Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4358 Serge 1
/*
2
 * Copyright (C) 2005 Ben Skeggs.
3
 *
4
 * All Rights Reserved.
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining
7
 * a copy of this software and associated documentation files (the
8
 * "Software"), to deal in the Software without restriction, including
9
 * without limitation the rights to use, copy, modify, merge, publish,
10
 * distribute, sublicense, and/or sell copies of the Software, and to
11
 * permit persons to whom the Software is furnished to do so, subject to
12
 * the following conditions:
13
 *
14
 * The above copyright notice and this permission notice (including the
15
 * next paragraph) shall be included in all copies or substantial
16
 * portions of the Software.
17
 *
18
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21
 * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22
 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23
 * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24
 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
 *
26
 */
27
 
28
/**
29
 * \file
30
 *
31
 * Emit the r300_fragment_program_code that can be understood by the hardware.
32
 * Input is a pre-transformed radeon_program.
33
 *
34
 * \author Ben Skeggs 
35
 *
36
 * \author Jerome Glisse 
37
 */
38
 
39
#include "r300_fragprog.h"
40
 
41
#include "../r300_reg.h"
42
 
43
#include "radeon_program_pair.h"
44
#include "r300_fragprog_swizzle.h"
45
 
46
 
47
struct r300_emit_state {
48
	struct r300_fragment_program_compiler * compiler;
49
 
50
	unsigned current_node : 2;
51
	unsigned node_first_tex : 8;
52
	unsigned node_first_alu : 8;
53
	uint32_t node_flags;
54
};
55
 
56
#define PROG_CODE \
57
	struct r300_fragment_program_compiler *c = emit->compiler; \
58
	struct r300_fragment_program_code *code = &c->code->code.r300
59
 
60
#define error(fmt, args...) do {			\
61
		rc_error(&c->Base, "%s::%s(): " fmt "\n",	\
62
			__FILE__, __FUNCTION__, ##args);	\
63
	} while(0)
64
 
65
static unsigned int get_msbs_alu(unsigned int bits)
66
{
67
	return (bits >> 6) & 0x7;
68
}
69
 
70
/**
71
 * @param lsbs The number of least significant bits
72
 */
73
static unsigned int get_msbs_tex(unsigned int bits, unsigned int lsbs)
74
{
75
	return (bits >> lsbs) & 0x15;
76
}
77
 
78
#define R400_EXT_GET_MSBS(x, lsbs, mask) (((x) >> lsbs) & mask)
79
 
80
/**
81
 * Mark a temporary register as used.
82
 */
83
static void use_temporary(struct r300_fragment_program_code *code, unsigned int index)
84
{
85
	if (index > code->pixsize)
86
		code->pixsize = index;
87
}
88
 
89
static unsigned int use_source(struct r300_fragment_program_code* code, struct rc_pair_instruction_source src)
90
{
91
	if (!src.Used)
92
		return 0;
93
 
94
	if (src.File == RC_FILE_CONSTANT) {
95
		return src.Index | (1 << 5);
96
	} else if (src.File == RC_FILE_TEMPORARY || src.File == RC_FILE_INPUT) {
97
		use_temporary(code, src.Index);
98
		return src.Index & 0x1f;
99
	}
100
 
101
	return 0;
102
}
103
 
104
 
105
static unsigned int translate_rgb_opcode(struct r300_fragment_program_compiler * c, rc_opcode opcode)
106
{
107
	switch(opcode) {
108
	case RC_OPCODE_CMP: return R300_ALU_OUTC_CMP;
109
	case RC_OPCODE_CND: return R300_ALU_OUTC_CND;
110
	case RC_OPCODE_DP3: return R300_ALU_OUTC_DP3;
111
	case RC_OPCODE_DP4: return R300_ALU_OUTC_DP4;
112
	case RC_OPCODE_FRC: return R300_ALU_OUTC_FRC;
113
	default:
114
		error("translate_rgb_opcode: Unknown opcode %s", rc_get_opcode_info(opcode)->Name);
115
		/* fall through */
116
	case RC_OPCODE_NOP:
117
		/* fall through */
118
	case RC_OPCODE_MAD: return R300_ALU_OUTC_MAD;
119
	case RC_OPCODE_MAX: return R300_ALU_OUTC_MAX;
120
	case RC_OPCODE_MIN: return R300_ALU_OUTC_MIN;
121
	case RC_OPCODE_REPL_ALPHA: return R300_ALU_OUTC_REPL_ALPHA;
122
	}
123
}
124
 
