Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
6147 serge 1
/*
2
 * COOK compatible decoder
3
 * Copyright (c) 2003 Sascha Sommer
4
 * Copyright (c) 2005 Benjamin Larsson
5
 *
6
 * This file is part of FFmpeg.
7
 *
8
 * FFmpeg is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 */
22
 
23
/**
24
 * @file
25
 * Cook compatible decoder. Bastardization of the G.722.1 standard.
26
 * This decoder handles RealNetworks, RealAudio G2 data.
27
 * Cook is identified by the codec name cook in RM files.
28
 *
29
 * To use this decoder, a calling application must supply the extradata
30
 * bytes provided from the RM container; 8+ bytes for mono streams and
31
 * 16+ for stereo streams (maybe more).
32
 *
33
 * Codec technicalities (all this assume a buffer length of 1024):
34
 * Cook works with several different techniques to achieve its compression.
35
 * In the timedomain the buffer is divided into 8 pieces and quantized. If
36
 * two neighboring pieces have different quantization index a smooth
37
 * quantization curve is used to get a smooth overlap between the different
38
 * pieces.
39
 * To get to the transformdomain Cook uses a modulated lapped transform.
40
 * The transform domain has 50 subbands with 20 elements each. This
41
 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
42
 * available.
43
 */
44
 
45
#include "libavutil/channel_layout.h"
46
#include "libavutil/lfg.h"
47
 
48
#include "audiodsp.h"
49
#include "avcodec.h"
50
#include "get_bits.h"
51
#include "bytestream.h"
52
#include "fft.h"
53
#include "internal.h"
54
#include "sinewin.h"
55
#include "unary.h"
56
 
57
#include "cookdata.h"
58
 
59
/* the different Cook versions */
60
#define MONO            0x1000001
61
#define STEREO          0x1000002
62
#define JOINT_STEREO    0x1000003
63
#define MC_COOK         0x2000000   // multichannel Cook, not supported
64
 
65
#define SUBBAND_SIZE    20
66
#define MAX_SUBPACKETS   5
67
 
68
typedef struct cook_gains {
69
    int *now;
70
    int *previous;
71
} cook_gains;
72
 
73
typedef struct COOKSubpacket {
74
    int                 ch_idx;
75
    int                 size;
76
    int                 num_channels;
77
    int                 cookversion;
78
    int                 subbands;
79
    int                 js_subband_start;
80
    int                 js_vlc_bits;
81
    int                 samples_per_channel;
82
    int                 log2_numvector_size;
83
    unsigned int        channel_mask;
84
    VLC                 channel_coupling;
85
    int                 joint_stereo;
86
    int                 bits_per_subpacket;
87
    int                 bits_per_subpdiv;
88
    int                 total_subbands;
89
    int                 numvector_size;       // 1 << log2_numvector_size;
90
 
91
    float               mono_previous_buffer1[1024];
92
    float               mono_previous_buffer2[1024];
93
 
94
    cook_gains          gains1;
95
    cook_gains          gains2;
96
    int                 gain_1[9];
97
    int                 gain_2[9];
98
    int                 gain_3[9];
99
    int                 gain_4[9];
100
} COOKSubpacket;
101
 
102
typedef struct cook {
103
    /*
104
     * The following 5 functions provide the lowlevel arithmetic on
105
     * the internal audio buffers.
106
     */
107
    void (*scalar_dequant)(struct cook *q, int index, int quant_index,
108
                           int *subband_coef_index, int *subband_coef_sign,
109
                           float *mlt_p);
110
 
111
    void (*decouple)(struct cook *q,
112
                     COOKSubpacket *p,
113
                     int subband,
114
                     float f1, float f2,
115
                     float *decode_buffer,
116
                     float *mlt_buffer1, float *mlt_buffer2);
117
 
118
    void (*imlt_window)(struct cook *q, float *buffer1,
119
                        cook_gains *gains_ptr, float *previous_buffer);
120
 
121
    void (*interpolate)(struct cook *q, float *buffer,
122
                        int gain_index, int gain_index_next);
123
 
124
    void (*saturate_output)(struct cook *q, float *out);
125
 
126
    AVCodecContext*     avctx;
127
    AudioDSPContext     adsp;
128
    GetBitContext       gb;
129
    /* stream data */
130
    int                 num_vectors;
131
    int                 samples_per_channel;
132
    /* states */
133
    AVLFG               random_state;
134
    int                 discarded_packets;
135
 
136
    /* transform data */
137
    FFTContext          mdct_ctx;
138
    float*              mlt_window;
139
 
140
    /* VLC data */
141
    VLC                 envelope_quant_index[13];
142
    VLC                 sqvh[7];          // scalar quantization
143
 
144
    /* generatable tables and related variables */
145
    int                 gain_size_factor;
146
    float               gain_table[23];
147
 
148
    /* data buffers */
149
 
150
    uint8_t*            decoded_bytes_buffer;
151
    DECLARE_ALIGNED(32, float, mono_mdct_output)[2048];
152
    float               decode_buffer_1[1024];
153
    float               decode_buffer_2[1024];
154
    float               decode_buffer_0[1060]; /* static allocation for joint decode */
155
 
156
    const float         *cplscales[5];
157
    int                 num_subpackets;
158
    COOKSubpacket       subpacket[MAX_SUBPACKETS];
159
} COOKContext;
160
 
161
static float     pow2tab[127];
162
static float rootpow2tab[127];
163
 
164
/*************** init functions ***************/
165
 
166
/* table generator */
167
static av_cold void init_pow2table(void)
168
{
169
    int i;
170
    for (i = -63; i < 64; i++) {
171
        pow2tab[63 + i] = pow(2, i);
172
        rootpow2tab[63 + i] = sqrt(pow(2, i));
173
    }
174
}
175
 
176
/* table generator */
177
static av_cold void init_gain_table(COOKContext *q)
178
{
179
    int i;
180
    q->gain_size_factor = q->samples_per_channel / 8;
181
    for (i = 0; i < 23; i++)
182
        q->gain_table[i] = pow(pow2tab[i + 52],
183
                               (1.0 / (double) q->gain_size_factor));
184
}
185
 
186
 
187
static av_cold int init_cook_vlc_tables(COOKContext *q)
188
{
189
    int i, result;
190
 
191
    result = 0;
192
    for (i = 0; i < 13; i++) {
193
        result |= init_vlc(&q->envelope_quant_index[i], 9, 24,
194
                           envelope_quant_index_huffbits[i], 1, 1,
195
                           envelope_quant_index_huffcodes[i], 2, 2, 0);
196
    }
197
    av_log(q->avctx, AV_LOG_DEBUG, "sqvh VLC init\n");
198
    for (i = 0; i < 7; i++) {
199
        result |= init_vlc(&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
200
                           cvh_huffbits[i], 1, 1,
201
                           cvh_huffcodes[i], 2, 2, 0);
202
    }
203
 
