
    PARSE_BLOCK_SIZE(width, s->height);
472
 
473
    ret = decode_entropy_coded_image(s, IMAGE_ROLE_ENTROPY, blocks_w, blocks_h);
474
    if (ret < 0)
475
        return ret;
476
 
477
    img = &s->image[IMAGE_ROLE_ENTROPY];
478
    img->size_reduction = block_bits;
479
 
480
    /* the number of huffman groups is determined by the maximum group number
481
     * coded in the entropy image */
482
    max = 0;
483
    for (y = 0; y < img->frame->height; y++) {
484
        for (x = 0; x < img->frame->width; x++) {
485
            int p0 = GET_PIXEL_COMP(img->frame, x, y, 1);
486
            int p1 = GET_PIXEL_COMP(img->frame, x, y, 2);
487
            int p  = p0 << 8 | p1;
488
            max = FFMAX(max, p);
489
        }
490
    }
491
    s->nb_huffman_groups = max + 1;
492
 
493
    return 0;
494
}
495
 
496
static int parse_transform_predictor(WebPContext *s)
497
{
498
    int block_bits, blocks_w, blocks_h, ret;
499
 
500
    PARSE_BLOCK_SIZE(s->width, s->height);
501
 
502
    ret = decode_entropy_coded_image(s, IMAGE_ROLE_PREDICTOR, blocks_w,
503
                                     blocks_h);
504
    if (ret < 0)
505
        return ret;
506
 
507
    s->image[IMAGE_ROLE_PREDICTOR].size_reduction = block_bits;
508
 
509
    return 0;
510
}
511
 
512
static int parse_transform_color(WebPContext *s)
513
{
514
    int block_bits, blocks_w, blocks_h, ret;
515
 
516
    PARSE_BLOCK_SIZE(s->width, s->height);
517
 
518
    ret = decode_entropy_coded_image(s, IMAGE_ROLE_COLOR_TRANSFORM, blocks_w,
519
                                     blocks_h);
520
    if (ret < 0)
521
        return ret;
522
 
523
    s->image[IMAGE_ROLE_COLOR_TRANSFORM].size_reduction = block_bits;
524
 
525
    return 0;
526
}
527
 
528
static int parse_transform_color_indexing(WebPContext *s)
529
{
530
    ImageContext *img;
531
    int width_bits, index_size, ret, x;
532
    uint8_t *ct;
533
 
534
    index_size = get_bits(&s->gb, 8) + 1;
535
 
536
    if (index_size <= 2)
537
        width_bits = 3;
538
    else if (index_size <= 4)
539
        width_bits = 2;
540
    else if (index_size <= 16)
541
        width_bits = 1;
542
    else
543
        width_bits = 0;
544
 
545
    ret = decode_entropy_coded_image(s, IMAGE_ROLE_COLOR_INDEXING,
546
                                     index_size, 1);
547
    if (ret < 0)
548
        return ret;
549
 
550
    img = &s->image[IMAGE_ROLE_COLOR_INDEXING];
551
    img->size_reduction = width_bits;
552
    if (width_bits > 0)
553
        s->reduced_width = (s->width + ((1 << width_bits) - 1)) >> width_bits;
554
 
555
    /* color index values are delta-coded */
556
    ct  = img->frame->data[0] + 4;
557
    for (x = 4; x < img->frame->width * 4; x++, ct++)
558
        ct[0] += ct[-4];
559
 
560
    return 0;
561
}
562
 
563
static HuffReader *get_huffman_group(WebPContext *s, ImageContext *img,
564
                                     int x, int y)
565
{
566
    ImageContext *gimg = &s->image[IMAGE_ROLE_ENTROPY];
567
    int group = 0;
568
 
569
    if (gimg->size_reduction > 0) {
570
        int group_x = x >> gimg->size_reduction;
571
        int group_y = y >> gimg->size_reduction;
572
        int g0      = GET_PIXEL_COMP(gimg->frame, group_x, group_y, 1);
573
        int g1      = GET_PIXEL_COMP(gimg->frame, group_x, group_y, 2);
574
        group       = g0 << 8 | g1;
575
    }
576
 
577
    return &img->huffman_groups[group * HUFFMAN_CODES_PER_META_CODE];
578
}
579
 
580
static av_always_inline void color_cache_put(ImageContext *img, uint32_t c)
581
{
582
    uint32_t cache_idx = (0x1E35A7BD * c) >> (32 - img->color_cache_bits);
583
    img->color_cache[cache_idx] = c;
584
}
585
 
586
static int decode_entropy_coded_image(WebPContext *s, enum ImageRole role,
587
                                      int w, int h)
588
{
589
    ImageContext *img;
590
    HuffReader *hg;
591
    int i, j, ret, x, y, width;
592
 
593
    img       = &s->image[role];
594
    img->role = role;
595
 
596
    if (!img->frame) {
597
        img->frame = av_frame_alloc();
598
        if (!img->frame)
599
            return AVERROR(ENOMEM);
600
    }
601
 
602
    img->frame->format = AV_PIX_FMT_ARGB;
603
    img->frame->width  = w;
604
    img->frame->height = h;
605
 
606
    if (role == IMAGE_ROLE_ARGB && !img->is_alpha_primary) {
607
        ThreadFrame pt = { .f = img->frame };
608
        ret = ff_thread_get_buffer(s->avctx, &pt, 0);
609
    } else
610
        ret = av_frame_get_buffer(img->frame, 1);
611
    if (ret < 0)
612
        return ret;
613
 