125
static unsigned int translate_alpha_opcode(struct r300_fragment_program_compiler * c, rc_opcode opcode)
126
{
127
	switch(opcode) {
128
	case RC_OPCODE_CMP: return R300_ALU_OUTA_CMP;
129
	case RC_OPCODE_CND: return R300_ALU_OUTA_CND;
130
	case RC_OPCODE_DP3: return R300_ALU_OUTA_DP4;
131
	case RC_OPCODE_DP4: return R300_ALU_OUTA_DP4;
132
	case RC_OPCODE_EX2: return R300_ALU_OUTA_EX2;
133
	case RC_OPCODE_FRC: return R300_ALU_OUTA_FRC;
134
	case RC_OPCODE_LG2: return R300_ALU_OUTA_LG2;
135
	default:
136
		error("translate_rgb_opcode: Unknown opcode %s", rc_get_opcode_info(opcode)->Name);
137
		/* fall through */
138
	case RC_OPCODE_NOP:
139
		/* fall through */
140
	case RC_OPCODE_MAD: return R300_ALU_OUTA_MAD;
141
	case RC_OPCODE_MAX: return R300_ALU_OUTA_MAX;
142
	case RC_OPCODE_MIN: return R300_ALU_OUTA_MIN;
143
	case RC_OPCODE_RCP: return R300_ALU_OUTA_RCP;
144
	case RC_OPCODE_RSQ: return R300_ALU_OUTA_RSQ;
145
	}
146
}
147
 
148
/**
149
 * Emit one paired ALU instruction.
150
 */
151
static int emit_alu(struct r300_emit_state * emit, struct rc_pair_instruction* inst)
152
{
153
	int ip;
154
	int j;
155
	PROG_CODE;
156
 
157
	if (code->alu.length >= c->Base.max_alu_insts) {
158
		error("Too many ALU instructions");
159
		return 0;
160
	}
161
 
162
	ip = code->alu.length++;
163
 
164
	code->alu.inst[ip].rgb_inst = translate_rgb_opcode(c, inst->RGB.Opcode);
165
	code->alu.inst[ip].alpha_inst = translate_alpha_opcode(c, inst->Alpha.Opcode);
166
 
167
	for(j = 0; j < 3; ++j) {
168
		/* Set the RGB address */
169
		unsigned int src = use_source(code, inst->RGB.Src[j]);
170
		unsigned int arg;
171
		if (inst->RGB.Src[j].Index >= R300_PFS_NUM_TEMP_REGS)
172
			code->alu.inst[ip].r400_ext_addr |= R400_ADDR_EXT_RGB_MSB_BIT(j);
173
 
174
		code->alu.inst[ip].rgb_addr |= src << (6*j);
175
 
176
		/* Set the Alpha address */
177
		src = use_source(code, inst->Alpha.Src[j]);
178
		if (inst->Alpha.Src[j].Index >= R300_PFS_NUM_TEMP_REGS)
179
			code->alu.inst[ip].r400_ext_addr |= R400_ADDR_EXT_A_MSB_BIT(j);
180
 
181
		code->alu.inst[ip].alpha_addr |= src << (6*j);
182
 
183
		arg = r300FPTranslateRGBSwizzle(inst->RGB.Arg[j].Source, inst->RGB.Arg[j].Swizzle);
184
		arg |= inst->RGB.Arg[j].Abs << 6;
185
		arg |= inst->RGB.Arg[j].Negate << 5;
186
		code->alu.inst[ip].rgb_inst |= arg << (7*j);
187
 
188
		arg = r300FPTranslateAlphaSwizzle(inst->Alpha.Arg[j].Source, inst->Alpha.Arg[j].Swizzle);
189
		arg |= inst->Alpha.Arg[j].Abs << 6;
190
		arg |= inst->Alpha.Arg[j].Negate << 5;
191
		code->alu.inst[ip].alpha_inst |= arg << (7*j);
192
	}
193
 