204
    for (i = 0; i < q->num_subpackets; i++) {
205
        if (q->subpacket[i].joint_stereo == 1) {
206
            result |= init_vlc(&q->subpacket[i].channel_coupling, 6,
207
                               (1 << q->subpacket[i].js_vlc_bits) - 1,
208
                               ccpl_huffbits[q->subpacket[i].js_vlc_bits - 2], 1, 1,
209
                               ccpl_huffcodes[q->subpacket[i].js_vlc_bits - 2], 2, 2, 0);
210
            av_log(q->avctx, AV_LOG_DEBUG, "subpacket %i Joint-stereo VLC used.\n", i);
211
        }
212
    }
213
 
214
    av_log(q->avctx, AV_LOG_DEBUG, "VLC tables initialized.\n");
215
    return result;
216
}
217
 
218
static av_cold int init_cook_mlt(COOKContext *q)
219
{
220
    int j, ret;
221
    int mlt_size = q->samples_per_channel;
222
 
223
    if ((q->mlt_window = av_malloc_array(mlt_size, sizeof(*q->mlt_window))) == 0)
224
        return AVERROR(ENOMEM);
225
 
226
    /* Initialize the MLT window: simple sine window. */
227
    ff_sine_window_init(q->mlt_window, mlt_size);
228
    for (j = 0; j < mlt_size; j++)
229
        q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
230
 
231
    /* Initialize the MDCT. */
232
    if ((ret = ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size) + 1, 1, 1.0 / 32768.0))) {
233
        av_freep(&q->mlt_window);
234
        return ret;
235
    }
236
    av_log(q->avctx, AV_LOG_DEBUG, "MDCT initialized, order = %d.\n",
237
           av_log2(mlt_size) + 1);
238
 
239
    return 0;
240
}
241
 
242
static av_cold void init_cplscales_table(COOKContext *q)
243
{
244
    int i;
245
    for (i = 0; i < 5; i++)
246
        q->cplscales[i] = cplscales[i];
247
}
248
 
249
/*************** init functions end ***********/
250
 
251
#define DECODE_BYTES_PAD1(bytes) (3 - ((bytes) + 3) % 4)
252
#define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
253
 
254
/**
255
 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
256
 * Why? No idea, some checksum/error detection method maybe.
257
 *
258
 * Out buffer size: extra bytes are needed to cope with
259
 * padding/misalignment.
260
 * Subpackets passed to the decoder can contain two, consecutive
261
 * half-subpackets, of identical but arbitrary size.
262
 *          1234 1234 1234 1234  extraA extraB
263
 * Case 1:  AAAA BBBB              0      0
264
 * Case 2:  AAAA ABBB BB--         3      3
265
 * Case 3:  AAAA AABB BBBB         2      2
266
 * Case 4:  AAAA AAAB BBBB BB--    1      5
267
 *
268
 * Nice way to waste CPU cycles.
269
 *
270
 * @param inbuffer  pointer to byte array of indata
271
 * @param out       pointer to byte array of outdata
272
 * @param bytes     number of bytes
273
 */
274
static inline int decode_bytes(const uint8_t *inbuffer, uint8_t *out, int bytes)
275
{
276
    static const uint32_t tab[4] = {
277
        AV_BE2NE32C(0x37c511f2u), AV_BE2NE32C(0xf237c511u),
278
        AV_BE2NE32C(0x11f237c5u), AV_BE2NE32C(0xc511f237u),
279
    };
280
    int i, off;
281
    uint32_t c;
282
    const uint32_t *buf;
283
    uint32_t *obuf = (uint32_t *) out;
284
    /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
285
     * I'm too lazy though, should be something like
286
     * for (i = 0; i < bitamount / 64; i++)
287
     *     (int64_t) out[i] = 0x37c511f237c511f2 ^ av_be2ne64(int64_t) in[i]);
288
     * Buffer alignment needs to be checked. */
289
 
290
    off = (intptr_t) inbuffer & 3;
291
    buf = (const uint32_t *) (inbuffer - off);
292
    c = tab[off];
293
    bytes += 3 + off;
294
    for (i = 0; i < bytes / 4; i++)
295
        obuf[i] = c ^ buf[i];
296
 
297
    return off;
298
}
299
 
300
static av_cold int cook_decode_close(AVCodecContext *avctx)
301
{
302
    int i;
303
    COOKContext *q = avctx->priv_data;
304
    av_log(avctx, AV_LOG_DEBUG, "Deallocating memory.\n");
305
 
306
    /* Free allocated memory buffers. */
307
    av_freep(&q->mlt_window);
308
    av_freep(&q->decoded_bytes_buffer);
309
 
310
    /* Free the transform. */
311
    ff_mdct_end(&q->mdct_ctx);
312
 
313
    /* Free the VLC tables. */
314
    for (i = 0; i < 13; i++)
315
        ff_free_vlc(&q->envelope_quant_index[i]);
316
    for (i = 0; i < 7; i++)
317
        ff_free_vlc(&q->sqvh[i]);
318
    for (i = 0; i < q->num_subpackets; i++)
319
        ff_free_vlc(&q->subpacket[i].channel_coupling);
320
 
321
    av_log(avctx, AV_LOG_DEBUG, "Memory deallocated.\n");
322
 
323
    return 0;
324
}
325
 
326
/**
327
 * Fill the gain array for the timedomain quantization.
328
 *
329
 * @param gb          pointer to the GetBitContext
330
 * @param gaininfo    array[9] of gain indexes
331
 */
332
static void decode_gain_info(GetBitContext *gb, int *gaininfo)
333
{
334
    int i, n;
335
 
336
    n = get_unary(gb, 0, get_bits_left(gb));     // amount of elements*2 to update
337
 
338
    i = 0;
339
    while (n--) {
340
        int index = get_bits(gb, 3);
341
        int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
342
 
343
        while (i <= index)
344
            gaininfo[i++] = gain;
345
    }
346
    while (i <= 8)
347
        gaininfo[i++] = 0;
348
}
349
 
350
/**
351
 * Create the quant index table needed for the envelope.
352
 *
353
 * @param q                 pointer to the COOKContext
354
 * @param quant_index_table pointer to the array
355
 */
356
static int decode_envelope(COOKContext *q, COOKSubpacket *p,
357
                           int *quant_index_table)
358
{
359
    int i, j, vlc_index;
360
 