614
    if (get_bits1(&s->gb)) {
615
        img->color_cache_bits = get_bits(&s->gb, 4);
616
        if (img->color_cache_bits < 1 || img->color_cache_bits > 11) {
617
            av_log(s->avctx, AV_LOG_ERROR, "invalid color cache bits: %d\n",
618
                   img->color_cache_bits);
619
            return AVERROR_INVALIDDATA;
620
        }
621
        img->color_cache = av_mallocz_array(1 << img->color_cache_bits,
622
                                            sizeof(*img->color_cache));
623
        if (!img->color_cache)
624
            return AVERROR(ENOMEM);
625
    } else {
626
        img->color_cache_bits = 0;
627
    }
628
 
629
    img->nb_huffman_groups = 1;
630
    if (role == IMAGE_ROLE_ARGB && get_bits1(&s->gb)) {
631
        ret = decode_entropy_image(s);
632
        if (ret < 0)
633
            return ret;
634
        img->nb_huffman_groups = s->nb_huffman_groups;
635
    }
636
    img->huffman_groups = av_mallocz_array(img->nb_huffman_groups *
637
                                           HUFFMAN_CODES_PER_META_CODE,
638
                                           sizeof(*img->huffman_groups));
639
    if (!img->huffman_groups)
640
        return AVERROR(ENOMEM);
641
 
642
    for (i = 0; i < img->nb_huffman_groups; i++) {
643
        hg = &img->huffman_groups[i * HUFFMAN_CODES_PER_META_CODE];
644
        for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; j++) {
645
            int alphabet_size = alphabet_sizes[j];
646
            if (!j && img->color_cache_bits > 0)
647
                alphabet_size += 1 << img->color_cache_bits;
648
 
649
            if (get_bits1(&s->gb)) {
650
                read_huffman_code_simple(s, &hg[j]);
651
            } else {
652
                ret = read_huffman_code_normal(s, &hg[j], alphabet_size);
653
                if (ret < 0)
654
                    return ret;
655
            }
656
        }
657
    }
658
 
659
    width = img->frame->width;
660
    if (role == IMAGE_ROLE_ARGB && s->reduced_width > 0)
661
        width = s->reduced_width;
662
 
663
    x = 0; y = 0;
664
    while (y < img->frame->height) {
665
        int v;
666
 
667
        hg = get_huffman_group(s, img, x, y);
668
        v = huff_reader_get_symbol(&hg[HUFF_IDX_GREEN], &s->gb);
669
        if (v < NUM_LITERAL_CODES) {
670
            /* literal pixel values */
671
            uint8_t *p = GET_PIXEL(img->frame, x, y);
672
            p[2] = v;
673
            p[1] = huff_reader_get_symbol(&hg[HUFF_IDX_RED],   &s->gb);
674
            p[3] = huff_reader_get_symbol(&hg[HUFF_IDX_BLUE],  &s->gb);
675
            p[0] = huff_reader_get_symbol(&hg[HUFF_IDX_ALPHA], &s->gb);
676
            if (img->color_cache_bits)
677
                color_cache_put(img, AV_RB32(p));
678
            x++;
679
            if (x == width) {
680
                x = 0;
681
                y++;
682
            }
683
        } else if (v < NUM_LITERAL_CODES + NUM_LENGTH_CODES) {
684
            /* LZ77 backwards mapping */
685
            int prefix_code, length, distance, ref_x, ref_y;
686
 
687
            /* parse length and distance */
688
            prefix_code = v - NUM_LITERAL_CODES;
689
            if (prefix_code < 4) {
690
                length = prefix_code + 1;
691
            } else {
692
                int extra_bits = (prefix_code - 2) >> 1;
693
                int offset     = 2 + (prefix_code & 1) << extra_bits;
694
                length = offset + get_bits(&s->gb, extra_bits) + 1;
695
            }
696
            prefix_code = huff_reader_get_symbol(&hg[HUFF_IDX_DIST], &s->gb);
697
            if (prefix_code > 39) {
698
                av_log(s->avctx, AV_LOG_ERROR,
699
                       "distance prefix code too large: %d\n", prefix_code);
700
                return AVERROR_INVALIDDATA;
701
            }
702
            if (prefix_code < 4) {
703
                distance = prefix_code + 1;
704
            } else {
705
                int extra_bits = prefix_code - 2 >> 1;
706
                int offset     = 2 + (prefix_code & 1) << extra_bits;
707
                distance = offset + get_bits(&s->gb, extra_bits) + 1;
708
            }
709
 
710
            /* find reference location */
711
            if (distance <= NUM_SHORT_DISTANCES) {
712
                int xi = lz77_distance_offsets[distance - 1][0];
713
                int yi = lz77_distance_offsets[distance - 1][1];
714
                distance = FFMAX(1, xi + yi * width);
715
            } else {
716
                distance -= NUM_SHORT_DISTANCES;
717
            }
718
            ref_x = x;
719
            ref_y = y;
720
            if (distance <= x) {
721
                ref_x -= distance;
722
                distance = 0;
723
            } else {
724
                ref_x = 0;
725
                distance -= x;
726
            }
727
            while (distance >= width) {
728
                ref_y--;
729
                distance -= width;
730
            }
731
            if (distance > 0) {
732
                ref_x = width - distance;
733
                ref_y--;
734
            }
735
            ref_x = FFMAX(0, ref_x);
736
            ref_y = FFMAX(0, ref_y);
737
 
738
            /* copy pixels
739
             * source and dest regions can overlap and wrap lines, so just
740
             * copy per-pixel */
741
            for (i = 0; i < length; i++) {
742
                uint8_t *p_ref = GET_PIXEL(img->frame, ref_x, ref_y);
743
                uint8_t *p     = GET_PIXEL(img->frame,     x,     y);
744
 
