Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4358 Serge 1
/*
2
 * Copyright 2011 Christoph Bumiller
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice shall be included in
12
 * all copies or substantial portions of the Software.
13
 *
14
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20
 * OTHER DEALINGS IN THE SOFTWARE.
21
 */
22
 
23
#include "nv50/codegen/nv50_ir.h"
24
#include "nv50/codegen/nv50_ir_build_util.h"
25
 
26
#include "nv50_ir_target_nvc0.h"
27
 
28
#include 
29
 
30
namespace nv50_ir {
31
 
32
#define QOP_ADD  0
33
#define QOP_SUBR 1
34
#define QOP_SUB  2
35
#define QOP_MOV2 3
36
 
37
//             UL UR LL LR
38
#define QUADOP(q, r, s, t)                      \
39
   ((QOP_##q << 6) | (QOP_##r << 4) |           \
40
    (QOP_##s << 2) | (QOP_##t << 0))
41
 
42
class NVC0LegalizeSSA : public Pass
43
{
44
private:
45
   virtual bool visit(BasicBlock *);
46
   virtual bool visit(Function *);
47
 
48
   // we want to insert calls to the builtin library only after optimization
49
   void handleDIV(Instruction *); // integer division, modulus
50
   void handleRCPRSQ(Instruction *); // double precision float recip/rsqrt
51
 
52
private:
53
   BuildUtil bld;
54
};
55
 
56
void
57
NVC0LegalizeSSA::handleDIV(Instruction *i)
58
{
59
   FlowInstruction *call;
60
   int builtin;
61
   Value *def[2];
62
 
63
   bld.setPosition(i, false);
64
   def[0] = bld.mkMovToReg(0, i->getSrc(0))->getDef(0);
65
   def[1] = bld.mkMovToReg(1, i->getSrc(1))->getDef(0);
66
   switch (i->dType) {
67
   case TYPE_U32: builtin = NVC0_BUILTIN_DIV_U32; break;
68
   case TYPE_S32: builtin = NVC0_BUILTIN_DIV_S32; break;
69
   default:
70
      return;
71
   }
72
   call = bld.mkFlow(OP_CALL, NULL, CC_ALWAYS, NULL);
73
   bld.mkMov(i->getDef(0), def[(i->op == OP_DIV) ? 0 : 1]);
74
   bld.mkClobber(FILE_GPR, (i->op == OP_DIV) ? 0xe : 0xd, 2);
75
   bld.mkClobber(FILE_PREDICATE, (i->dType == TYPE_S32) ? 0xf : 0x3, 0);
76
 
77
   call->fixed = 1;
78
   call->absolute = call->builtin = 1;
79
   call->target.builtin = builtin;
80
   delete_Instruction(prog, i);
81
}
82
 
83
void
84
NVC0LegalizeSSA::handleRCPRSQ(Instruction *i)
85
{
86
   // TODO
87
}
88
 
89
bool
90
NVC0LegalizeSSA::visit(Function *fn)
91
{
92
   bld.setProgram(fn->getProgram());
93
   return true;
94
}
95
 
96
bool
97
NVC0LegalizeSSA::visit(BasicBlock *bb)
98
{
99
   Instruction *next;
100
   for (Instruction *i = bb->getEntry(); i; i = next) {
101
      next = i->next;
102
      if (i->dType == TYPE_F32)
103
         continue;
104
      switch (i->op) {
105
      case OP_DIV:
106
      case OP_MOD:
107
         handleDIV(i);
108
         break;
109
      case OP_RCP:
110
      case OP_RSQ:
111
         if (i->dType == TYPE_F64)
112
            handleRCPRSQ(i);
113
         break;
114
      default:
115
         break;
116
      }
117
   }
118
   return true;
119
}
120
 
121
class NVC0LegalizePostRA : public Pass
122
{
123
public:
124
   NVC0LegalizePostRA(const Program *);
125
 
126
private:
127
   virtual bool visit(Function *);
128
   virtual bool visit(BasicBlock *);
129
 
130
   void replaceZero(Instruction *);
131
   bool tryReplaceContWithBra(BasicBlock *);
132
   void propagateJoin(BasicBlock *);
133
 
134
   struct TexUse
135
   {
136
      TexUse(Instruction *use, const Instruction *tex)
137
         : insn(use), tex(tex), level(-1) { }
138
      Instruction *insn;
139
      const Instruction *tex; // or split / mov
140
      int level;
141
   };
142
   struct Limits
143
   {
144
      Limits() { }
145
      Limits(int min, int max) : min(min), max(max) { }
146
      int min, max;
147
   };
148
   bool insertTextureBarriers(Function *);
149
   inline bool insnDominatedBy(const Instruction *, const Instruction *) const;
150
   void findFirstUses(const Instruction *tex, const Instruction *def,
151
                      std::list&);
152
   void findOverwritingDefs(const Instruction *tex, Instruction *insn,
153
                            const BasicBlock *term,
154
                            std::list&);
155
   void addTexUse(std::list&, Instruction *, const Instruction *);
156
   const Instruction *recurseDef(const Instruction *);
157
 
158
private:
159
   LValue *rZero;
160
   LValue *carry;
161
   const bool needTexBar;
162
};
163
 
164
NVC0LegalizePostRA::NVC0LegalizePostRA(const Program *prog)
165
   : needTexBar(prog->getTarget()->getChipset() >= 0xe0)
166
{
167
}
168
 
169
bool
170
NVC0LegalizePostRA::insnDominatedBy(const Instruction *later,
171
                                    const Instruction *early) const
172
{
173
   if (early->bb == later->bb)
174
      return early->serial < later->serial;
175
   return later->bb->dominatedBy(early->bb);
176
}
177
 
178
void
179
NVC0LegalizePostRA::addTexUse(std::list &uses,
180
                              Instruction *usei, const Instruction *insn)
181
{
182
   bool add = true;
183
   for (std::list::iterator it = uses.begin();
184
        it != uses.end();) {
185
      if (insnDominatedBy(usei, it->insn)) {
186
         add = false;
187
         break;
188
      }
189
      if (insnDominatedBy(it->insn, usei))
190
         it = uses.erase(it);
191
      else
192
         ++it;
193
   }
194
   if (add)
195
      uses.push_back(TexUse(usei, insn));
196
}
197
 