361
    quant_index_table[0] = get_bits(&q->gb, 6) - 6; // This is used later in categorize
362
 
363
    for (i = 1; i < p->total_subbands; i++) {
364
        vlc_index = i;
365
        if (i >= p->js_subband_start * 2) {
366
            vlc_index -= p->js_subband_start;
367
        } else {
368
            vlc_index /= 2;
369
            if (vlc_index < 1)
370
                vlc_index = 1;
371
        }
372
        if (vlc_index > 13)
373
            vlc_index = 13; // the VLC tables >13 are identical to No. 13
374
 
375
        j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index - 1].table,
376
                     q->envelope_quant_index[vlc_index - 1].bits, 2);
377
        quant_index_table[i] = quant_index_table[i - 1] + j - 12; // differential encoding
378
        if (quant_index_table[i] > 63 || quant_index_table[i] < -63) {
379
            av_log(q->avctx, AV_LOG_ERROR,
380
                   "Invalid quantizer %d at position %d, outside [-63, 63] range\n",
381
                   quant_index_table[i], i);
382
            return AVERROR_INVALIDDATA;
383
        }
384
    }
385
 
386
    return 0;
387
}
388
 
389
/**
390
 * Calculate the category and category_index vector.
391
 *
392
 * @param q                     pointer to the COOKContext
393
 * @param quant_index_table     pointer to the array
394
 * @param category              pointer to the category array
395
 * @param category_index        pointer to the category_index array
396
 */
397
static void categorize(COOKContext *q, COOKSubpacket *p, const int *quant_index_table,
398
                       int *category, int *category_index)
399
{
400
    int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
401
    int exp_index2[102] = { 0 };
402
    int exp_index1[102] = { 0 };
403
 
404
    int tmp_categorize_array[128 * 2] = { 0 };
405
    int tmp_categorize_array1_idx = p->numvector_size;
406
    int tmp_categorize_array2_idx = p->numvector_size;
407
 
408
    bits_left = p->bits_per_subpacket - get_bits_count(&q->gb);
409
 
410
    if (bits_left > q->samples_per_channel)
411
        bits_left = q->samples_per_channel +
412
                    ((bits_left - q->samples_per_channel) * 5) / 8;
413
 
414
    bias = -32;
415
 
416
    /* Estimate bias. */
417
    for (i = 32; i > 0; i = i / 2) {
418
        num_bits = 0;
419
        index    = 0;
420
        for (j = p->total_subbands; j > 0; j--) {
421
            exp_idx = av_clip_uintp2((i - quant_index_table[index] + bias) / 2, 3);
422
            index++;
423
            num_bits += expbits_tab[exp_idx];
424
        }
425
        if (num_bits >= bits_left - 32)
426
            bias += i;
427
    }
428
 
429
    /* Calculate total number of bits. */
430
    num_bits = 0;
431
    for (i = 0; i < p->total_subbands; i++) {
432
        exp_idx = av_clip_uintp2((bias - quant_index_table[i]) / 2, 3);
433
        num_bits += expbits_tab[exp_idx];
434
        exp_index1[i] = exp_idx;
435
        exp_index2[i] = exp_idx;
436
    }
437
    tmpbias1 = tmpbias2 = num_bits;
438
 
439
    for (j = 1; j < p->numvector_size; j++) {
440
        if (tmpbias1 + tmpbias2 > 2 * bits_left) {  /* ---> */
441
            int max = -999999;
442
            index = -1;
443
            for (i = 0; i < p->total_subbands; i++) {
444
                if (exp_index1[i] < 7) {
445
                    v = (-2 * exp_index1[i]) - quant_index_table[i] + bias;
446
                    if (v >= max) {
447
                        max   = v;
448
                        index = i;
449
                    }
450
                }
451
            }
452
            if (index == -1)
453
                break;
454
            tmp_categorize_array[tmp_categorize_array1_idx++] = index;
455
            tmpbias1 -= expbits_tab[exp_index1[index]] -
456
                        expbits_tab[exp_index1[index] + 1];
457
            ++exp_index1[index];
458
        } else {  /* <--- */
459
            int min = 999999;
460
            index = -1;
461
            for (i = 0; i < p->total_subbands; i++) {
462
                if (exp_index2[i] > 0) {
463
                    v = (-2 * exp_index2[i]) - quant_index_table[i] + bias;
464
                    if (v < min) {
465
                        min   = v;
466
                        index = i;
467
                    }
468
                }
469
            }
470
            if (index == -1)
471
                break;
472
            tmp_categorize_array[--tmp_categorize_array2_idx] = index;
473
            tmpbias2 -= expbits_tab[exp_index2[index]] -
474
                        expbits_tab[exp_index2[index] - 1];
475
            --exp_index2[index];
476
        }
477
    }
478
 
479
    for (i = 0; i < p->total_subbands; i++)
480
        category[i] = exp_index2[i];
481
 
482
    for (i = 0; i < p->numvector_size - 1; i++)
483
        category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
484
}
485
 
486
 
487
/**
488
 * Expand the category vector.
489
 *
490
 * @param q                     pointer to the COOKContext
491
 * @param category              pointer to the category array
492
 * @param category_index        pointer to the category_index array
493
 */
494
static inline void expand_category(COOKContext *q, int *category,
495
                                   int *category_index)
496
{
497
    int i;
498
    for (i = 0; i < q->num_vectors; i++)
499
    {
500
        int idx = category_index[i];
501
        if (++category[idx] >= FF_ARRAY_ELEMS(dither_tab))
502
            --category[idx];
503
    }
504
}
505
 
506
/**
507
 * The real requantization of the mltcoefs
508
 *
509
 * @param q                     pointer to the COOKContext
510
 * @param index                 index
511
 * @param quant_index           quantisation index
512
 * @param subband_coef_index    array of indexes to quant_centroid_tab
513
 * @param subband_coef_sign     signs of coefficients
514
 * @param mlt_p                 pointer into the mlt buffer
515
 */
516
static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
517
                                 int *subband_coef_index, int *subband_coef_sign,
518
                                 float *mlt_p)
519
{
520
    int i;
521
    float f1;
522
 