745
                AV_COPY32(p, p_ref);
746
                if (img->color_cache_bits)
747
                    color_cache_put(img, AV_RB32(p));
748
                x++;
749
                ref_x++;
750
                if (x == width) {
751
                    x = 0;
752
                    y++;
753
                }
754
                if (ref_x == width) {
755
                    ref_x = 0;
756
                    ref_y++;
757
                }
758
                if (y == img->frame->height || ref_y == img->frame->height)
759
                    break;
760
            }
761
        } else {
762
            /* read from color cache */
763
            uint8_t *p = GET_PIXEL(img->frame, x, y);
764
            int cache_idx = v - (NUM_LITERAL_CODES + NUM_LENGTH_CODES);
765
 
766
            if (!img->color_cache_bits) {
767
                av_log(s->avctx, AV_LOG_ERROR, "color cache not found\n");
768
                return AVERROR_INVALIDDATA;
769
            }
770
            if (cache_idx >= 1 << img->color_cache_bits) {
771
                av_log(s->avctx, AV_LOG_ERROR,
772
                       "color cache index out-of-bounds\n");
773
                return AVERROR_INVALIDDATA;
774
            }
775
            AV_WB32(p, img->color_cache[cache_idx]);
776
            x++;
777
            if (x == width) {
778
                x = 0;
779
                y++;
780
            }
781
        }
782
    }
783
 
784
    return 0;
785
}
786
 
787
/* PRED_MODE_BLACK */
788
static void inv_predict_0(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
789
                          const uint8_t *p_t, const uint8_t *p_tr)
790
{
791
    AV_WB32(p, 0xFF000000);
792
}
793
 
794
/* PRED_MODE_L */
795
static void inv_predict_1(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
796
                          const uint8_t *p_t, const uint8_t *p_tr)
797
{
798
    AV_COPY32(p, p_l);
799
}
800
 
801
/* PRED_MODE_T */
802
static void inv_predict_2(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
803
                          const uint8_t *p_t, const uint8_t *p_tr)
804
{
805
    AV_COPY32(p, p_t);
806
}
807
 
808
/* PRED_MODE_TR */
809
static void inv_predict_3(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
810
                          const uint8_t *p_t, const uint8_t *p_tr)
811
{
812
    AV_COPY32(p, p_tr);
813
}
814
 
815
/* PRED_MODE_TL */
816
static void inv_predict_4(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
817
                          const uint8_t *p_t, const uint8_t *p_tr)
818
{
819
    AV_COPY32(p, p_tl);
820
}
821
 
822
/* PRED_MODE_AVG_T_AVG_L_TR */
823
static void inv_predict_5(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
824
                          const uint8_t *p_t, const uint8_t *p_tr)
825
{
826
    p[0] = p_t[0] + (p_l[0] + p_tr[0] >> 1) >> 1;
827
    p[1] = p_t[1] + (p_l[1] + p_tr[1] >> 1) >> 1;
828
    p[2] = p_t[2] + (p_l[2] + p_tr[2] >> 1) >> 1;
829
    p[3] = p_t[3] + (p_l[3] + p_tr[3] >> 1) >> 1;
830
}
831
 
832
/* PRED_MODE_AVG_L_TL */
833
static void inv_predict_6(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
834
                          const uint8_t *p_t, const uint8_t *p_tr)
835
{
836
    p[0] = p_l[0] + p_tl[0] >> 1;
837
    p[1] = p_l[1] + p_tl[1] >> 1;
838
    p[2] = p_l[2] + p_tl[2] >> 1;
839
    p[3] = p_l[3] + p_tl[3] >> 1;
840
}
841
 
842
/* PRED_MODE_AVG_L_T */
843
static void inv_predict_7(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
844
                          const uint8_t *p_t, const uint8_t *p_tr)
845
{
846
    p[0] = p_l[0] + p_t[0] >> 1;
847
    p[1] = p_l[1] + p_t[1] >> 1;
848
    p[2] = p_l[2] + p_t[2] >> 1;
849
    p[3] = p_l[3] + p_t[3] >> 1;
850
}
851
 
852
/* PRED_MODE_AVG_TL_T */
853
static void inv_predict_8(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
854
                          const uint8_t *p_t, const uint8_t *p_tr)
855
{
856
    p[0] = p_tl[0] + p_t[0] >> 1;
857
    p[1] = p_tl[1] + p_t[1] >> 1;
858
    p[2] = p_tl[2] + p_t[2] >> 1;
859
    p[3] = p_tl[3] + p_t[3] >> 1;
860
}
861
 
862
/* PRED_MODE_AVG_T_TR */
863
static void inv_predict_9(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
864
                          const uint8_t *p_t, const uint8_t *p_tr)
865
{
866
    p[0] = p_t[0] + p_tr[0] >> 1;
867
    p[1] = p_t[1] + p_tr[1] >> 1;
868
    p[2] = p_t[2] + p_tr[2] >> 1;
869
    p[3] = p_t[3] + p_tr[3] >> 1;
870
}
871
 
872
/* PRED_MODE_AVG_AVG_L_TL_AVG_T_TR */
873
static void inv_predict_10(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
874
                           const uint8_t *p_t, const uint8_t *p_tr)
875
{
876
    p[0] = (p_l[0] + p_tl[0] >> 1) + (p_t[0] + p_tr[0] >> 1) >> 1;
877
    p[1] = (p_l[1] + p_tl[1] >> 1) + (p_t[1] + p_tr[1] >> 1) >> 1;
878
    p[2] = (p_l[2] + p_tl[2] >> 1) + (p_t[2] + p_tr[2] >> 1) >> 1;
879
    p[3] = (p_l[3] + p_tl[3] >> 1) + (p_t[3] + p_tr[3] >> 1) >> 1;
880
}
881
 