198
void
199
NVC0LegalizePostRA::findOverwritingDefs(const Instruction *texi,
200
                                        Instruction *insn,
201
                                        const BasicBlock *term,
202
                                        std::list &uses)
203
{
204
   while (insn->op == OP_MOV && insn->getDef(0)->equals(insn->getSrc(0)))
205
      insn = insn->getSrc(0)->getUniqueInsn();
206
 
207
   if (!insn || !insn->bb->reachableBy(texi->bb, term))
208
      return;
209
 
210
   switch (insn->op) {
211
   /* Values not connected to the tex's definition through any of these should
212
    * not be conflicting.
213
    */
214
   case OP_SPLIT:
215
   case OP_MERGE:
216
   case OP_PHI:
217
   case OP_UNION:
218
      /* recurse again */
219
      for (int s = 0; insn->srcExists(s); ++s)
220
         findOverwritingDefs(texi, insn->getSrc(s)->getUniqueInsn(), term,
221
                             uses);
222
      break;
223
   default:
224
      // if (!isTextureOp(insn->op)) // TODO: are TEXes always ordered ?
225
      addTexUse(uses, insn, texi);
226
      break;
227
   }
228
}
229
 
230
void
231
NVC0LegalizePostRA::findFirstUses(const Instruction *texi,
232
                                  const Instruction *insn,
233
                                  std::list &uses)
234
{
235
   for (int d = 0; insn->defExists(d); ++d) {
236
      Value *v = insn->getDef(d);
237
      for (Value::UseIterator u = v->uses.begin(); u != v->uses.end(); ++u) {
238
         Instruction *usei = (*u)->getInsn();
239
 
240
         if (usei->op == OP_PHI || usei->op == OP_UNION) {
241
            // need a barrier before WAW cases
242
            for (int s = 0; usei->srcExists(s); ++s) {
243
               Instruction *defi = usei->getSrc(s)->getUniqueInsn();
244
               if (defi && &usei->src(s) != *u)
245
                  findOverwritingDefs(texi, defi, usei->bb, uses);
246
            }
247
         }
248
 
249
         if (usei->op == OP_SPLIT ||
250
             usei->op == OP_MERGE ||
251
             usei->op == OP_PHI ||
252
             usei->op == OP_UNION) {
253
            // these uses don't manifest in the machine code
254
            findFirstUses(texi, usei, uses);
255
         } else
256
         if (usei->op == OP_MOV && usei->getDef(0)->equals(usei->getSrc(0)) &&
257
             usei->subOp != NV50_IR_SUBOP_MOV_FINAL) {
258
            findFirstUses(texi, usei, uses);
259
         } else {
260
            addTexUse(uses, usei, insn);
261
         }
262
      }
263
   }
264
}
265
 
266
// Texture barriers:
267
// This pass is a bit long and ugly and can probably be optimized.
268
//
269
// 1. obtain a list of TEXes and their outputs' first use(s)
270
// 2. calculate the barrier level of each first use (minimal number of TEXes,
271
//    over all paths, between the TEX and the use in question)
272
// 3. for each barrier, if all paths from the source TEX to that barrier
273
//    contain a barrier of lesser level, it can be culled
274
bool
275
NVC0LegalizePostRA::insertTextureBarriers(Function *fn)
276
{
277
   std::list *uses;
278
   std::vector texes;
279
   std::vector bbFirstTex;
280
   std::vector bbFirstUse;
281
   std::vector texCounts;
282
   std::vector useVec;
283
   ArrayList insns;
284
 
285
   fn->orderInstructions(insns);
286
 
287
   texCounts.resize(fn->allBBlocks.getSize(), 0);
288
   bbFirstTex.resize(fn->allBBlocks.getSize(), insns.getSize());
289
   bbFirstUse.resize(fn->allBBlocks.getSize(), insns.getSize());
290
 
291
   // tag BB CFG nodes by their id for later
292
   for (ArrayList::Iterator i = fn->allBBlocks.iterator(); !i.end(); i.next()) {
293
      BasicBlock *bb = reinterpret_cast(i.get());
294
      if (bb)
295
         bb->cfg.tag = bb->getId();
296
   }
297
 
298
   // gather the first uses for each TEX
299
   for (int i = 0; i < insns.getSize(); ++i) {
300
      Instruction *tex = reinterpret_cast(insns.get(i));
301
      if (isTextureOp(tex->op)) {
302
         texes.push_back(tex);
303
         if (!texCounts.at(tex->bb->getId()))
304
            bbFirstTex[tex->bb->getId()] = texes.size() - 1;
305
         texCounts[tex->bb->getId()]++;
306
      }
307
   }
308
   insns.clear();
309
   if (texes.empty())
310
      return false;
311
   uses = new std::list[texes.size()];
312
   if (!uses)
313
      return false;
314
   for (size_t i = 0; i < texes.size(); ++i)
315
      findFirstUses(texes[i], texes[i], uses[i]);
316
 
317
   // determine the barrier level at each use
318
   for (size_t i = 0; i < texes.size(); ++i) {
319
      for (std::list::iterator u = uses[i].begin(); u != uses[i].end();
320
           ++u) {
321
         BasicBlock *tb = texes[i]->bb;
322
         BasicBlock *ub = u->insn->bb;
323
         if (tb == ub) {
324
            u->level = 0;
325
            for (size_t j = i + 1; j < texes.size() &&
326
                    texes[j]->bb == tb && texes[j]->serial < u->insn->serial;
327
                 ++j)
328
               u->level++;
329
         } else {
330
            u->level = fn->cfg.findLightestPathWeight(&tb->cfg,
331
                                                      &ub->cfg, texCounts);
332
            if (u->level < 0) {
333
               WARN("Failed to find path TEX -> TEXBAR\n");
334
               u->level = 0;
335
               continue;
336
            }
337
            // this counted all TEXes in the origin block, correct that
338
            u->level -= i - bbFirstTex.at(tb->getId()) + 1 /* this TEX */;
339
            // and did not count the TEXes in the destination block, add those
340
            for (size_t j = bbFirstTex.at(ub->getId()); j < texes.size() &&
341
                    texes[j]->bb == ub && texes[j]->serial < u->insn->serial;
342
                 ++j)
343
               u->level++;
344
         }
345
         assert(u->level >= 0);
346
         useVec.push_back(*u);
347
      }
348
   }
349
   delete[] uses;
350
   uses = NULL;
351
 