523
    for (i = 0; i < SUBBAND_SIZE; i++) {
524
        if (subband_coef_index[i]) {
525
            f1 = quant_centroid_tab[index][subband_coef_index[i]];
526
            if (subband_coef_sign[i])
527
                f1 = -f1;
528
        } else {
529
            /* noise coding if subband_coef_index[i] == 0 */
530
            f1 = dither_tab[index];
531
            if (av_lfg_get(&q->random_state) < 0x80000000)
532
                f1 = -f1;
533
        }
534
        mlt_p[i] = f1 * rootpow2tab[quant_index + 63];
535
    }
536
}
537
/**
538
 * Unpack the subband_coef_index and subband_coef_sign vectors.
539
 *
540
 * @param q                     pointer to the COOKContext
541
 * @param category              pointer to the category array
542
 * @param subband_coef_index    array of indexes to quant_centroid_tab
543
 * @param subband_coef_sign     signs of coefficients
544
 */
545
static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category,
546
                       int *subband_coef_index, int *subband_coef_sign)
547
{
548
    int i, j;
549
    int vlc, vd, tmp, result;
550
 
551
    vd = vd_tab[category];
552
    result = 0;
553
    for (i = 0; i < vpr_tab[category]; i++) {
554
        vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
555
        if (p->bits_per_subpacket < get_bits_count(&q->gb)) {
556
            vlc = 0;
557
            result = 1;
558
        }
559
        for (j = vd - 1; j >= 0; j--) {
560
            tmp = (vlc * invradix_tab[category]) / 0x100000;
561
            subband_coef_index[vd * i + j] = vlc - tmp * (kmax_tab[category] + 1);
562
            vlc = tmp;
563
        }
564
        for (j = 0; j < vd; j++) {
565
            if (subband_coef_index[i * vd + j]) {
566
                if (get_bits_count(&q->gb) < p->bits_per_subpacket) {
567
                    subband_coef_sign[i * vd + j] = get_bits1(&q->gb);
568
                } else {
569
                    result = 1;
570
                    subband_coef_sign[i * vd + j] = 0;
571
                }
572
            } else {
573
                subband_coef_sign[i * vd + j] = 0;
574
            }
575
        }
576
    }
577
    return result;
578
}
579
 
580
 
581
/**
582
 * Fill the mlt_buffer with mlt coefficients.
583
 *
584
 * @param q                 pointer to the COOKContext
585
 * @param category          pointer to the category array
586
 * @param quant_index_table pointer to the array
587
 * @param mlt_buffer        pointer to mlt coefficients
588
 */
589
static void decode_vectors(COOKContext *q, COOKSubpacket *p, int *category,
590
                           int *quant_index_table, float *mlt_buffer)
591
{
592
    /* A zero in this table means that the subband coefficient is
593
       random noise coded. */
594
    int subband_coef_index[SUBBAND_SIZE];
595
    /* A zero in this table means that the subband coefficient is a
596
       positive multiplicator. */
597
    int subband_coef_sign[SUBBAND_SIZE];
598
    int band, j;
599
    int index = 0;
600
 
601
    for (band = 0; band < p->total_subbands; band++) {
602
        index = category[band];
603
        if (category[band] < 7) {
604
            if (unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)) {
605
                index = 7;
606
                for (j = 0; j < p->total_subbands; j++)
607
                    category[band + j] = 7;
608
            }
609
        }
610
        if (index >= 7) {
611
            memset(subband_coef_index, 0, sizeof(subband_coef_index));
612
            memset(subband_coef_sign,  0, sizeof(subband_coef_sign));
613
        }
614
        q->scalar_dequant(q, index, quant_index_table[band],
615
                          subband_coef_index, subband_coef_sign,
616
                          &mlt_buffer[band * SUBBAND_SIZE]);
617
    }
618
 
619
    /* FIXME: should this be removed, or moved into loop above? */
620
    if (p->total_subbands * SUBBAND_SIZE >= q->samples_per_channel)
621
        return;
622
}
623
 
624
 
625
static int mono_decode(COOKContext *q, COOKSubpacket *p, float *mlt_buffer)
626
{
627
    int category_index[128] = { 0 };
628
    int category[128]       = { 0 };
629
    int quant_index_table[102];
630
    int res, i;
631
 
632
    if ((res = decode_envelope(q, p, quant_index_table)) < 0)
633
        return res;
634
    q->num_vectors = get_bits(&q->gb, p->log2_numvector_size);
635
    categorize(q, p, quant_index_table, category, category_index);
636
    expand_category(q, category, category_index);
637
    for (i=0; itotal_subbands; i++) {
638
        if (category[i] > 7)
639
            return AVERROR_INVALIDDATA;
640
    }
641
    decode_vectors(q, p, category, quant_index_table, mlt_buffer);
642
 
643
    return 0;
644
}
645
 
646
 
647
/**
648
 * the actual requantization of the timedomain samples
649
 *
650
 * @param q                 pointer to the COOKContext
651
 * @param buffer            pointer to the timedomain buffer
652
 * @param gain_index        index for the block multiplier
653
 * @param gain_index_next   index for the next block multiplier
654
 */
655
static void interpolate_float(COOKContext *q, float *buffer,
656
                              int gain_index, int gain_index_next)
657
{
658
    int i;
659
    float fc1, fc2;
660
    fc1 = pow2tab[gain_index + 63];
661
 
662
    if (gain_index == gain_index_next) {             // static gain
663
        for (i = 0; i < q->gain_size_factor; i++)
664
            buffer[i] *= fc1;
665
    } else {                                        // smooth gain
666
        fc2 = q->gain_table[11 + (gain_index_next - gain_index)];
667
        for (i = 0; i < q->gain_size_factor; i++) {
668
            buffer[i] *= fc1;
669
            fc1       *= fc2;
670
        }
671
    }
672
}
673
 
674
/**
675
 * Apply transform window, overlap buffers.
676
 *
677
 * @param q                 pointer to the COOKContext
678
 * @param inbuffer          pointer to the mltcoefficients
679
 * @param gains_ptr         current and previous gains
680
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
681
 */
682
static void imlt_window_float(COOKContext *q, float *inbuffer,
683
                              cook_gains *gains_ptr, float *previous_buffer)
684
{
685
    const float fc = pow2tab[gains_ptr->previous[0] + 63];
686
    int i;
687
    /* The weird thing here, is that the two halves of the time domain
688
     * buffer are swapped. Also, the newest data, that we save away for
689
     * next frame, has the wrong sign. Hence the subtraction below.
690
     * Almost sounds like a complex conjugate/reverse data/FFT effect.
691
     */
692
 
693
    /* Apply window and overlap */
694
    for (i = 0; i < q->samples_per_channel; i++)
695
        inbuffer[i] = inbuffer[i] * fc * q->mlt_window[i] -
696
                      previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
697
}
698
 