882
/* PRED_MODE_SELECT */
883
static void inv_predict_11(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
884
                           const uint8_t *p_t, const uint8_t *p_tr)
885
{
886
    int diff = (FFABS(p_l[0] - p_tl[0]) - FFABS(p_t[0] - p_tl[0])) +
887
               (FFABS(p_l[1] - p_tl[1]) - FFABS(p_t[1] - p_tl[1])) +
888
               (FFABS(p_l[2] - p_tl[2]) - FFABS(p_t[2] - p_tl[2])) +
889
               (FFABS(p_l[3] - p_tl[3]) - FFABS(p_t[3] - p_tl[3]));
890
    if (diff <= 0)
891
        AV_COPY32(p, p_t);
892
    else
893
        AV_COPY32(p, p_l);
894
}
895
 
896
/* PRED_MODE_ADD_SUBTRACT_FULL */
897
static void inv_predict_12(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
898
                           const uint8_t *p_t, const uint8_t *p_tr)
899
{
900
    p[0] = av_clip_uint8(p_l[0] + p_t[0] - p_tl[0]);
901
    p[1] = av_clip_uint8(p_l[1] + p_t[1] - p_tl[1]);
902
    p[2] = av_clip_uint8(p_l[2] + p_t[2] - p_tl[2]);
903
    p[3] = av_clip_uint8(p_l[3] + p_t[3] - p_tl[3]);
904
}
905
 
906
static av_always_inline uint8_t clamp_add_subtract_half(int a, int b, int c)
907
{
908
    int d = a + b >> 1;
909
    return av_clip_uint8(d + (d - c) / 2);
910
}
911
 
912
/* PRED_MODE_ADD_SUBTRACT_HALF */
913
static void inv_predict_13(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
914
                           const uint8_t *p_t, const uint8_t *p_tr)
915
{
916
    p[0] = clamp_add_subtract_half(p_l[0], p_t[0], p_tl[0]);
917
    p[1] = clamp_add_subtract_half(p_l[1], p_t[1], p_tl[1]);
918
    p[2] = clamp_add_subtract_half(p_l[2], p_t[2], p_tl[2]);
919
    p[3] = clamp_add_subtract_half(p_l[3], p_t[3], p_tl[3]);
920
}
921
 
922
typedef void (*inv_predict_func)(uint8_t *p, const uint8_t *p_l,
923
                                 const uint8_t *p_tl, const uint8_t *p_t,
924
                                 const uint8_t *p_tr);
925
 
926
static const inv_predict_func inverse_predict[14] = {
927
    inv_predict_0,  inv_predict_1,  inv_predict_2,  inv_predict_3,
928
    inv_predict_4,  inv_predict_5,  inv_predict_6,  inv_predict_7,
929
    inv_predict_8,  inv_predict_9,  inv_predict_10, inv_predict_11,
930
    inv_predict_12, inv_predict_13,
931
};
932
 
933
static void inverse_prediction(AVFrame *frame, enum PredictionMode m, int x, int y)
934
{
935
    uint8_t *dec, *p_l, *p_tl, *p_t, *p_tr;
936
    uint8_t p[4];
937
 
938
    dec  = GET_PIXEL(frame, x,     y);
939
    p_l  = GET_PIXEL(frame, x - 1, y);
940
    p_tl = GET_PIXEL(frame, x - 1, y - 1);
941
    p_t  = GET_PIXEL(frame, x,     y - 1);
942
    if (x == frame->width - 1)
943
        p_tr = GET_PIXEL(frame, 0, y);
944
    else
945
        p_tr = GET_PIXEL(frame, x + 1, y - 1);
946
 
947
    inverse_predict[m](p, p_l, p_tl, p_t, p_tr);
948
 
949
    dec[0] += p[0];
950
    dec[1] += p[1];
951
    dec[2] += p[2];
952
    dec[3] += p[3];
953
}
954
 
955
static int apply_predictor_transform(WebPContext *s)
956
{
957
    ImageContext *img  = &s->image[IMAGE_ROLE_ARGB];
958
    ImageContext *pimg = &s->image[IMAGE_ROLE_PREDICTOR];
959
    int x, y;
960
 
961
    for (y = 0; y < img->frame->height; y++) {
962
        for (x = 0; x < img->frame->width; x++) {
963
            int tx = x >> pimg->size_reduction;
964
            int ty = y >> pimg->size_reduction;
965
            enum PredictionMode m = GET_PIXEL_COMP(pimg->frame, tx, ty, 2);
966
 
967
            if (x == 0) {
968
                if (y == 0)
969
                    m = PRED_MODE_BLACK;
970
                else
971
                    m = PRED_MODE_T;
972
            } else if (y == 0)
973
                m = PRED_MODE_L;
974
 
975
            if (m > 13) {
976
                av_log(s->avctx, AV_LOG_ERROR,
977
                       "invalid predictor mode: %d\n", m);
978
                return AVERROR_INVALIDDATA;
979
            }
980
            inverse_prediction(img->frame, m, x, y);
981
        }
982
    }
983
    return 0;
984
}
985
 
986
static av_always_inline uint8_t color_transform_delta(uint8_t color_pred,
987
                                                      uint8_t color)
988
{
989
    return (int)ff_u8_to_s8(color_pred) * ff_u8_to_s8(color) >> 5;
990
}
991
 
992
static int apply_color_transform(WebPContext *s)
993
{
994
    ImageContext *img, *cimg;
995
    int x, y, cx, cy;
996
    uint8_t *p, *cp;
997
 
998
    img  = &s->image[IMAGE_ROLE_ARGB];
999
    cimg = &s->image[IMAGE_ROLE_COLOR_TRANSFORM];
1000
 
1001
    for (y = 0; y < img->frame->height; y++) {
1002
        for (x = 0; x < img->frame->width; x++) {
1003
            cx = x >> cimg->size_reduction;
1004
            cy = y >> cimg->size_reduction;
1005
            cp = GET_PIXEL(cimg->frame, cx, cy);
1006
            p  = GET_PIXEL(img->frame,   x,  y);
1007
 