352
   // insert the barriers
353
   for (size_t i = 0; i < useVec.size(); ++i) {
354
      Instruction *prev = useVec[i].insn->prev;
355
      if (useVec[i].level < 0)
356
         continue;
357
      if (prev && prev->op == OP_TEXBAR) {
358
         if (prev->subOp > useVec[i].level)
359
            prev->subOp = useVec[i].level;
360
         prev->setSrc(prev->srcCount(), useVec[i].tex->getDef(0));
361
      } else {
362
         Instruction *bar = new_Instruction(func, OP_TEXBAR, TYPE_NONE);
363
         bar->fixed = 1;
364
         bar->subOp = useVec[i].level;
365
         // make use explicit to ease latency calculation
366
         bar->setSrc(bar->srcCount(), useVec[i].tex->getDef(0));
367
         useVec[i].insn->bb->insertBefore(useVec[i].insn, bar);
368
      }
369
   }
370
 
371
   if (fn->getProgram()->optLevel < 3) {
372
      if (uses)
373
         delete[] uses;
374
      return true;
375
   }
376
 
377
   std::vector limitT, limitB, limitS; // entry, exit, single
378
 
379
   limitT.resize(fn->allBBlocks.getSize(), Limits(0, 0));
380
   limitB.resize(fn->allBBlocks.getSize(), Limits(0, 0));
381
   limitS.resize(fn->allBBlocks.getSize());
382
 
383
   // cull unneeded barriers (should do that earlier, but for simplicity)
384
   IteratorRef bi = fn->cfg.iteratorCFG();
385
   // first calculate min/max outstanding TEXes for each BB
386
   for (bi->reset(); !bi->end(); bi->next()) {
387
      Graph::Node *n = reinterpret_cast(bi->get());
388
      BasicBlock *bb = BasicBlock::get(n);
389
      int min = 0;
390
      int max = std::numeric_limits::max();
391
      for (Instruction *i = bb->getFirst(); i; i = i->next) {
392
         if (isTextureOp(i->op)) {
393
            min++;
394
            if (max < std::numeric_limits::max())
395
               max++;
396
         } else
397
         if (i->op == OP_TEXBAR) {
398
            min = MIN2(min, i->subOp);
399
            max = MIN2(max, i->subOp);
400
         }
401
      }
402
      // limits when looking at an isolated block
403
      limitS[bb->getId()].min = min;
404
      limitS[bb->getId()].max = max;
405
   }
406
   // propagate the min/max values
407
   for (unsigned int l = 0; l <= fn->loopNestingBound; ++l) {
408
      for (bi->reset(); !bi->end(); bi->next()) {
409
         Graph::Node *n = reinterpret_cast(bi->get());
410
         BasicBlock *bb = BasicBlock::get(n);
411
         const int bbId = bb->getId();
412
         for (Graph::EdgeIterator ei = n->incident(); !ei.end(); ei.next()) {
413
            BasicBlock *in = BasicBlock::get(ei.getNode());
414
            const int inId = in->getId();
415
            limitT[bbId].min = MAX2(limitT[bbId].min, limitB[inId].min);
416
            limitT[bbId].max = MAX2(limitT[bbId].max, limitB[inId].max);
417
         }
418
         // I just hope this is correct ...
419
         if (limitS[bbId].max == std::numeric_limits::max()) {
420
            // no barrier
421
            limitB[bbId].min = limitT[bbId].min + limitS[bbId].min;
422
            limitB[bbId].max = limitT[bbId].max + limitS[bbId].min;
423
         } else {
424
            // block contained a barrier
425
            limitB[bbId].min = MIN2(limitS[bbId].max,
426
                                    limitT[bbId].min + limitS[bbId].min);
427
            limitB[bbId].max = MIN2(limitS[bbId].max,
428
                                    limitT[bbId].max + limitS[bbId].min);
429
         }
430
      }
431
   }
432
   // finally delete unnecessary barriers
433
   for (bi->reset(); !bi->end(); bi->next()) {
434
      Graph::Node *n = reinterpret_cast(bi->get());
435
      BasicBlock *bb = BasicBlock::get(n);
436
      Instruction *prev = NULL;
437
      Instruction *next;
438
      int max = limitT[bb->getId()].max;
439
      for (Instruction *i = bb->getFirst(); i; i = next) {
440
         next = i->next;
441
         if (i->op == OP_TEXBAR) {
442
            if (i->subOp >= max) {
443
               delete_Instruction(prog, i);
444
               i = NULL;
445
            } else {
446
               max = i->subOp;
447
               if (prev && prev->op == OP_TEXBAR && prev->subOp >= max) {
448
                  delete_Instruction(prog, prev);
449
                  prev = NULL;
450
               }
451
            }
452
         } else
453
         if (isTextureOp(i->op)) {
454
            max++;
455
         }
456
         if (i && !i->isNop())
457
            prev = i;
458
      }
459
   }
460
   if (uses)
461
      delete[] uses;
462
   return true;
463
}
464
 
465
bool
466
NVC0LegalizePostRA::visit(Function *fn)
467
{
468
   if (needTexBar)
469
      insertTextureBarriers(fn);
470
 
471
   rZero = new_LValue(fn, FILE_GPR);
472
   carry = new_LValue(fn, FILE_FLAGS);
473
 
474
   rZero->reg.data.id = prog->getTarget()->getFileSize(FILE_GPR);
475
   carry->reg.data.id = 0;
476
 