699
/**
700
 * The modulated lapped transform, this takes transform coefficients
701
 * and transforms them into timedomain samples.
702
 * Apply transform window, overlap buffers, apply gain profile
703
 * and buffer management.
704
 *
705
 * @param q                 pointer to the COOKContext
706
 * @param inbuffer          pointer to the mltcoefficients
707
 * @param gains_ptr         current and previous gains
708
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
709
 */
710
static void imlt_gain(COOKContext *q, float *inbuffer,
711
                      cook_gains *gains_ptr, float *previous_buffer)
712
{
713
    float *buffer0 = q->mono_mdct_output;
714
    float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
715
    int i;
716
 
717
    /* Inverse modified discrete cosine transform */
718
    q->mdct_ctx.imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
719
 
720
    q->imlt_window(q, buffer1, gains_ptr, previous_buffer);
721
 
722
    /* Apply gain profile */
723
    for (i = 0; i < 8; i++)
724
        if (gains_ptr->now[i] || gains_ptr->now[i + 1])
725
            q->interpolate(q, &buffer1[q->gain_size_factor * i],
726
                           gains_ptr->now[i], gains_ptr->now[i + 1]);
727
 
728
    /* Save away the current to be previous block. */
729
    memcpy(previous_buffer, buffer0,
730
           q->samples_per_channel * sizeof(*previous_buffer));
731
}
732
 
733
 
734
/**
735
 * function for getting the jointstereo coupling information
736
 *
737
 * @param q                 pointer to the COOKContext
738
 * @param decouple_tab      decoupling array
739
 */
740
static int decouple_info(COOKContext *q, COOKSubpacket *p, int *decouple_tab)
741
{
742
    int i;
743
    int vlc    = get_bits1(&q->gb);
744
    int start  = cplband[p->js_subband_start];
745
    int end    = cplband[p->subbands - 1];
746
    int length = end - start + 1;
747
 
748
    if (start > end)
749
        return 0;
750
 
751
    if (vlc)
752
        for (i = 0; i < length; i++)
753
            decouple_tab[start + i] = get_vlc2(&q->gb,
754
                                               p->channel_coupling.table,
755
                                               p->channel_coupling.bits, 2);
756
    else
757
        for (i = 0; i < length; i++) {
758
            int v = get_bits(&q->gb, p->js_vlc_bits);
759
            if (v == (1<js_vlc_bits)-1) {
760
                av_log(q->avctx, AV_LOG_ERROR, "decouple value too large\n");
761
                return AVERROR_INVALIDDATA;
762
            }
763
            decouple_tab[start + i] = v;
764
        }
765
    return 0;
766
}
767
 
768
/**
769
 * function decouples a pair of signals from a single signal via multiplication.
770
 *
771
 * @param q                 pointer to the COOKContext
772
 * @param subband           index of the current subband
773
 * @param f1                multiplier for channel 1 extraction
774
 * @param f2                multiplier for channel 2 extraction
775
 * @param decode_buffer     input buffer
776
 * @param mlt_buffer1       pointer to left channel mlt coefficients
777
 * @param mlt_buffer2       pointer to right channel mlt coefficients
778
 */
779
static void decouple_float(COOKContext *q,
780
                           COOKSubpacket *p,
781
                           int subband,
782
                           float f1, float f2,
783
                           float *decode_buffer,
784
                           float *mlt_buffer1, float *mlt_buffer2)
785
{
786
    int j, tmp_idx;
787
    for (j = 0; j < SUBBAND_SIZE; j++) {
788
        tmp_idx = ((p->js_subband_start + subband) * SUBBAND_SIZE) + j;
789
        mlt_buffer1[SUBBAND_SIZE * subband + j] = f1 * decode_buffer[tmp_idx];
790
        mlt_buffer2[SUBBAND_SIZE * subband + j] = f2 * decode_buffer[tmp_idx];
791
    }
792
}
793
 
794
/**
795
 * function for decoding joint stereo data
796
 *
797
 * @param q                 pointer to the COOKContext
798
 * @param mlt_buffer1       pointer to left channel mlt coefficients
799
 * @param mlt_buffer2       pointer to right channel mlt coefficients
800
 */
801
static int joint_decode(COOKContext *q, COOKSubpacket *p,
802
                        float *mlt_buffer_left, float *mlt_buffer_right)
803
{
804
    int i, j, res;
805
    int decouple_tab[SUBBAND_SIZE] = { 0 };
806
    float *decode_buffer = q->decode_buffer_0;
807
    int idx, cpl_tmp;
808
    float f1, f2;
809
    const float *cplscale;
810
 
811
    memset(decode_buffer, 0, sizeof(q->decode_buffer_0));
812
 
813
    /* Make sure the buffers are zeroed out. */
814
    memset(mlt_buffer_left,  0, 1024 * sizeof(*mlt_buffer_left));
815
    memset(mlt_buffer_right, 0, 1024 * sizeof(*mlt_buffer_right));
816
    if ((res = decouple_info(q, p, decouple_tab)) < 0)
817
        return res;
818
    if ((res = mono_decode(q, p, decode_buffer)) < 0)
819
        return res;
820
    /* The two channels are stored interleaved in decode_buffer. */
821
    for (i = 0; i < p->js_subband_start; i++) {
822
        for (j = 0; j < SUBBAND_SIZE; j++) {
823
            mlt_buffer_left[i  * 20 + j] = decode_buffer[i * 40 + j];
824
            mlt_buffer_right[i * 20 + j] = decode_buffer[i * 40 + 20 + j];
825
        }
826
    }
827
 
828
    /* When we reach js_subband_start (the higher frequencies)
829
       the coefficients are stored in a coupling scheme. */
830
    idx = (1 << p->js_vlc_bits) - 1;
831
    for (i = p->js_subband_start; i < p->subbands; i++) {
832
        cpl_tmp = cplband[i];
833
        idx -= decouple_tab[cpl_tmp];
834
        cplscale = q->cplscales[p->js_vlc_bits - 2];  // choose decoupler table
835
        f1 = cplscale[decouple_tab[cpl_tmp] + 1];
836
        f2 = cplscale[idx];
837
        q->decouple(q, p, i, f1, f2, decode_buffer,
838
                    mlt_buffer_left, mlt_buffer_right);
839
        idx = (1 << p->js_vlc_bits) - 1;
840
    }
841
 
842
    return 0;
843
}
844
 
845
/**
846
 * First part of subpacket decoding:
847
 *  decode raw stream bytes and read gain info.
848
 *
849
 * @param q                 pointer to the COOKContext
850
 * @param inbuffer          pointer to raw stream data
851
 * @param gains_ptr         array of current/prev gain pointers
852
 */
853
static inline void decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p,
854
                                         const uint8_t *inbuffer,
855
                                         cook_gains *gains_ptr)
856
{
857
    int offset;
858
 