1008
            p[1] += color_transform_delta(cp[3], p[2]);
1009
            p[3] += color_transform_delta(cp[2], p[2]) +
1010
                    color_transform_delta(cp[1], p[1]);
1011
        }
1012
    }
1013
    return 0;
1014
}
1015
 
1016
static int apply_subtract_green_transform(WebPContext *s)
1017
{
1018
    int x, y;
1019
    ImageContext *img = &s->image[IMAGE_ROLE_ARGB];
1020
 
1021
    for (y = 0; y < img->frame->height; y++) {
1022
        for (x = 0; x < img->frame->width; x++) {
1023
            uint8_t *p = GET_PIXEL(img->frame, x, y);
1024
            p[1] += p[2];
1025
            p[3] += p[2];
1026
        }
1027
    }
1028
    return 0;
1029
}
1030
 
1031
static int apply_color_indexing_transform(WebPContext *s)
1032
{
1033
    ImageContext *img;
1034
    ImageContext *pal;
1035
    int i, x, y;
1036
    uint8_t *p;
1037
 
1038
    img = &s->image[IMAGE_ROLE_ARGB];
1039
    pal = &s->image[IMAGE_ROLE_COLOR_INDEXING];
1040
 
1041
    if (pal->size_reduction > 0) {
1042
        GetBitContext gb_g;
1043
        uint8_t *line;
1044
        int pixel_bits = 8 >> pal->size_reduction;
1045
 
1046
        line = av_malloc(img->frame->linesize[0]);
1047
        if (!line)
1048
            return AVERROR(ENOMEM);
1049
 
1050
        for (y = 0; y < img->frame->height; y++) {
1051
            p = GET_PIXEL(img->frame, 0, y);
1052
            memcpy(line, p, img->frame->linesize[0]);
1053
            init_get_bits(&gb_g, line, img->frame->linesize[0] * 8);
1054
            skip_bits(&gb_g, 16);
1055
            i = 0;
1056
            for (x = 0; x < img->frame->width; x++) {
1057
                p    = GET_PIXEL(img->frame, x, y);
1058
                p[2] = get_bits(&gb_g, pixel_bits);
1059
                i++;
1060
                if (i == 1 << pal->size_reduction) {
1061
                    skip_bits(&gb_g, 24);
1062
                    i = 0;
1063
                }
1064
            }
1065
        }
1066
        av_free(line);
1067
    }
1068
 
1069
    // switch to local palette if it's worth initializing it
1070
    if (img->frame->height * img->frame->width > 300) {
1071
        uint8_t palette[256 * 4];
1072
        const int size = pal->frame->width * 4;
1073
        av_assert0(size <= 1024U);
1074
        memcpy(palette, GET_PIXEL(pal->frame, 0, 0), size);   // copy palette
1075
        // set extra entries to transparent black
1076
        memset(palette + size, 0, 256 * 4 - size);
1077
        for (y = 0; y < img->frame->height; y++) {
1078
            for (x = 0; x < img->frame->width; x++) {
1079
                p = GET_PIXEL(img->frame, x, y);
1080
                i = p[2];
1081
                AV_COPY32(p, &palette[i * 4]);
1082
            }
1083
        }
1084
    } else {
1085
        for (y = 0; y < img->frame->height; y++) {
1086
            for (x = 0; x < img->frame->width; x++) {
1087
                p = GET_PIXEL(img->frame, x, y);
1088
                i = p[2];
1089
                if (i >= pal->frame->width) {
1090
                    AV_WB32(p, 0x00000000);
1091
                } else {
1092
                    const uint8_t *pi = GET_PIXEL(pal->frame, i, 0);
1093
                    AV_COPY32(p, pi);
1094
                }
1095
            }
1096
        }
1097
    }
1098
 
1099
    return 0;
1100
}
1101
 
1102
static int vp8_lossless_decode_frame(AVCodecContext *avctx, AVFrame *p,
1103
                                     int *got_frame, uint8_t *data_start,
1104
                                     unsigned int data_size, int is_alpha_chunk)
1105
{
1106
    WebPContext *s = avctx->priv_data;
1107
    int w, h, ret, i, used;
1108
 
1109
    if (!is_alpha_chunk) {
1110
        s->lossless = 1;
1111
        avctx->pix_fmt = AV_PIX_FMT_ARGB;
1112
    }
1113
 
1114
    ret = init_get_bits8(&s->gb, data_start, data_size);
1115
    if (ret < 0)
1116
        return ret;
1117
 
1118
    if (!is_alpha_chunk) {
1119
        if (get_bits(&s->gb, 8) != 0x2F) {
1120
            av_log(avctx, AV_LOG_ERROR, "Invalid WebP Lossless signature\n");
1121
            return AVERROR_INVALIDDATA;
1122
        }
1123
 
1124
        w = get_bits(&s->gb, 14) + 1;
1125
        h = get_bits(&s->gb, 14) + 1;
1126
        if (s->width && s->width != w) {
1127
            av_log(avctx, AV_LOG_WARNING, "Width mismatch. %d != %d\n",
1128
                   s->width, w);
1129
        }
1130
        s->width = w;
1131
        if (s->height && s->height != h) {
1132
            av_log(avctx, AV_LOG_WARNING, "Height mismatch. %d != %d\n",
1133
                   s->width, w);
1134
        }
1135
        s->height = h;
1136
 
1137
        ret = ff_set_dimensions(avctx, s->width, s->height);
1138
        if (ret < 0)
1139
            return ret;
1140
 
1141
        s->has_alpha = get_bits1(&s->gb);
1142
 
1143
        if (get_bits(&s->gb, 3) != 0x0) {
1144
            av_log(avctx, AV_LOG_ERROR, "Invalid WebP Lossless version\n");
1145
            return AVERROR_INVALIDDATA;
1146
        }
1147
    } else {
1148
        if (!s->width || !s->height)
1149
            return AVERROR_BUG;
1150
        w = s->width;
1151
        h = s->height;
1152
    }
1153
 