477
   return true;
478
}
479
 
480
void
481
NVC0LegalizePostRA::replaceZero(Instruction *i)
482
{
483
   for (int s = 0; i->srcExists(s); ++s) {
484
      if (s == 2 && i->op == OP_SUCLAMP)
485
         continue;
486
      ImmediateValue *imm = i->getSrc(s)->asImm();
487
      if (imm && imm->reg.data.u64 == 0)
488
         i->setSrc(s, rZero);
489
   }
490
}
491
 
492
// replace CONT with BRA for single unconditional continue
493
bool
494
NVC0LegalizePostRA::tryReplaceContWithBra(BasicBlock *bb)
495
{
496
   if (bb->cfg.incidentCount() != 2 || bb->getEntry()->op != OP_PRECONT)
497
      return false;
498
   Graph::EdgeIterator ei = bb->cfg.incident();
499
   if (ei.getType() != Graph::Edge::BACK)
500
      ei.next();
501
   if (ei.getType() != Graph::Edge::BACK)
502
      return false;
503
   BasicBlock *contBB = BasicBlock::get(ei.getNode());
504
 
505
   if (!contBB->getExit() || contBB->getExit()->op != OP_CONT ||
506
       contBB->getExit()->getPredicate())
507
      return false;
508
   contBB->getExit()->op = OP_BRA;
509
   bb->remove(bb->getEntry()); // delete PRECONT
510
 
511
   ei.next();
512
   assert(ei.end() || ei.getType() != Graph::Edge::BACK);
513
   return true;
514
}
515
 
516
// replace branches to join blocks with join ops
517
void
518
NVC0LegalizePostRA::propagateJoin(BasicBlock *bb)
519
{
520
   if (bb->getEntry()->op != OP_JOIN || bb->getEntry()->asFlow()->limit)
521
      return;
522
   for (Graph::EdgeIterator ei = bb->cfg.incident(); !ei.end(); ei.next()) {
523
      BasicBlock *in = BasicBlock::get(ei.getNode());
524
      Instruction *exit = in->getExit();
525
      if (!exit) {
526
         in->insertTail(new FlowInstruction(func, OP_JOIN, bb));
527
         // there should always be a terminator instruction
528
         WARN("inserted missing terminator in BB:%i\n", in->getId());
529
      } else
530
      if (exit->op == OP_BRA) {
531
         exit->op = OP_JOIN;
532
         exit->asFlow()->limit = 1; // must-not-propagate marker
533
      }
534
   }
535
   bb->remove(bb->getEntry());
536
}
537
 
538
bool
539
NVC0LegalizePostRA::visit(BasicBlock *bb)
540
{
541
   Instruction *i, *next;
542
 
543
   // remove pseudo operations and non-fixed no-ops, split 64 bit operations
544
   for (i = bb->getFirst(); i; i = next) {
545
      next = i->next;
546
      if (i->op == OP_EMIT || i->op == OP_RESTART) {
547
         if (!i->getDef(0)->refCount())
548
            i->setDef(0, NULL);
549
         if (i->src(0).getFile() == FILE_IMMEDIATE)
550
            i->setSrc(0, rZero); // initial value must be 0
551
      } else
552
      if (i->isNop()) {
553
         bb->remove(i);
554
      } else {
555
         // TODO: Move this to before register allocation for operations that
556
         // need the $c register !
557
         if (typeSizeof(i->dType) == 8) {
558
            Instruction *hi;
559
            hi = BuildUtil::split64BitOpPostRA(func, i, rZero, carry);
560
            if (hi)
561
               next = hi;
562
         }
563
 
564
         if (i->op != OP_MOV && i->op != OP_PFETCH)
565
            replaceZero(i);
566
      }
567
   }
568
   if (!bb->getEntry())
569
      return true;
570
 
571
   if (!tryReplaceContWithBra(bb))
572
      propagateJoin(bb);
573
 
574
   return true;
575
}
576
 
577
class NVC0LoweringPass : public Pass
578
{
579
public:
580
   NVC0LoweringPass(Program *);
581
 
582
private:
583
   virtual bool visit(Function *);
584
   virtual bool visit(BasicBlock *);
585
   virtual bool visit(Instruction *);
586
 
587
   bool handleRDSV(Instruction *);
588
   bool handleWRSV(Instruction *);
589
   bool handleEXPORT(Instruction *);
590
   bool handleOUT(Instruction *);
591
   bool handleDIV(Instruction *);
592
   bool handleMOD(Instruction *);
593
   bool handleSQRT(Instruction *);
594
   bool handlePOW(Instruction *);
595
   bool handleTEX(TexInstruction *);
596
   bool handleTXD(TexInstruction *);
597
   bool handleTXQ(TexInstruction *);
598
   bool handleManualTXD(TexInstruction *);
599
   bool handleATOM(Instruction *);
600
   bool handleCasExch(Instruction *, bool needCctl);
601
   void handleSurfaceOpNVE4(TexInstruction *);
602
 
603
   void checkPredicate(Instruction *);
604
 
605
   void readTessCoord(LValue *dst, int c);
606
 
607
   Value *loadResInfo32(Value *ptr, uint32_t off);
608
   Value *loadMsInfo32(Value *ptr, uint32_t off);
609
   Value *loadTexHandle(Value *ptr, unsigned int slot);
610
 
611
   void adjustCoordinatesMS(TexInstruction *);
612
   void processSurfaceCoordsNVE4(TexInstruction *);
613
 
614
private:
615
   const Target *const targ;
616
 
617
   BuildUtil bld;
618
 
619
   Symbol *gMemBase;
620
   LValue *gpEmitAddress;
621
};
622
 
623
NVC0LoweringPass::NVC0LoweringPass(Program *prog) : targ(prog->getTarget())
624
{
625
   bld.setProgram(prog);
626
   gMemBase = NULL;
627
}
628
 