194
	/* Presubtract */
195
	if (inst->RGB.Src[RC_PAIR_PRESUB_SRC].Used) {
196
		switch(inst->RGB.Src[RC_PAIR_PRESUB_SRC].Index) {
197
		case RC_PRESUB_BIAS:
198
			code->alu.inst[ip].rgb_inst |=
199
						R300_ALU_SRCP_1_MINUS_2_SRC0;
200
			break;
201
		case RC_PRESUB_ADD:
202
			code->alu.inst[ip].rgb_inst |=
203
						R300_ALU_SRCP_SRC1_PLUS_SRC0;
204
			break;
205
		case RC_PRESUB_SUB:
206
			code->alu.inst[ip].rgb_inst |=
207
						R300_ALU_SRCP_SRC1_MINUS_SRC0;
208
			break;
209
		case RC_PRESUB_INV:
210
			code->alu.inst[ip].rgb_inst |=
211
						R300_ALU_SRCP_1_MINUS_SRC0;
212
			break;
213
		default:
214
			break;
215
		}
216
	}
217
 
218
	if (inst->Alpha.Src[RC_PAIR_PRESUB_SRC].Used) {
219
		switch(inst->Alpha.Src[RC_PAIR_PRESUB_SRC].Index) {
220
		case RC_PRESUB_BIAS:
221
			code->alu.inst[ip].alpha_inst |=
222
						R300_ALU_SRCP_1_MINUS_2_SRC0;
223
			break;
224
		case RC_PRESUB_ADD:
225
			code->alu.inst[ip].alpha_inst |=
226
						R300_ALU_SRCP_SRC1_PLUS_SRC0;
227
			break;
228
		case RC_PRESUB_SUB:
229
			code->alu.inst[ip].alpha_inst |=
230
						R300_ALU_SRCP_SRC1_MINUS_SRC0;
231
			break;
232
		case RC_PRESUB_INV:
233
			code->alu.inst[ip].alpha_inst |=
234
						R300_ALU_SRCP_1_MINUS_SRC0;
235
			break;
236
		default:
237
			break;
238
		}
239
	}
240
 
241
	if (inst->RGB.Saturate)
242
		code->alu.inst[ip].rgb_inst |= R300_ALU_OUTC_CLAMP;
243
	if (inst->Alpha.Saturate)
244
		code->alu.inst[ip].alpha_inst |= R300_ALU_OUTA_CLAMP;
245
 
246
	if (inst->RGB.WriteMask) {
247
		use_temporary(code, inst->RGB.DestIndex);
248
		if (inst->RGB.DestIndex >= R300_PFS_NUM_TEMP_REGS)
249
			code->alu.inst[ip].r400_ext_addr |= R400_ADDRD_EXT_RGB_MSB_BIT;
250
		code->alu.inst[ip].rgb_addr |=
251
			((inst->RGB.DestIndex & 0x1f) << R300_ALU_DSTC_SHIFT) |
252
			(inst->RGB.WriteMask << R300_ALU_DSTC_REG_MASK_SHIFT);
253
	}
254
	if (inst->RGB.OutputWriteMask) {
255
		code->alu.inst[ip].rgb_addr |=
256
            (inst->RGB.OutputWriteMask << R300_ALU_DSTC_OUTPUT_MASK_SHIFT) |
257
            R300_RGB_TARGET(inst->RGB.Target);
258
		emit->node_flags |= R300_RGBA_OUT;
259
	}
260
 