1154
    /* parse transformations */
1155
    s->nb_transforms = 0;
1156
    s->reduced_width = 0;
1157
    used = 0;
1158
    while (get_bits1(&s->gb)) {
1159
        enum TransformType transform = get_bits(&s->gb, 2);
1160
        if (used & (1 << transform)) {
1161
            av_log(avctx, AV_LOG_ERROR, "Transform %d used more than once\n",
1162
                   transform);
1163
            ret = AVERROR_INVALIDDATA;
1164
            goto free_and_return;
1165
        }
1166
        used |= (1 << transform);
1167
        s->transforms[s->nb_transforms++] = transform;
1168
        switch (transform) {
1169
        case PREDICTOR_TRANSFORM:
1170
            ret = parse_transform_predictor(s);
1171
            break;
1172
        case COLOR_TRANSFORM:
1173
            ret = parse_transform_color(s);
1174
            break;
1175
        case COLOR_INDEXING_TRANSFORM:
1176
            ret = parse_transform_color_indexing(s);
1177
            break;
1178
        }
1179
        if (ret < 0)
1180
            goto free_and_return;
1181
    }
1182
 
1183
    /* decode primary image */
1184
    s->image[IMAGE_ROLE_ARGB].frame = p;
1185
    if (is_alpha_chunk)
1186
        s->image[IMAGE_ROLE_ARGB].is_alpha_primary = 1;
1187
    ret = decode_entropy_coded_image(s, IMAGE_ROLE_ARGB, w, h);
1188
    if (ret < 0)
1189
        goto free_and_return;
1190
 
1191
    /* apply transformations */
1192
    for (i = s->nb_transforms - 1; i >= 0; i--) {
1193
        switch (s->transforms[i]) {
1194
        case PREDICTOR_TRANSFORM:
1195
            ret = apply_predictor_transform(s);
1196
            break;
1197
        case COLOR_TRANSFORM:
1198
            ret = apply_color_transform(s);
1199
            break;
1200
        case SUBTRACT_GREEN:
1201
            ret = apply_subtract_green_transform(s);
1202
            break;
1203
        case COLOR_INDEXING_TRANSFORM:
1204
            ret = apply_color_indexing_transform(s);
1205
            break;
1206
        }
1207
        if (ret < 0)
1208
            goto free_and_return;
1209
    }
1210
 
1211
    *got_frame   = 1;
1212
    p->pict_type = AV_PICTURE_TYPE_I;
1213
    p->key_frame = 1;
1214
    ret          = data_size;
1215
 
1216
free_and_return:
1217
    for (i = 0; i < IMAGE_ROLE_NB; i++)
1218
        image_ctx_free(&s->image[i]);
1219
 
1220
    return ret;
1221
}
1222
 
1223
static void alpha_inverse_prediction(AVFrame *frame, enum AlphaFilter m)
1224
{
1225
    int x, y, ls;
1226
    uint8_t *dec;
1227
 
1228
    ls = frame->linesize[3];
1229
 
1230
    /* filter first row using horizontal filter */
1231
    dec = frame->data[3] + 1;
1232
    for (x = 1; x < frame->width; x++, dec++)
1233
        *dec += *(dec - 1);
1234
 
1235
    /* filter first column using vertical filter */
1236
    dec = frame->data[3] + ls;
1237
    for (y = 1; y < frame->height; y++, dec += ls)
1238
        *dec += *(dec - ls);
1239
 
1240
    /* filter the rest using the specified filter */
1241
    switch (m) {
1242
    case ALPHA_FILTER_HORIZONTAL:
1243
        for (y = 1; y < frame->height; y++) {
1244
            dec = frame->data[3] + y * ls + 1;
1245
            for (x = 1; x < frame->width; x++, dec++)
1246
                *dec += *(dec - 1);
1247
        }
1248
        break;
1249
    case ALPHA_FILTER_VERTICAL:
1250
        for (y = 1; y < frame->height; y++) {
1251
            dec = frame->data[3] + y * ls + 1;
1252
            for (x = 1; x < frame->width; x++, dec++)
1253
                *dec += *(dec - ls);
1254
        }
1255
        break;
1256
    case ALPHA_FILTER_GRADIENT:
1257
        for (y = 1; y < frame->height; y++) {
1258
            dec = frame->data[3] + y * ls + 1;
1259
            for (x = 1; x < frame->width; x++, dec++)
1260
                dec[0] += av_clip_uint8(*(dec - 1) + *(dec - ls) - *(dec - ls - 1));
1261
        }
1262
        break;
1263
    }
1264
}
1265
 
1266
static int vp8_lossy_decode_alpha(AVCodecContext *avctx, AVFrame *p,
1267
                                  uint8_t *data_start,
1268
                                  unsigned int data_size)
1269
{
1270
    WebPContext *s = avctx->priv_data;
1271
    int x, y, ret;
1272
 
1273
    if (s->alpha_compression == ALPHA_COMPRESSION_NONE) {
1274
        GetByteContext gb;
1275
 
1276
        bytestream2_init(&gb, data_start, data_size);
1277
        for (y = 0; y < s->height; y++)
1278
            bytestream2_get_buffer(&gb, p->data[3] + p->linesize[3] * y,
1279
                                   s->width);
1280
    } else if (s->alpha_compression == ALPHA_COMPRESSION_VP8L) {
1281
        uint8_t *ap, *pp;
1282
        int alpha_got_frame = 0;
1283
 
1284
        s->alpha_frame = av_frame_alloc();
1285
        if (!s->alpha_frame)
1286
            return AVERROR(ENOMEM);
1287
 