629
bool
630
NVC0LoweringPass::visit(Function *fn)
631
{
632
   if (prog->getType() == Program::TYPE_GEOMETRY) {
633
      assert(!strncmp(fn->getName(), "MAIN", 4));
634
      // TODO: when we generate actual functions pass this value along somehow
635
      bld.setPosition(BasicBlock::get(fn->cfg.getRoot()), false);
636
      gpEmitAddress = bld.loadImm(NULL, 0)->asLValue();
637
      if (fn->cfgExit) {
638
         bld.setPosition(BasicBlock::get(fn->cfgExit)->getExit(), false);
639
         bld.mkMovToReg(0, gpEmitAddress);
640
      }
641
   }
642
   return true;
643
}
644
 
645
bool
646
NVC0LoweringPass::visit(BasicBlock *bb)
647
{
648
   return true;
649
}
650
 
651
inline Value *
652
NVC0LoweringPass::loadTexHandle(Value *ptr, unsigned int slot)
653
{
654
   uint8_t b = prog->driver->io.resInfoCBSlot;
655
   uint32_t off = prog->driver->io.texBindBase + slot * 4;
656
   return bld.
657
      mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
658
}
659
 
660
// move array source to first slot, convert to u16, add indirections
661
bool
662
NVC0LoweringPass::handleTEX(TexInstruction *i)
663
{
664
   const int dim = i->tex.target.getDim() + i->tex.target.isCube();
665
   const int arg = i->tex.target.getArgCount();
666
   const int lyr = arg - (i->tex.target.isMS() ? 2 : 1);
667
 
668
   if (prog->getTarget()->getChipset() >= NVISA_GK104_CHIPSET) {
669
      if (i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) {
670
         WARN("indirect TEX not implemented\n");
671
      }
672
      if (i->tex.r == i->tex.s) {
673
         i->tex.r += prog->driver->io.texBindBase / 4;
674
         i->tex.s  = 0; // only a single cX[] value possible here
675
      } else {
676
         Value *hnd = bld.getScratch();
677
         Value *rHnd = loadTexHandle(NULL, i->tex.r);
678
         Value *sHnd = loadTexHandle(NULL, i->tex.s);
679
 
680
         bld.mkOp3(OP_INSBF, TYPE_U32, hnd, rHnd, bld.mkImm(0x1400), sHnd);
681
 
682
         i->tex.r = 0; // not used for indirect tex
683
         i->tex.s = 0;
684
         i->setIndirectR(hnd);
685
      }
686
      if (i->tex.target.isArray()) {
687
         LValue *layer = new_LValue(func, FILE_GPR);
688
         Value *src = i->getSrc(lyr);
689
         const int sat = (i->op == OP_TXF) ? 1 : 0;
690
         DataType sTy = (i->op == OP_TXF) ? TYPE_U32 : TYPE_F32;
691
         bld.mkCvt(OP_CVT, TYPE_U16, layer, sTy, src)->saturate = sat;
692
         for (int s = dim; s >= 1; --s)
693
            i->setSrc(s, i->getSrc(s - 1));
694
         i->setSrc(0, layer);
695
      }
696
   } else
697
   // (nvc0) generate and move the tsc/tic/array source to the front
698
   if (dim != arg || i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) {
699
      LValue *src = new_LValue(func, FILE_GPR); // 0xttxsaaaa
700
 
701
      Value *arrayIndex = i->tex.target.isArray() ? i->getSrc(lyr) : NULL;
702
      for (int s = dim; s >= 1; --s)
703
         i->setSrc(s, i->getSrc(s - 1));
704
      i->setSrc(0, arrayIndex);
705
 
706
      Value *ticRel = i->getIndirectR();
707
      Value *tscRel = i->getIndirectS();
708
 
709
      if (arrayIndex) {
710
         int sat = (i->op == OP_TXF) ? 1 : 0;
711
         DataType sTy = (i->op == OP_TXF) ? TYPE_U32 : TYPE_F32;
712
         bld.mkCvt(OP_CVT, TYPE_U16, src, sTy, arrayIndex)->saturate = sat;
713
      } else {
714
         bld.loadImm(src, 0);
715
      }
716
 
717
      if (ticRel) {
718
         i->setSrc(i->tex.rIndirectSrc, NULL);
719
         bld.mkOp3(OP_INSBF, TYPE_U32, src, ticRel, bld.mkImm(0x0917), src);
720
      }
721
      if (tscRel) {
722
         i->setSrc(i->tex.sIndirectSrc, NULL);
723
         bld.mkOp3(OP_INSBF, TYPE_U32, src, tscRel, bld.mkImm(0x0710), src);
724
      }
725
 
726
      i->setSrc(0, src);
727
   }
728
 
729
   // offset is last source (lod 1st, dc 2nd)
730
   if (i->tex.useOffsets) {
731
      uint32_t value = 0;
732
      int n, c;
733
      int s = i->srcCount(0xff, true);
734
      if (i->srcExists(s)) // move potential predicate out of the way
735
         i->moveSources(s, 1);
736
      for (n = 0; n < i->tex.useOffsets; ++n)
737
         for (c = 0; c < 3; ++c)
738
            value |= (i->tex.offset[n][c] & 0xf) << (n * 12 + c * 4);
739
      i->setSrc(s, bld.loadImm(NULL, value));
740
   }
741
 
742
   if (prog->getTarget()->getChipset() >= NVISA_GK104_CHIPSET) {
743
      //
744
      // If TEX requires more than 4 sources, the 2nd register tuple must be
745
      // aligned to 4, even if it consists of just a single 4-byte register.
746
      //
747
      // XXX HACK: We insert 0 sources to avoid the 5 or 6 regs case.
748
      //
749
      int s = i->srcCount(0xff, true);
750
      if (s > 4 && s < 7) {
751
         if (i->srcExists(s)) // move potential predicate out of the way
752
            i->moveSources(s, 7 - s);
753
         while (s < 7)
754
            i->setSrc(s++, bld.loadImm(NULL, 0));
755
      }
756
   }
757
 