261
	if (inst->Alpha.WriteMask) {
262
		use_temporary(code, inst->Alpha.DestIndex);
263
		if (inst->Alpha.DestIndex >= R300_PFS_NUM_TEMP_REGS)
264
			code->alu.inst[ip].r400_ext_addr |= R400_ADDRD_EXT_A_MSB_BIT;
265
		code->alu.inst[ip].alpha_addr |=
266
			((inst->Alpha.DestIndex & 0x1f) << R300_ALU_DSTA_SHIFT) |
267
			R300_ALU_DSTA_REG;
268
	}
269
	if (inst->Alpha.OutputWriteMask) {
270
		code->alu.inst[ip].alpha_addr |= R300_ALU_DSTA_OUTPUT |
271
            R300_ALPHA_TARGET(inst->Alpha.Target);
272
		emit->node_flags |= R300_RGBA_OUT;
273
	}
274
	if (inst->Alpha.DepthWriteMask) {
275
		code->alu.inst[ip].alpha_addr |= R300_ALU_DSTA_DEPTH;
276
		emit->node_flags |= R300_W_OUT;
277
		c->code->writes_depth = 1;
278
	}
279
	if (inst->Nop)
280
		code->alu.inst[ip].rgb_inst |= R300_ALU_INSERT_NOP;
281
 
282
	/* Handle Output Modifier
283
	 * According to the r300 docs, there is no RC_OMOD_DISABLE for r300 */
284
	if (inst->RGB.Omod) {
285
		if (inst->RGB.Omod == RC_OMOD_DISABLE) {
286
			rc_error(&c->Base, "RC_OMOD_DISABLE not supported");
287
		}
288
		code->alu.inst[ip].rgb_inst |=
289
			(inst->RGB.Omod << R300_ALU_OUTC_MOD_SHIFT);
290
	}
291
	if (inst->Alpha.Omod) {
292
		if (inst->Alpha.Omod == RC_OMOD_DISABLE) {
293
			rc_error(&c->Base, "RC_OMOD_DISABLE not supported");
294
		}
295
		code->alu.inst[ip].alpha_inst |=
296
			(inst->Alpha.Omod << R300_ALU_OUTC_MOD_SHIFT);
297
	}
298
	return 1;
299
}
300
 
301
 
302
/**
303
 * Finish the current node without advancing to the next one.
304
 */
305
static int finish_node(struct r300_emit_state * emit)
306
{
307
	struct r300_fragment_program_compiler * c = emit->compiler;
308
	struct r300_fragment_program_code *code = &emit->compiler->code->code.r300;
309
	unsigned alu_offset;
310
	unsigned alu_end;
311
	unsigned tex_offset;
312
	unsigned tex_end;
313
 
314
	unsigned int alu_offset_msbs, alu_end_msbs;
315
 
316
	if (code->alu.length == emit->node_first_alu) {
317
		/* Generate a single NOP for this node */
318
		struct rc_pair_instruction inst;
319
		memset(&inst, 0, sizeof(inst));
320
		if (!emit_alu(emit, &inst))
321
			return 0;
322
	}
323
 
324
	alu_offset = emit->node_first_alu;
325
	alu_end = code->alu.length - alu_offset - 1;
326
	tex_offset = emit->node_first_tex;
327
	tex_end = code->tex.length - tex_offset - 1;
328
 
329
	if (code->tex.length == emit->node_first_tex) {
330
		if (emit->current_node > 0) {
331
			error("Node %i has no TEX instructions", emit->current_node);
332
			return 0;
333
		}
334
 
335
		tex_end = 0;
336
	} else {
337
		if (emit->current_node == 0)
338
			code->config |= R300_PFS_CNTL_FIRST_NODE_HAS_TEX;
339
	}
340
 
341
	/* Write the config register.
342
	 * Note: The order in which the words for each node are written
343
	 * is not correct here and needs to be fixed up once we're entirely
344
	 * done
345
	 *
346
	 * Also note that the register specification from AMD is slightly
347
	 * incorrect in its description of this register. */
348
	code->code_addr[emit->current_node]  =
349
			((alu_offset << R300_ALU_START_SHIFT)
350
				& R300_ALU_START_MASK)
351
			| ((alu_end << R300_ALU_SIZE_SHIFT)
352
				& R300_ALU_SIZE_MASK)
353
			| ((tex_offset << R300_TEX_START_SHIFT)
354
				& R300_TEX_START_MASK)
355
			| ((tex_end << R300_TEX_SIZE_SHIFT)
356
				& R300_TEX_SIZE_MASK)
357
			| emit->node_flags
358
			| (get_msbs_tex(tex_offset, 5)
359
				<< R400_TEX_START_MSB_SHIFT)
360
			| (get_msbs_tex(tex_end, 5)
361
				<< R400_TEX_SIZE_MSB_SHIFT)
362
			;
363
 