859
    offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
860
                          p->bits_per_subpacket / 8);
861
    init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
862
                  p->bits_per_subpacket);
863
    decode_gain_info(&q->gb, gains_ptr->now);
864
 
865
    /* Swap current and previous gains */
866
    FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
867
}
868
 
869
/**
870
 * Saturate the output signal and interleave.
871
 *
872
 * @param q                 pointer to the COOKContext
873
 * @param out               pointer to the output vector
874
 */
875
static void saturate_output_float(COOKContext *q, float *out)
876
{
877
    q->adsp.vector_clipf(out, q->mono_mdct_output + q->samples_per_channel,
878
                         -1.0f, 1.0f, FFALIGN(q->samples_per_channel, 8));
879
}
880
 
881
 
882
/**
883
 * Final part of subpacket decoding:
884
 *  Apply modulated lapped transform, gain compensation,
885
 *  clip and convert to integer.
886
 *
887
 * @param q                 pointer to the COOKContext
888
 * @param decode_buffer     pointer to the mlt coefficients
889
 * @param gains_ptr         array of current/prev gain pointers
890
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
891
 * @param out               pointer to the output buffer
892
 */
893
static inline void mlt_compensate_output(COOKContext *q, float *decode_buffer,
894
                                         cook_gains *gains_ptr, float *previous_buffer,
895
                                         float *out)
896
{
897
    imlt_gain(q, decode_buffer, gains_ptr, previous_buffer);
898
    if (out)
899
        q->saturate_output(q, out);
900
}
901
 
902
 
903
/**
904
 * Cook subpacket decoding. This function returns one decoded subpacket,
905
 * usually 1024 samples per channel.
906
 *
907
 * @param q                 pointer to the COOKContext
908
 * @param inbuffer          pointer to the inbuffer
909
 * @param outbuffer         pointer to the outbuffer
910
 */
911
static int decode_subpacket(COOKContext *q, COOKSubpacket *p,
912
                            const uint8_t *inbuffer, float **outbuffer)
913
{
914
    int sub_packet_size = p->size;
915
    int res;
916
 
917
    memset(q->decode_buffer_1, 0, sizeof(q->decode_buffer_1));
918
    decode_bytes_and_gain(q, p, inbuffer, &p->gains1);
919
 
920
    if (p->joint_stereo) {
921
        if ((res = joint_decode(q, p, q->decode_buffer_1, q->decode_buffer_2)) < 0)
922
            return res;
923
    } else {
924
        if ((res = mono_decode(q, p, q->decode_buffer_1)) < 0)
925
            return res;
926
 
927
        if (p->num_channels == 2) {
928
            decode_bytes_and_gain(q, p, inbuffer + sub_packet_size / 2, &p->gains2);
929
            if ((res = mono_decode(q, p, q->decode_buffer_2)) < 0)
930
                return res;
931
        }
932
    }
933
 
934
    mlt_compensate_output(q, q->decode_buffer_1, &p->gains1,
935
                          p->mono_previous_buffer1,
936
                          outbuffer ? outbuffer[p->ch_idx] : NULL);
937
 
938
    if (p->num_channels == 2) {
939
        if (p->joint_stereo)
940
            mlt_compensate_output(q, q->decode_buffer_2, &p->gains1,
941
                                  p->mono_previous_buffer2,
942
                                  outbuffer ? outbuffer[p->ch_idx + 1] : NULL);
943
        else
944
            mlt_compensate_output(q, q->decode_buffer_2, &p->gains2,
945
                                  p->mono_previous_buffer2,
946
                                  outbuffer ? outbuffer[p->ch_idx + 1] : NULL);
947
    }
948
 
949
    return 0;
950
}
951
 
952
 
953
static int cook_decode_frame(AVCodecContext *avctx, void *data,
954
                             int *got_frame_ptr, AVPacket *avpkt)
955
{
956
    AVFrame *frame     = data;
957
    const uint8_t *buf = avpkt->data;
958
    int buf_size = avpkt->size;
959
    COOKContext *q = avctx->priv_data;
960
    float **samples = NULL;
961
    int i, ret;
962
    int offset = 0;
963
    int chidx = 0;
964
 
965
    if (buf_size < avctx->block_align)
966
        return buf_size;
967
 
968
    /* get output buffer */
969
    if (q->discarded_packets >= 2) {
970
        frame->nb_samples = q->samples_per_channel;
971
        if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
972
            return ret;
973
        samples = (float **)frame->extended_data;
974
    }
975
 
976
    /* estimate subpacket sizes */
977
    q->subpacket[0].size = avctx->block_align;
978
 
979
    for (i = 1; i < q->num_subpackets; i++) {
980
        q->subpacket[i].size = 2 * buf[avctx->block_align - q->num_subpackets + i];
981
        q->subpacket[0].size -= q->subpacket[i].size + 1;
982
        if (q->subpacket[0].size < 0) {
983
            av_log(avctx, AV_LOG_DEBUG,
984
                   "frame subpacket size total > avctx->block_align!\n");
985
            return AVERROR_INVALIDDATA;
986
        }
987
    }
988
 
989
    /* decode supbackets */
990
    for (i = 0; i < q->num_subpackets; i++) {
991
        q->subpacket[i].bits_per_subpacket = (q->subpacket[i].size * 8) >>
992
                                              q->subpacket[i].bits_per_subpdiv;
993
        q->subpacket[i].ch_idx = chidx;
994
        av_log(avctx, AV_LOG_DEBUG,
995
               "subpacket[%i] size %i js %i %i block_align %i\n",
996
               i, q->subpacket[i].size, q->subpacket[i].joint_stereo, offset,
997
               avctx->block_align);
998
 
999
        if ((ret = decode_subpacket(q, &q->subpacket[i], buf + offset, samples)) < 0)
1000
            return ret;
1001
        offset += q->subpacket[i].size;
1002
        chidx += q->subpacket[i].num_channels;
1003
        av_log(avctx, AV_LOG_DEBUG, "subpacket[%i] %i %i\n",
1004
               i, q->subpacket[i].size * 8, get_bits_count(&q->gb));
1005
    }
1006
 
1007
    /* Discard the first two frames: no valid audio. */
1008
    if (q->discarded_packets < 2) {
1009
        q->discarded_packets++;
1010
        *got_frame_ptr = 0;
1011
        return avctx->block_align;
1012
    }
1013
 