758
   return true;
759
}
760
 
761
bool
762
NVC0LoweringPass::handleManualTXD(TexInstruction *i)
763
{
764
   static const uint8_t qOps[4][2] =
765
   {
766
      { QUADOP(MOV2, ADD,  MOV2, ADD),  QUADOP(MOV2, MOV2, ADD,  ADD) }, // l0
767
      { QUADOP(SUBR, MOV2, SUBR, MOV2), QUADOP(MOV2, MOV2, ADD,  ADD) }, // l1
768
      { QUADOP(MOV2, ADD,  MOV2, ADD),  QUADOP(SUBR, SUBR, MOV2, MOV2) }, // l2
769
      { QUADOP(SUBR, MOV2, SUBR, MOV2), QUADOP(SUBR, SUBR, MOV2, MOV2) }, // l3
770
   };
771
   Value *def[4][4];
772
   Value *crd[3];
773
   Instruction *tex;
774
   Value *zero = bld.loadImm(bld.getSSA(), 0);
775
   int l, c;
776
   const int dim = i->tex.target.getDim();
777
 
778
   i->op = OP_TEX; // no need to clone dPdx/dPdy later
779
 
780
   for (c = 0; c < dim; ++c)
781
      crd[c] = bld.getScratch();
782
 
783
   bld.mkOp(OP_QUADON, TYPE_NONE, NULL);
784
   for (l = 0; l < 4; ++l) {
785
      // mov coordinates from lane l to all lanes
786
      for (c = 0; c < dim; ++c)
787
         bld.mkQuadop(0x00, crd[c], l, i->getSrc(c), zero);
788
      // add dPdx from lane l to lanes dx
789
      for (c = 0; c < dim; ++c)
790
         bld.mkQuadop(qOps[l][0], crd[c], l, i->dPdx[c].get(), crd[c]);
791
      // add dPdy from lane l to lanes dy
792
      for (c = 0; c < dim; ++c)
793
         bld.mkQuadop(qOps[l][1], crd[c], l, i->dPdy[c].get(), crd[c]);
794
      // texture
795
      bld.insert(tex = cloneForward(func, i));
796
      for (c = 0; c < dim; ++c)
797
         tex->setSrc(c, crd[c]);
798
      // save results
799
      for (c = 0; i->defExists(c); ++c) {
800
         Instruction *mov;
801
         def[c][l] = bld.getSSA();
802
         mov = bld.mkMov(def[c][l], tex->getDef(c));
803
         mov->fixed = 1;
804
         mov->lanes = 1 << l;
805
      }
806
   }
807
   bld.mkOp(OP_QUADPOP, TYPE_NONE, NULL);
808
 
809
   for (c = 0; i->defExists(c); ++c) {
810
      Instruction *u = bld.mkOp(OP_UNION, TYPE_U32, i->getDef(c));
811
      for (l = 0; l < 4; ++l)
812
         u->setSrc(l, def[c][l]);
813
   }
814
 
815
   i->bb->remove(i);
816
   return true;
817
}
818
 
819
bool
820
NVC0LoweringPass::handleTXD(TexInstruction *txd)
821
{
822
   int dim = txd->tex.target.getDim();
823
   int arg = txd->tex.target.getArgCount();
824
 
825
   handleTEX(txd);
826
   while (txd->srcExists(arg))
827
      ++arg;
828
 
829
   txd->tex.derivAll = true;
830
   if (dim > 2 ||
831
       txd->tex.target.isCube() ||
832
       arg > 4 ||
833
       txd->tex.target.isShadow())
834
      return handleManualTXD(txd);
835
 
836
   for (int c = 0; c < dim; ++c) {
837
      txd->setSrc(arg + c * 2 + 0, txd->dPdx[c]);
838
      txd->setSrc(arg + c * 2 + 1, txd->dPdy[c]);
839
      txd->dPdx[c].set(NULL);
840
      txd->dPdy[c].set(NULL);
841
   }
842
   return true;
843
}
844
 
845
bool
846
NVC0LoweringPass::handleTXQ(TexInstruction *txq)
847
{
848
   // TODO: indirect resource/sampler index
849
   return true;
850
}
851
 
852
bool
853
NVC0LoweringPass::handleATOM(Instruction *atom)
854
{
855
   SVSemantic sv;
856
 
857
   switch (atom->src(0).getFile()) {
858
   case FILE_MEMORY_LOCAL:
859
      sv = SV_LBASE;
860
      break;
861
   case FILE_MEMORY_SHARED:
862
      sv = SV_SBASE;
863
      break;
864
   default:
865
      assert(atom->src(0).getFile() == FILE_MEMORY_GLOBAL);
866
      return true;
867
   }
868
   Value *base =
869
      bld.mkOp1v(OP_RDSV, TYPE_U32, bld.getScratch(), bld.mkSysVal(sv, 0));
870
   Value *ptr = atom->getIndirect(0, 0);
871
 
872
   atom->setSrc(0, cloneShallow(func, atom->getSrc(0)));
873
   atom->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
874
   if (ptr)
875
      base = bld.mkOp2v(OP_ADD, TYPE_U32, base, base, ptr);
876
   atom->setIndirect(0, 0, base);
877
 
878
   return true;
879
}
880
 
881
bool
882
NVC0LoweringPass::handleCasExch(Instruction *cas, bool needCctl)
883
{
884
   if (cas->subOp != NV50_IR_SUBOP_ATOM_CAS &&
885
       cas->subOp != NV50_IR_SUBOP_ATOM_EXCH)
886
      return false;
887
   bld.setPosition(cas, true);
888
 
889
   if (needCctl) {
890
      Instruction *cctl = bld.mkOp1(OP_CCTL, TYPE_NONE, NULL, cas->getSrc(0));
891
      cctl->setIndirect(0, 0, cas->getIndirect(0, 0));
892
      cctl->fixed = 1;
893
      cctl->subOp = NV50_IR_SUBOP_CCTL_IV;
894
      if (cas->isPredicated())
895
         cctl->setPredicate(cas->cc, cas->getPredicate());
896
   }
897
 
898
   if (cas->defExists(0) && cas->subOp == NV50_IR_SUBOP_ATOM_CAS) {
899
      // CAS is crazy. It's 2nd source is a double reg, and the 3rd source
900
      // should be set to the high part of the double reg or bad things will
901
      // happen elsewhere in the universe.
902
      // Also, it sometimes returns the new value instead of the old one
903
      // under mysterious circumstances.
904
      Value *dreg = bld.getSSA(8);
905
      bld.setPosition(cas, false);
906
      bld.mkOp2(OP_MERGE, TYPE_U64, dreg, cas->getSrc(1), cas->getSrc(2));
907
      cas->setSrc(1, dreg);
908
   }
909
 