1288
        ret = vp8_lossless_decode_frame(avctx, s->alpha_frame, &alpha_got_frame,
1289
                                        data_start, data_size, 1);
1290
        if (ret < 0) {
1291
            av_frame_free(&s->alpha_frame);
1292
            return ret;
1293
        }
1294
        if (!alpha_got_frame) {
1295
            av_frame_free(&s->alpha_frame);
1296
            return AVERROR_INVALIDDATA;
1297
        }
1298
 
1299
        /* copy green component of alpha image to alpha plane of primary image */
1300
        for (y = 0; y < s->height; y++) {
1301
            ap = GET_PIXEL(s->alpha_frame, 0, y) + 2;
1302
            pp = p->data[3] + p->linesize[3] * y;
1303
            for (x = 0; x < s->width; x++) {
1304
                *pp = *ap;
1305
                pp++;
1306
                ap += 4;
1307
            }
1308
        }
1309
        av_frame_free(&s->alpha_frame);
1310
    }
1311
 
1312
    /* apply alpha filtering */
1313
    if (s->alpha_filter)
1314
        alpha_inverse_prediction(p, s->alpha_filter);
1315
 
1316
    return 0;
1317
}
1318
 
1319
static int vp8_lossy_decode_frame(AVCodecContext *avctx, AVFrame *p,
1320
                                  int *got_frame, uint8_t *data_start,
1321
                                  unsigned int data_size)
1322
{
1323
    WebPContext *s = avctx->priv_data;
1324
    AVPacket pkt;
1325
    int ret;
1326
 
1327
    if (!s->initialized) {
1328
        ff_vp8_decode_init(avctx);
1329
        s->initialized = 1;
1330
        if (s->has_alpha)
1331
            avctx->pix_fmt = AV_PIX_FMT_YUVA420P;
1332
    }
1333
    s->lossless = 0;
1334
 
1335
    if (data_size > INT_MAX) {
1336
        av_log(avctx, AV_LOG_ERROR, "unsupported chunk size\n");
1337
        return AVERROR_PATCHWELCOME;
1338
    }
1339
 
1340
    av_init_packet(&pkt);
1341
    pkt.data = data_start;
1342
    pkt.size = data_size;
1343
 
1344
    ret = ff_vp8_decode_frame(avctx, p, got_frame, &pkt);
1345
    if (s->has_alpha) {
1346
        ret = vp8_lossy_decode_alpha(avctx, p, s->alpha_data,
1347
                                     s->alpha_data_size);
1348
        if (ret < 0)
1349
            return ret;
1350
    }
1351
    return ret;
1352
}
1353
 
1354
static int webp_decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
1355
                             AVPacket *avpkt)
1356
{
1357
    AVFrame * const p = data;
1358
    WebPContext *s = avctx->priv_data;
1359
    GetByteContext gb;
1360
    int ret;
1361
    uint32_t chunk_type, chunk_size;
1362
    int vp8x_flags = 0;
1363
 
1364
    s->avctx     = avctx;
1365
    s->width     = 0;
1366
    s->height    = 0;
1367
    *got_frame   = 0;
1368
    s->has_alpha = 0;
1369
    s->has_exif  = 0;
1370
    bytestream2_init(&gb, avpkt->data, avpkt->size);
1371
 
1372
    if (bytestream2_get_bytes_left(&gb) < 12)
1373
        return AVERROR_INVALIDDATA;
1374
 
1375
    if (bytestream2_get_le32(&gb) != MKTAG('R', 'I', 'F', 'F')) {
1376
        av_log(avctx, AV_LOG_ERROR, "missing RIFF tag\n");
1377
        return AVERROR_INVALIDDATA;
1378
    }
1379
 
1380
    chunk_size = bytestream2_get_le32(&gb);
1381
    if (bytestream2_get_bytes_left(&gb) < chunk_size)
1382
        return AVERROR_INVALIDDATA;
1383
 
1384
    if (bytestream2_get_le32(&gb) != MKTAG('W', 'E', 'B', 'P')) {
1385
        av_log(avctx, AV_LOG_ERROR, "missing WEBP tag\n");
1386
        return AVERROR_INVALIDDATA;
1387
    }
1388
 
1389
    av_dict_free(&s->exif_metadata);
1390
    while (bytestream2_get_bytes_left(&gb) > 8) {
1391
        char chunk_str[5] = { 0 };
1392
 
1393
        chunk_type = bytestream2_get_le32(&gb);
1394
        chunk_size = bytestream2_get_le32(&gb);
1395
        if (chunk_size == UINT32_MAX)
1396
            return AVERROR_INVALIDDATA;
1397
        chunk_size += chunk_size & 1;
1398
 
1399
        if (bytestream2_get_bytes_left(&gb) < chunk_size)
1400
            return AVERROR_INVALIDDATA;
1401
 
1402
        switch (chunk_type) {
1403
        case MKTAG('V', 'P', '8', ' '):
1404
            if (!*got_frame) {
1405
                ret = vp8_lossy_decode_frame(avctx, p, got_frame,
1406
                                             avpkt->data + bytestream2_tell(&gb),
1407
                                             chunk_size);
1408
                if (ret < 0)
1409
                    return ret;
1410
            }
1411
            bytestream2_skip(&gb, chunk_size);
1412
            break;
1413
        case MKTAG('V', 'P', '8', 'L'):
1414
            if (!*got_frame) {
1415
                ret = vp8_lossless_decode_frame(avctx, p, got_frame,
1416
                                                avpkt->data + bytestream2_tell(&gb),
1417
                                                chunk_size, 0);
1418
                if (ret < 0)
1419
                    return ret;
1420
                avctx->properties |= FF_CODEC_PROPERTY_LOSSLESS;
1421
            }
1422
            bytestream2_skip(&gb, chunk_size);
1423
            break;
1424
        case MKTAG('V', 'P', '8', 'X'):
1425
            vp8x_flags = bytestream2_get_byte(&gb);
1426
            bytestream2_skip(&gb, 3);
1427
            s->width  = bytestream2_get_le24(&gb) + 1;
1428
            s->height = bytestream2_get_le24(&gb) + 1;
1429
            ret = av_image_check_size(s->width, s->height, 0, avctx);
1430
            if (ret < 0)
1431
                return ret;
1432
            break;
1433
        case MKTAG('A', 'L', 'P', 'H'): {
1434
            int alpha_header, filter_m, compression;
1435
 