364
	/* Write r400 extended instruction fields.  These will be ignored on
365
	 * r300 cards.  */
366
	alu_offset_msbs = get_msbs_alu(alu_offset);
367
	alu_end_msbs = get_msbs_alu(alu_end);
368
	switch(emit->current_node) {
369
	case 0:
370
		code->r400_code_offset_ext |=
371
			alu_offset_msbs << R400_ALU_START3_MSB_SHIFT
372
			| alu_end_msbs << R400_ALU_SIZE3_MSB_SHIFT;
373
		break;
374
	case 1:
375
		code->r400_code_offset_ext |=
376
			alu_offset_msbs << R400_ALU_START2_MSB_SHIFT
377
			| alu_end_msbs << R400_ALU_SIZE2_MSB_SHIFT;
378
		break;
379
	case 2:
380
		code->r400_code_offset_ext |=
381
			alu_offset_msbs << R400_ALU_START1_MSB_SHIFT
382
			| alu_end_msbs << R400_ALU_SIZE1_MSB_SHIFT;
383
		break;
384
	case 3:
385
		code->r400_code_offset_ext |=
386
			alu_offset_msbs << R400_ALU_START0_MSB_SHIFT
387
			| alu_end_msbs << R400_ALU_SIZE0_MSB_SHIFT;
388
		break;
389
	}
390
	return 1;
391
}
392
 
393
 
394
/**
395
 * Begin a block of texture instructions.
396
 * Create the necessary indirection.
397
 */
398
static int begin_tex(struct r300_emit_state * emit)
399
{
400
	PROG_CODE;
401
 
402
	if (code->alu.length == emit->node_first_alu &&
403
	    code->tex.length == emit->node_first_tex) {
404
		return 1;
405
	}
406
 
407
	if (emit->current_node == 3) {
408
		error("Too many texture indirections");
409
		return 0;
410
	}
411
 
412
	if (!finish_node(emit))
413
		return 0;
414
 
415
	emit->current_node++;
416
	emit->node_first_tex = code->tex.length;
417
	emit->node_first_alu = code->alu.length;
418
	emit->node_flags = 0;
419
	return 1;
420
}
421
 
422
 
423
static int emit_tex(struct r300_emit_state * emit, struct rc_instruction * inst)
424
{
425
	unsigned int unit;
426
	unsigned int dest;
427
	unsigned int opcode;
428
	PROG_CODE;
429
 
430
	if (code->tex.length >= emit->compiler->Base.max_tex_insts) {
431
		error("Too many TEX instructions");
432
		return 0;
433
	}
434
 
435
	unit = inst->U.I.TexSrcUnit;
436
	dest = inst->U.I.DstReg.Index;
437
 
438
	switch(inst->U.I.Opcode) {
439
	case RC_OPCODE_KIL: opcode = R300_TEX_OP_KIL; break;
440
	case RC_OPCODE_TEX: opcode = R300_TEX_OP_LD; break;
441
	case RC_OPCODE_TXB: opcode = R300_TEX_OP_TXB; break;
442
	case RC_OPCODE_TXP: opcode = R300_TEX_OP_TXP; break;
443
	default:
444
		error("Unknown texture opcode %s", rc_get_opcode_info(inst->U.I.Opcode)->Name);
445
		return 0;
446
	}
447
 
448
	if (inst->U.I.Opcode == RC_OPCODE_KIL) {
449
		unit = 0;
450
		dest = 0;
451
	} else {
452
		use_temporary(code, dest);
453
	}
454
 
455
	use_temporary(code, inst->U.I.SrcReg[0].Index);
456
 
457
	code->tex.inst[code->tex.length++] =
458
		((inst->U.I.SrcReg[0].Index << R300_SRC_ADDR_SHIFT)
459
			& R300_SRC_ADDR_MASK)
460
		| ((dest << R300_DST_ADDR_SHIFT)
461
			& R300_DST_ADDR_MASK)
462
		| (unit << R300_TEX_ID_SHIFT)
463
		| (opcode << R300_TEX_INST_SHIFT)
464
		| (inst->U.I.SrcReg[0].Index >= R300_PFS_NUM_TEMP_REGS ?
465
			R400_SRC_ADDR_EXT_BIT : 0)
466
		| (dest >= R300_PFS_NUM_TEMP_REGS ?
467
			R400_DST_ADDR_EXT_BIT : 0)
468
		;
469
	return 1;
470
}
471
 