910
   return true;
911
}
912
 
913
inline Value *
914
NVC0LoweringPass::loadResInfo32(Value *ptr, uint32_t off)
915
{
916
   uint8_t b = prog->driver->io.resInfoCBSlot;
917
   off += prog->driver->io.suInfoBase;
918
   return bld.
919
      mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
920
}
921
 
922
inline Value *
923
NVC0LoweringPass::loadMsInfo32(Value *ptr, uint32_t off)
924
{
925
   uint8_t b = prog->driver->io.msInfoCBSlot;
926
   off += prog->driver->io.msInfoBase;
927
   return bld.
928
      mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
929
}
930
 
931
/* On nvc0, surface info is obtained via the surface binding points passed
932
 * to the SULD/SUST instructions.
933
 * On nve4, surface info is stored in c[] and is used by various special
934
 * instructions, e.g. for clamping coordiantes or generating an address.
935
 * They couldn't just have added an equivalent to TIC now, couldn't they ?
936
 */
937
#define NVE4_SU_INFO_ADDR   0x00
938
#define NVE4_SU_INFO_FMT    0x04
939
#define NVE4_SU_INFO_DIM_X  0x08
940
#define NVE4_SU_INFO_PITCH  0x0c
941
#define NVE4_SU_INFO_DIM_Y  0x10
942
#define NVE4_SU_INFO_ARRAY  0x14
943
#define NVE4_SU_INFO_DIM_Z  0x18
944
#define NVE4_SU_INFO_UNK1C  0x1c
945
#define NVE4_SU_INFO_WIDTH  0x20
946
#define NVE4_SU_INFO_HEIGHT 0x24
947
#define NVE4_SU_INFO_DEPTH  0x28
948
#define NVE4_SU_INFO_TARGET 0x2c
949
#define NVE4_SU_INFO_CALL   0x30
950
#define NVE4_SU_INFO_RAW_X  0x34
951
#define NVE4_SU_INFO_MS_X   0x38
952
#define NVE4_SU_INFO_MS_Y   0x3c
953
 
954
#define NVE4_SU_INFO__STRIDE 0x40
955
 
956
#define NVE4_SU_INFO_DIM(i)  (0x08 + (i) * 8)
957
#define NVE4_SU_INFO_SIZE(i) (0x20 + (i) * 4)
958
#define NVE4_SU_INFO_MS(i)   (0x38 + (i) * 4)
959
 
960
static inline uint16_t getSuClampSubOp(const TexInstruction *su, int c)
961
{
962
   switch (su->tex.target.getEnum()) {
963
   case TEX_TARGET_BUFFER:      return NV50_IR_SUBOP_SUCLAMP_PL(0, 1);
964
   case TEX_TARGET_RECT:        return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
965
   case TEX_TARGET_1D:          return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
966
   case TEX_TARGET_1D_ARRAY:    return (c == 1) ?
967
                                   NV50_IR_SUBOP_SUCLAMP_PL(0, 2) :
968
                                   NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
969
   case TEX_TARGET_2D:          return NV50_IR_SUBOP_SUCLAMP_BL(0, 2);
970
   case TEX_TARGET_2D_MS:       return NV50_IR_SUBOP_SUCLAMP_BL(0, 2);
971
   case TEX_TARGET_2D_ARRAY:    return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
972
   case TEX_TARGET_2D_MS_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
973
   case TEX_TARGET_3D:          return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
974
   case TEX_TARGET_CUBE:        return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
975
   case TEX_TARGET_CUBE_ARRAY:  return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
976
   default:
977
      assert(0);
978
      return 0;
979
   }
980
}
981
 
982
void
983
NVC0LoweringPass::adjustCoordinatesMS(TexInstruction *tex)
984
{
985
   const uint16_t base = tex->tex.r * NVE4_SU_INFO__STRIDE;
986
   const int arg = tex->tex.target.getArgCount();
987
 
988
   if (tex->tex.target == TEX_TARGET_2D_MS)
989
      tex->tex.target = TEX_TARGET_2D;
990
   else
991
   if (tex->tex.target == TEX_TARGET_2D_MS_ARRAY)
992
      tex->tex.target = TEX_TARGET_2D_ARRAY;
993
   else
994
      return;
995
 
996
   Value *x = tex->getSrc(0);
997
   Value *y = tex->getSrc(1);
998
   Value *s = tex->getSrc(arg - 1);
999
 
1000
   Value *tx = bld.getSSA(), *ty = bld.getSSA(), *ts = bld.getSSA();
1001
 
1002
   Value *ms_x = loadResInfo32(NULL, base + NVE4_SU_INFO_MS(0));
1003
   Value *ms_y = loadResInfo32(NULL, base + NVE4_SU_INFO_MS(1));
1004
 
1005
   bld.mkOp2(OP_SHL, TYPE_U32, tx, x, ms_x);
1006
   bld.mkOp2(OP_SHL, TYPE_U32, ty, y, ms_y);
1007
 
1008
   s = bld.mkOp2v(OP_AND, TYPE_U32, ts, s, bld.loadImm(NULL, 0x7));
1009
   s = bld.mkOp2v(OP_SHL, TYPE_U32, ts, ts, bld.mkImm(3));
1010
 
1011
   Value *dx = loadMsInfo32(ts, 0x0);
1012
   Value *dy = loadMsInfo32(ts, 0x4);
1013
 
1014
   bld.mkOp2(OP_ADD, TYPE_U32, tx, tx, dx);
1015
   bld.mkOp2(OP_ADD, TYPE_U32, ty, ty, dy);
1016
 
1017
   tex->setSrc(0, tx);
1018
   tex->setSrc(1, ty);
1019
   tex->moveSources(arg, -1);
1020
}
1021
 