1014
    *got_frame_ptr = 1;
1015
 
1016
    return avctx->block_align;
1017
}
1018
 
1019
static void dump_cook_context(COOKContext *q)
1020
{
1021
    //int i=0;
1022
#define PRINT(a, b) ff_dlog(q->avctx, " %s = %d\n", a, b);
1023
    ff_dlog(q->avctx, "COOKextradata\n");
1024
    ff_dlog(q->avctx, "cookversion=%x\n", q->subpacket[0].cookversion);
1025
    if (q->subpacket[0].cookversion > STEREO) {
1026
        PRINT("js_subband_start", q->subpacket[0].js_subband_start);
1027
        PRINT("js_vlc_bits", q->subpacket[0].js_vlc_bits);
1028
    }
1029
    ff_dlog(q->avctx, "COOKContext\n");
1030
    PRINT("nb_channels", q->avctx->channels);
1031
    PRINT("bit_rate", q->avctx->bit_rate);
1032
    PRINT("sample_rate", q->avctx->sample_rate);
1033
    PRINT("samples_per_channel", q->subpacket[0].samples_per_channel);
1034
    PRINT("subbands", q->subpacket[0].subbands);
1035
    PRINT("js_subband_start", q->subpacket[0].js_subband_start);
1036
    PRINT("log2_numvector_size", q->subpacket[0].log2_numvector_size);
1037
    PRINT("numvector_size", q->subpacket[0].numvector_size);
1038
    PRINT("total_subbands", q->subpacket[0].total_subbands);
1039
}
1040
 
1041
/**
1042
 * Cook initialization
1043
 *
1044
 * @param avctx     pointer to the AVCodecContext
1045
 */
1046
static av_cold int cook_decode_init(AVCodecContext *avctx)
1047
{
1048
    COOKContext *q = avctx->priv_data;
1049
    const uint8_t *edata_ptr = avctx->extradata;
1050
    const uint8_t *edata_ptr_end = edata_ptr + avctx->extradata_size;
1051
    int extradata_size = avctx->extradata_size;
1052
    int s = 0;
1053
    unsigned int channel_mask = 0;
1054
    int samples_per_frame = 0;
1055
    int ret;
1056
    q->avctx = avctx;
1057
 
1058
    /* Take care of the codec specific extradata. */
1059
    if (extradata_size < 8) {
1060
        av_log(avctx, AV_LOG_ERROR, "Necessary extradata missing!\n");
1061
        return AVERROR_INVALIDDATA;
1062
    }
1063
    av_log(avctx, AV_LOG_DEBUG, "codecdata_length=%d\n", avctx->extradata_size);
1064
 
1065
    /* Take data from the AVCodecContext (RM container). */
1066
    if (!avctx->channels) {
1067
        av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
1068
        return AVERROR_INVALIDDATA;
1069
    }
1070
 
1071
    /* Initialize RNG. */
1072
    av_lfg_init(&q->random_state, 0);
1073
 
1074
    ff_audiodsp_init(&q->adsp);
1075
 
1076
    while (edata_ptr < edata_ptr_end) {
1077
        /* 8 for mono, 16 for stereo, ? for multichannel
1078
           Swap to right endianness so we don't need to care later on. */
1079
        if (extradata_size >= 8) {
1080
            q->subpacket[s].cookversion = bytestream_get_be32(&edata_ptr);
1081
            samples_per_frame           = bytestream_get_be16(&edata_ptr);
1082
            q->subpacket[s].subbands = bytestream_get_be16(&edata_ptr);
1083
            extradata_size -= 8;
1084
        }
1085
        if (extradata_size >= 8) {
1086
            bytestream_get_be32(&edata_ptr);    // Unknown unused
1087
            q->subpacket[s].js_subband_start = bytestream_get_be16(&edata_ptr);
1088
            if (q->subpacket[s].js_subband_start >= 51) {
1089
                av_log(avctx, AV_LOG_ERROR, "js_subband_start %d is too large\n", q->subpacket[s].js_subband_start);
1090
                return AVERROR_INVALIDDATA;
1091
            }
1092
 
1093
            q->subpacket[s].js_vlc_bits = bytestream_get_be16(&edata_ptr);
1094
            extradata_size -= 8;
1095
        }
1096
 
1097
        /* Initialize extradata related variables. */
1098
        q->subpacket[s].samples_per_channel = samples_per_frame / avctx->channels;
1099
        q->subpacket[s].bits_per_subpacket = avctx->block_align * 8;
1100
 
1101
        /* Initialize default data states. */
1102
        q->subpacket[s].log2_numvector_size = 5;
1103
        q->subpacket[s].total_subbands = q->subpacket[s].subbands;
1104
        q->subpacket[s].num_channels = 1;
1105
 
1106
        /* Initialize version-dependent variables */
1107
 
1108
        av_log(avctx, AV_LOG_DEBUG, "subpacket[%i].cookversion=%x\n", s,
1109
               q->subpacket[s].cookversion);
1110
        q->subpacket[s].joint_stereo = 0;
1111
        switch (q->subpacket[s].cookversion) {
1112
        case MONO:
1113
            if (avctx->channels != 1) {
1114
                avpriv_request_sample(avctx, "Container channels != 1");
1115
                return AVERROR_PATCHWELCOME;
1116
            }
1117
            av_log(avctx, AV_LOG_DEBUG, "MONO\n");
1118
            break;
1119
        case STEREO:
1120
            if (avctx->channels != 1) {
1121
                q->subpacket[s].bits_per_subpdiv = 1;
1122
                q->subpacket[s].num_channels = 2;
1123
            }
1124
            av_log(avctx, AV_LOG_DEBUG, "STEREO\n");
1125
            break;
1126
        case JOINT_STEREO:
1127
            if (avctx->channels != 2) {
1128
                avpriv_request_sample(avctx, "Container channels != 2");
1129
                return AVERROR_PATCHWELCOME;
1130
            }
1131
            av_log(avctx, AV_LOG_DEBUG, "JOINT_STEREO\n");
1132
            if (avctx->extradata_size >= 16) {
1133
                q->subpacket[s].total_subbands = q->subpacket[s].subbands +
1134
                                                 q->subpacket[s].js_subband_start;
1135
                q->subpacket[s].joint_stereo = 1;
1136
                q->subpacket[s].num_channels = 2;
1137
            }
1138
            if (q->subpacket[s].samples_per_channel > 256) {
1139
                q->subpacket[s].log2_numvector_size = 6;
1140
            }
1141
            if (q->subpacket[s].samples_per_channel > 512) {
1142
                q->subpacket[s].log2_numvector_size = 7;
1143
            }
1144
            break;
1145
        case MC_COOK:
1146
            av_log(avctx, AV_LOG_DEBUG, "MULTI_CHANNEL\n");
1147
            if (extradata_size >= 4)
1148
                channel_mask |= q->subpacket[s].channel_mask = bytestream_get_be32(&edata_ptr);
1149
 
