Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4358 Serge 1
/*
2
 * Copyright © 2012 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Eric Anholt 
25
 *
26
 */
27
 
28
#include "brw_cfg.h"
29
#include "brw_fs_live_variables.h"
30
 
31
using namespace brw;
32
 
33
/** @file brw_fs_live_variables.cpp
34
 *
35
 * Support for computing at the basic block level which variables
36
 * (virtual GRFs in our case) are live at entry and exit.
37
 *
38
 * See Muchnik's Advanced Compiler Design and Implementation, section
39
 * 14.1 (p444).
40
 */
41
 
42
/**
43
 * Sets up the use[] and def[] bitsets.
44
 *
45
 * The basic-block-level live variable analysis needs to know which
46
 * variables get used before they're completely defined, and which
47
 * variables are completely defined before they're used.
48
 */
49
void
50
fs_live_variables::setup_def_use()
51
{
52
   int ip = 0;
53
 
54
   for (int b = 0; b < cfg->num_blocks; b++) {
55
      bblock_t *block = cfg->blocks[b];
56
 
57
      assert(ip == block->start_ip);
58
      if (b > 0)
59
	 assert(cfg->blocks[b - 1]->end_ip == ip - 1);
60
 
61
      for (fs_inst *inst = (fs_inst *)block->start;
62
	   inst != block->end->next;
63
	   inst = (fs_inst *)inst->next) {
64
 
65
	 /* Set use[] for this instruction */
66
	 for (unsigned int i = 0; i < 3; i++) {
67
	    if (inst->src[i].file == GRF) {
68
	       int reg = inst->src[i].reg;
69
 
70
	       if (!BITSET_TEST(bd[b].def, reg))
71
		  BITSET_SET(bd[b].use, reg);
72
	    }
73
	 }
74
 
75
	 /* Check for unconditional writes to whole registers. These
76
	  * are the things that screen off preceding definitions of a
77
	  * variable, and thus qualify for being in def[].
78
	  */
79
	 if (inst->dst.file == GRF &&
80
	     inst->regs_written == v->virtual_grf_sizes[inst->dst.reg] &&
81
	     !inst->is_partial_write()) {
82
	    int reg = inst->dst.reg;
83
            if (!BITSET_TEST(bd[b].use, reg))
84
               BITSET_SET(bd[b].def, reg);
85
	 }
86
 
87
	 ip++;
88
      }
89
   }
90
}
91
 
92
/**
93
 * The algorithm incrementally sets bits in liveout and livein,
94
 * propagating it through control flow.  It will eventually terminate
95
 * because it only ever adds bits, and stops when no bits are added in
96
 * a pass.
97
 */
98
void
99
fs_live_variables::compute_live_variables()
100
{
101
   bool cont = true;
102
 
103
   while (cont) {
104
      cont = false;
105
 
106
      for (int b = 0; b < cfg->num_blocks; b++) {
107
	 /* Update livein */
108
	 for (int i = 0; i < bitset_words; i++) {
109
            BITSET_WORD new_livein = (bd[b].use[i] |
110
                                      (bd[b].liveout[i] & ~bd[b].def[i]));
111
	    if (new_livein & ~bd[b].livein[i]) {
112
               bd[b].livein[i] |= new_livein;
113
               cont = true;
114
	    }
115
	 }
116
 
117
	 /* Update liveout */
118
	 foreach_list(block_node, &cfg->blocks[b]->children) {
119
	    bblock_link *link = (bblock_link *)block_node;
120
	    bblock_t *block = link->block;
121
 
122
	    for (int i = 0; i < bitset_words; i++) {
123
               BITSET_WORD new_liveout = (bd[block->block_num].livein[i] &
124
                                          ~bd[b].liveout[i]);
125
               if (new_liveout) {
126
                  bd[b].liveout[i] |= new_liveout;
127
                  cont = true;
128
               }
129
	    }
130
	 }
131
      }
132
   }
133
}
134
 
135
fs_live_variables::fs_live_variables(fs_visitor *v, cfg_t *cfg)
136
   : v(v), cfg(cfg)
137
{
138
   mem_ctx = ralloc_context(cfg->mem_ctx);
139
 
140
   num_vars = v->virtual_grf_count;
141
   bd = rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks);
142
 
143
   bitset_words = BITSET_WORDS(v->virtual_grf_count);
144
   for (int i = 0; i < cfg->num_blocks; i++) {
145
      bd[i].def = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
146
      bd[i].use = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
147
      bd[i].livein = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
148
      bd[i].liveout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
149
   }
150
 