1436
            if (!(vp8x_flags & VP8X_FLAG_ALPHA)) {
1437
                av_log(avctx, AV_LOG_WARNING,
1438
                       "ALPHA chunk present, but alpha bit not set in the "
1439
                       "VP8X header\n");
1440
            }
1441
            if (chunk_size == 0) {
1442
                av_log(avctx, AV_LOG_ERROR, "invalid ALPHA chunk size\n");
1443
                return AVERROR_INVALIDDATA;
1444
            }
1445
            alpha_header       = bytestream2_get_byte(&gb);
1446
            s->alpha_data      = avpkt->data + bytestream2_tell(&gb);
1447
            s->alpha_data_size = chunk_size - 1;
1448
            bytestream2_skip(&gb, s->alpha_data_size);
1449
 
1450
            filter_m    = (alpha_header >> 2) & 0x03;
1451
            compression =  alpha_header       & 0x03;
1452
 
1453
            if (compression > ALPHA_COMPRESSION_VP8L) {
1454
                av_log(avctx, AV_LOG_VERBOSE,
1455
                       "skipping unsupported ALPHA chunk\n");
1456
            } else {
1457
                s->has_alpha         = 1;
1458
                s->alpha_compression = compression;
1459
                s->alpha_filter      = filter_m;
1460
            }
1461
 
1462
            break;
1463
        }
1464
        case MKTAG('E', 'X', 'I', 'F'): {
1465
            int le, ifd_offset, exif_offset = bytestream2_tell(&gb);
1466
            GetByteContext exif_gb;
1467
 
1468
            if (s->has_exif) {
1469
                av_log(avctx, AV_LOG_VERBOSE, "Ignoring extra EXIF chunk\n");
1470
                goto exif_end;
1471
            }
1472
            if (!(vp8x_flags & VP8X_FLAG_EXIF_METADATA))
1473
                av_log(avctx, AV_LOG_WARNING,
1474
                       "EXIF chunk present, but Exif bit not set in the "
1475
                       "VP8X header\n");
1476
 
1477
            s->has_exif = 1;
1478
            bytestream2_init(&exif_gb, avpkt->data + exif_offset,
1479
                             avpkt->size - exif_offset);
1480
            if (ff_tdecode_header(&exif_gb, &le, &ifd_offset) < 0) {
1481
                av_log(avctx, AV_LOG_ERROR, "invalid TIFF header "
1482
                       "in Exif data\n");
1483
                goto exif_end;
1484
            }
1485
 
1486
            bytestream2_seek(&exif_gb, ifd_offset, SEEK_SET);
1487
            if (avpriv_exif_decode_ifd(avctx, &exif_gb, le, 0, &s->exif_metadata) < 0) {
1488
                av_log(avctx, AV_LOG_ERROR, "error decoding Exif data\n");
1489
                goto exif_end;
1490
            }
1491
 
1492
            av_dict_copy(avpriv_frame_get_metadatap(data), s->exif_metadata, 0);
1493
 
1494
exif_end:
1495
            av_dict_free(&s->exif_metadata);
1496
            bytestream2_skip(&gb, chunk_size);
1497
            break;
1498
        }
1499
        case MKTAG('I', 'C', 'C', 'P'):
1500
        case MKTAG('A', 'N', 'I', 'M'):
1501
        case MKTAG('A', 'N', 'M', 'F'):
1502
        case MKTAG('X', 'M', 'P', ' '):
1503
            AV_WL32(chunk_str, chunk_type);
1504
            av_log(avctx, AV_LOG_VERBOSE, "skipping unsupported chunk: %s\n",
1505
                   chunk_str);
1506
            bytestream2_skip(&gb, chunk_size);
1507
            break;
1508
        default:
1509
            AV_WL32(chunk_str, chunk_type);
1510
            av_log(avctx, AV_LOG_VERBOSE, "skipping unknown chunk: %s\n",
1511
                   chunk_str);
1512
            bytestream2_skip(&gb, chunk_size);
1513
            break;
1514
        }
1515
    }
1516
 
1517
    if (!*got_frame) {
1518
        av_log(avctx, AV_LOG_ERROR, "image data not found\n");
1519
        return AVERROR_INVALIDDATA;
1520
    }
1521
 
1522
    return avpkt->size;
1523
}
1524
 
1525
static av_cold int webp_decode_close(AVCodecContext *avctx)
1526
{
1527
    WebPContext *s = avctx->priv_data;
1528
 
1529
    if (s->initialized)
1530
        return ff_vp8_decode_free(avctx);
1531
 
1532
    return 0;
1533
}
1534
 
1535
AVCodec ff_webp_decoder = {
1536
    .name           = "webp",
1537
    .long_name      = NULL_IF_CONFIG_SMALL("WebP image"),
1538
    .type           = AVMEDIA_TYPE_VIDEO,
1539
    .id             = AV_CODEC_ID_WEBP,
1540
    .priv_data_size = sizeof(WebPContext),
1541
    .decode         = webp_decode_frame,
1542
    .close          = webp_decode_close,
1543
    .capabilities   = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS,
1544
};