1150
            if (av_get_channel_layout_nb_channels(q->subpacket[s].channel_mask) > 1) {
1151
                q->subpacket[s].total_subbands = q->subpacket[s].subbands +
1152
                                                 q->subpacket[s].js_subband_start;
1153
                q->subpacket[s].joint_stereo = 1;
1154
                q->subpacket[s].num_channels = 2;
1155
                q->subpacket[s].samples_per_channel = samples_per_frame >> 1;
1156
 
1157
                if (q->subpacket[s].samples_per_channel > 256) {
1158
                    q->subpacket[s].log2_numvector_size = 6;
1159
                }
1160
                if (q->subpacket[s].samples_per_channel > 512) {
1161
                    q->subpacket[s].log2_numvector_size = 7;
1162
                }
1163
            } else
1164
                q->subpacket[s].samples_per_channel = samples_per_frame;
1165
 
1166
            break;
1167
        default:
1168
            avpriv_request_sample(avctx, "Cook version %d",
1169
                                  q->subpacket[s].cookversion);
1170
            return AVERROR_PATCHWELCOME;
1171
        }
1172
 
1173
        if (s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) {
1174
            av_log(avctx, AV_LOG_ERROR, "different number of samples per channel!\n");
1175
            return AVERROR_INVALIDDATA;
1176
        } else
1177
            q->samples_per_channel = q->subpacket[0].samples_per_channel;
1178
 
1179
 
1180
        /* Initialize variable relations */
1181
        q->subpacket[s].numvector_size = (1 << q->subpacket[s].log2_numvector_size);
1182
 
1183
        /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1184
        if (q->subpacket[s].total_subbands > 53) {
1185
            avpriv_request_sample(avctx, "total_subbands > 53");
1186
            return AVERROR_PATCHWELCOME;
1187
        }
1188
 
1189
        if ((q->subpacket[s].js_vlc_bits > 6) ||
1190
            (q->subpacket[s].js_vlc_bits < 2 * q->subpacket[s].joint_stereo)) {
1191
            av_log(avctx, AV_LOG_ERROR, "js_vlc_bits = %d, only >= %d and <= 6 allowed!\n",
1192
                   q->subpacket[s].js_vlc_bits, 2 * q->subpacket[s].joint_stereo);
1193
            return AVERROR_INVALIDDATA;
1194
        }
1195
 
1196
        if (q->subpacket[s].subbands > 50) {
1197
            avpriv_request_sample(avctx, "subbands > 50");
1198
            return AVERROR_PATCHWELCOME;
1199
        }
1200
        if (q->subpacket[s].subbands == 0) {
1201
            avpriv_request_sample(avctx, "subbands = 0");
1202
            return AVERROR_PATCHWELCOME;
1203
        }
1204
        q->subpacket[s].gains1.now      = q->subpacket[s].gain_1;
1205
        q->subpacket[s].gains1.previous = q->subpacket[s].gain_2;
1206
        q->subpacket[s].gains2.now      = q->subpacket[s].gain_3;
1207
        q->subpacket[s].gains2.previous = q->subpacket[s].gain_4;
1208
 
1209
        if (q->num_subpackets + q->subpacket[s].num_channels > q->avctx->channels) {
1210
            av_log(avctx, AV_LOG_ERROR, "Too many subpackets %d for channels %d\n", q->num_subpackets, q->avctx->channels);
1211
            return AVERROR_INVALIDDATA;
1212
        }
1213
 
1214
        q->num_subpackets++;
1215
        s++;
1216
        if (s > FFMIN(MAX_SUBPACKETS, avctx->block_align)) {
1217
            avpriv_request_sample(avctx, "subpackets > %d", FFMIN(MAX_SUBPACKETS, avctx->block_align));
1218
            return AVERROR_PATCHWELCOME;
1219
        }
1220
    }
1221
    /* Generate tables */
1222
    init_pow2table();
1223
    init_gain_table(q);
1224
    init_cplscales_table(q);
1225
 
1226
    if ((ret = init_cook_vlc_tables(q)))
1227
        return ret;
1228
 
1229
 
1230
    if (avctx->block_align >= UINT_MAX / 2)
1231
        return AVERROR(EINVAL);
1232
 
1233
    /* Pad the databuffer with:
1234
       DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
1235
       AV_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
1236
    q->decoded_bytes_buffer =
1237
        av_mallocz(avctx->block_align
1238
                   + DECODE_BYTES_PAD1(avctx->block_align)
1239
                   + AV_INPUT_BUFFER_PADDING_SIZE);
1240
    if (!q->decoded_bytes_buffer)
1241
        return AVERROR(ENOMEM);
1242
 
1243
    /* Initialize transform. */
1244
    if ((ret = init_cook_mlt(q)))
1245
        return ret;
1246
 
1247
    /* Initialize COOK signal arithmetic handling */
1248
    if (1) {
1249
        q->scalar_dequant  = scalar_dequant_float;
1250
        q->decouple        = decouple_float;
1251
        q->imlt_window     = imlt_window_float;
1252
        q->interpolate     = interpolate_float;
1253
        q->saturate_output = saturate_output_float;
1254
    }
1255
 
1256
    /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1257
    if (q->samples_per_channel != 256 && q->samples_per_channel != 512 &&
1258
        q->samples_per_channel != 1024) {
1259
        avpriv_request_sample(avctx, "samples_per_channel = %d",
1260
                              q->samples_per_channel);
1261
        return AVERROR_PATCHWELCOME;
1262
    }
1263
 
1264
    avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
1265
    if (channel_mask)
1266
        avctx->channel_layout = channel_mask;
1267
    else
1268
        avctx->channel_layout = (avctx->channels == 2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO;
1269
 
1270
 
1271
    dump_cook_context(q);
1272
 
1273
    return 0;
1274
}
1275
 
1276
AVCodec ff_cook_decoder = {
1277
    .name           = "cook",
1278
    .long_name      = NULL_IF_CONFIG_SMALL("Cook / Cooker / Gecko (RealAudio G2)"),
1279
    .type           = AVMEDIA_TYPE_AUDIO,
1280
    .id             = AV_CODEC_ID_COOK,
1281
    .priv_data_size = sizeof(COOKContext),
1282
    .init           = cook_decode_init,
1283
    .close          = cook_decode_close,
1284
    .decode         = cook_decode_frame,
1285
    .capabilities   = AV_CODEC_CAP_DR1,
1286
    .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1287
                                                      AV_SAMPLE_FMT_NONE },
1288
};