151
   setup_def_use();
152
   compute_live_variables();
153
}
154
 
155
fs_live_variables::~fs_live_variables()
156
{
157
   ralloc_free(mem_ctx);
158
}
159
 
160
#define MAX_INSTRUCTION (1 << 30)
161
 
162
void
163
fs_visitor::calculate_live_intervals()
164
{
165
   int num_vars = this->virtual_grf_count;
166
 
167
   if (this->live_intervals_valid)
168
      return;
169
 
170
   int *start = ralloc_array(mem_ctx, int, num_vars);
171
   int *end = ralloc_array(mem_ctx, int, num_vars);
172
   ralloc_free(this->virtual_grf_start);
173
   ralloc_free(this->virtual_grf_end);
174
   this->virtual_grf_start = start;
175
   this->virtual_grf_end = end;
176
 
177
   for (int i = 0; i < num_vars; i++) {
178
      start[i] = MAX_INSTRUCTION;
179
      end[i] = -1;
180
   }
181
 
182
   /* Start by setting up the intervals with no knowledge of control
183
    * flow.
184
    */
185
   int ip = 0;
186
   foreach_list(node, &this->instructions) {
187
      fs_inst *inst = (fs_inst *)node;
188
 
189
      for (unsigned int i = 0; i < 3; i++) {
190
	 if (inst->src[i].file == GRF) {
191
	    int reg = inst->src[i].reg;
192
            int end_ip = ip;
193
 
194
            /* In most cases, a register can be written over safely by the
195
             * same instruction that is its last use.  For a single
196
             * instruction, the sources are dereferenced before writing of the
197
             * destination starts (naturally).  This gets more complicated for
198
             * simd16, because the instruction:
199
             *
200
             * mov(16)      g4<1>F      g4<8,8,1>F   g6<8,8,1>F
201
             *
202
             * is actually decoded in hardware as:
203
             *
204
             * mov(8)       g4<1>F      g4<8,8,1>F   g6<8,8,1>F
205
             * mov(8)       g5<1>F      g5<8,8,1>F   g7<8,8,1>F
206
             *
207
             * Which is safe.  However, if we have uniform accesses
208
             * happening, we get into trouble:
209
             *
210
             * mov(8)       g4<1>F      g4<0,1,0>F   g6<8,8,1>F
211
             * mov(8)       g5<1>F      g4<0,1,0>F   g7<8,8,1>F
212
             *
213
             * Now our destination for the first instruction overwrote the
214
             * second instruction's src0, and we get garbage for those 8
215
             * pixels.  There's a similar issue for the pre-gen6
216
             * pixel_x/pixel_y, which are registers of 16-bit values and thus
217
             * would get stomped by the first decode as well.
218
             */
219
            if (dispatch_width == 16 && (inst->src[i].smear >= 0 ||
220
                                         (this->pixel_x.reg == reg ||
221
                                          this->pixel_y.reg == reg))) {
222
               end_ip++;
223
            }
224
 
225
            start[reg] = MIN2(start[reg], ip);
226
            end[reg] = MAX2(end[reg], end_ip);
227
	 }
228
      }
229
 
230
      if (inst->dst.file == GRF) {
231
         int reg = inst->dst.reg;
232
 
233
         start[reg] = MIN2(start[reg], ip);
234
         end[reg] = MAX2(end[reg], ip);
235
      }
236
 
237
      ip++;
238
   }
239
 
240
   /* Now, extend those intervals using our analysis of control flow. */
241
   cfg_t cfg(this);
242
   fs_live_variables livevars(this, &cfg);
243
 
244
   for (int b = 0; b < cfg.num_blocks; b++) {
245
      for (int i = 0; i < num_vars; i++) {
246
	 if (BITSET_TEST(livevars.bd[b].livein, i)) {
247
	    start[i] = MIN2(start[i], cfg.blocks[b]->start_ip);
248
	    end[i] = MAX2(end[i], cfg.blocks[b]->start_ip);
249
	 }
250
 
251
	 if (BITSET_TEST(livevars.bd[b].liveout, i)) {
252
	    start[i] = MIN2(start[i], cfg.blocks[b]->end_ip);
253
	    end[i] = MAX2(end[i], cfg.blocks[b]->end_ip);
254
	 }
255
      }
256
   }
257
 
258
   this->live_intervals_valid = true;
259
}
260
 
261
bool
262
fs_visitor::virtual_grf_interferes(int a, int b)
263
{
264
   return !(virtual_grf_end[a] <= virtual_grf_start[b] ||
265
            virtual_grf_end[b] <= virtual_grf_start[a]);
266
}