472
 
473
/**
474
 * Final compilation step: Turn the intermediate radeon_program into
475
 * machine-readable instructions.
476
 */
477
void r300BuildFragmentProgramHwCode(struct radeon_compiler *c, void *user)
478
{
479
	struct r300_fragment_program_compiler *compiler = (struct r300_fragment_program_compiler*)c;
480
	struct r300_emit_state emit;
481
	struct r300_fragment_program_code *code = &compiler->code->code.r300;
482
	unsigned int tex_end;
483
 
484
	memset(&emit, 0, sizeof(emit));
485
	emit.compiler = compiler;
486
 
487
	memset(code, 0, sizeof(struct r300_fragment_program_code));
488
 
489
	for(struct rc_instruction * inst = compiler->Base.Program.Instructions.Next;
490
	    inst != &compiler->Base.Program.Instructions && !compiler->Base.Error;
491
	    inst = inst->Next) {
492
		if (inst->Type == RC_INSTRUCTION_NORMAL) {
493
			if (inst->U.I.Opcode == RC_OPCODE_BEGIN_TEX) {
494
				begin_tex(&emit);
495
				continue;
496
			}
497
 
498
			emit_tex(&emit, inst);
499
		} else {
500
			emit_alu(&emit, &inst->U.P);
501
		}
502
	}
503
 
504
	if (code->pixsize >= compiler->Base.max_temp_regs)
505
		rc_error(&compiler->Base, "Too many hardware temporaries used.\n");
506
 
507
	if (compiler->Base.Error)
508
		return;
509
 
510
	/* Finish the program */
511
	finish_node(&emit);
512
 
513
	code->config |= emit.current_node; /* FIRST_NODE_HAS_TEX set by finish_node */
514
 
515
	/* Set r400 extended instruction fields.  These values will be ignored
516
	 * on r300 cards. */
517
	code->r400_code_offset_ext |=
518
		(get_msbs_alu(0)
519
				<< R400_ALU_OFFSET_MSB_SHIFT)
520
		| (get_msbs_alu(code->alu.length - 1)
521
				<< R400_ALU_SIZE_MSB_SHIFT);
522
 
523
	tex_end = code->tex.length ? code->tex.length - 1 : 0;
524
	code->code_offset =
525
		((0 << R300_PFS_CNTL_ALU_OFFSET_SHIFT)
526
			& R300_PFS_CNTL_ALU_OFFSET_MASK)
527
		| (((code->alu.length - 1) << R300_PFS_CNTL_ALU_END_SHIFT)
528
			& R300_PFS_CNTL_ALU_END_MASK)
529
		| ((0 << R300_PFS_CNTL_TEX_OFFSET_SHIFT)
530
			& R300_PFS_CNTL_TEX_OFFSET_MASK)
531
		| ((tex_end << R300_PFS_CNTL_TEX_END_SHIFT)
532
			& R300_PFS_CNTL_TEX_END_MASK)
533
		| (get_msbs_tex(0, 5) << R400_TEX_START_MSB_SHIFT)
534
		| (get_msbs_tex(tex_end, 6) << R400_TEX_SIZE_MSB_SHIFT)
535
		;
536
 
537
	if (emit.current_node < 3) {
538
		int shift = 3 - emit.current_node;
539
		int i;
540
		for(i = emit.current_node; i >= 0; --i)
541
			code->code_addr[shift + i] = code->code_addr[i];
542
		for(i = 0; i < shift; ++i)
543
			code->code_addr[i] = 0;
544
	}
545
 
546
	if (code->pixsize >= R300_PFS_NUM_TEMP_REGS
547
	    || code->alu.length > R300_PFS_MAX_ALU_INST
548
	    || code->tex.length > R300_PFS_MAX_TEX_INST) {
549
 
550
		code->r390_mode = 1;
551
	}
552
}