1022
// Sets 64-bit "generic address", predicate and format sources for SULD/SUST.
1023
// They're computed from the coordinates using the surface info in c[] space.
1024
void
1025
NVC0LoweringPass::processSurfaceCoordsNVE4(TexInstruction *su)
1026
{
1027
   Instruction *insn;
1028
   const bool atom = su->op == OP_SUREDB || su->op == OP_SUREDP;
1029
   const bool raw =
1030
      su->op == OP_SULDB || su->op == OP_SUSTB || su->op == OP_SUREDB;
1031
   const int idx = su->tex.r;
1032
   const int dim = su->tex.target.getDim();
1033
   const int arg = dim + (su->tex.target.isArray() ? 1 : 0);
1034
   const uint16_t base = idx * NVE4_SU_INFO__STRIDE;
1035
   int c;
1036
   Value *zero = bld.mkImm(0);
1037
   Value *p1 = NULL;
1038
   Value *v;
1039
   Value *src[3];
1040
   Value *bf, *eau, *off;
1041
   Value *addr, *pred;
1042
 
1043
   off = bld.getScratch(4);
1044
   bf = bld.getScratch(4);
1045
   addr = bld.getSSA(8);
1046
   pred = bld.getScratch(1, FILE_PREDICATE);
1047
 
1048
   bld.setPosition(su, false);
1049
 
1050
   adjustCoordinatesMS(su);
1051
 
1052
   // calculate clamped coordinates
1053
   for (c = 0; c < arg; ++c) {
1054
      src[c] = bld.getScratch();
1055
      if (c == 0 && raw)
1056
         v = loadResInfo32(NULL, base + NVE4_SU_INFO_RAW_X);
1057
      else
1058
         v = loadResInfo32(NULL, base + NVE4_SU_INFO_DIM(c));
1059
      bld.mkOp3(OP_SUCLAMP, TYPE_S32, src[c], su->getSrc(c), v, zero)
1060
         ->subOp = getSuClampSubOp(su, c);
1061
   }
1062
   for (; c < 3; ++c)
1063
      src[c] = zero;
1064
 
1065
   // set predicate output
1066
   if (su->tex.target == TEX_TARGET_BUFFER) {
1067
      src[0]->getInsn()->setFlagsDef(1, pred);
1068
   } else
1069
   if (su->tex.target.isArray()) {
1070
      p1 = bld.getSSA(1, FILE_PREDICATE);
1071
      src[dim]->getInsn()->setFlagsDef(1, p1);
1072
   }
1073
 
1074
   // calculate pixel offset
1075
   if (dim == 1) {
1076
      if (su->tex.target != TEX_TARGET_BUFFER)
1077
         bld.mkOp2(OP_AND, TYPE_U32, off, src[0], bld.loadImm(NULL, 0xffff));
1078
   } else
1079
   if (dim == 3) {
1080
      v = loadResInfo32(NULL, base + NVE4_SU_INFO_UNK1C);
1081
      bld.mkOp3(OP_MADSP, TYPE_U32, off, src[2], v, src[1])
1082
         ->subOp = NV50_IR_SUBOP_MADSP(4,2,8); // u16l u16l u16l
1083
 
1084
      v = loadResInfo32(NULL, base + NVE4_SU_INFO_PITCH);
1085
      bld.mkOp3(OP_MADSP, TYPE_U32, off, off, v, src[0])
1086
         ->subOp = NV50_IR_SUBOP_MADSP(0,2,8); // u32 u16l u16l
1087
   } else {
1088
      assert(dim == 2);
1089
      v = loadResInfo32(NULL, base + NVE4_SU_INFO_PITCH);
1090
      bld.mkOp3(OP_MADSP, TYPE_U32, off, src[1], v, src[0])
1091
         ->subOp = su->tex.target.isArray() ?
1092
         NV50_IR_SUBOP_MADSP_SD : NV50_IR_SUBOP_MADSP(4,2,8); // u16l u16l u16l
1093
   }
1094
 
1095
   // calculate effective address part 1
1096
   if (su->tex.target == TEX_TARGET_BUFFER) {
1097
      if (raw) {
1098
         bf = src[0];
1099
      } else {
1100
         v = loadResInfo32(NULL, base + NVE4_SU_INFO_FMT);
1101
         bld.mkOp3(OP_VSHL, TYPE_U32, bf, src[0], v, zero)
1102
            ->subOp = NV50_IR_SUBOP_V1(7,6,8|2);
1103
      }
1104
   } else {
1105
      Value *y = src[1];
1106
      Value *z = src[2];
1107
      uint16_t subOp = 0;
1108
 
1109
      switch (dim) {
1110
      case 1:
1111
         y = zero;
1112
         z = zero;
1113
         break;
1114
      case 2:
1115
         z = off;
1116
         if (!su->tex.target.isArray()) {
1117
            z = loadResInfo32(NULL, base + NVE4_SU_INFO_UNK1C);
1118
            subOp = NV50_IR_SUBOP_SUBFM_3D;
1119
         }
1120
         break;
1121
      default:
1122
         subOp = NV50_IR_SUBOP_SUBFM_3D;
1123
         assert(dim == 3);
1124
         break;
1125
      }
1126
      insn = bld.mkOp3(OP_SUBFM, TYPE_U32, bf, src[0], y, z);
1127
      insn->subOp = subOp;
1128
      insn->setFlagsDef(1, pred);
1129
   }
1130
 
1131
   // part 2
1132
   v = loadResInfo32(NULL, base + NVE4_SU_INFO_ADDR);
1133
 
1134
   if (su->tex.target == TEX_TARGET_BUFFER) {
1135
      eau = v;
1136
   } else {
1137
      eau = bld.mkOp3v(OP_SUEAU, TYPE_U32, bld.getScratch(4), off, bf, v);
1138
   }
1139
   // add array layer offset
1140
   if (su->tex.target.isArray()) {
1141
      v = loadResInfo32(NULL, base + NVE4_SU_INFO_ARRAY);
1142
      if (dim == 1)
1143
         bld.mkOp3(OP_MADSP, TYPE_U32, eau, src[1], v, eau)
1144
            ->subOp = NV50_IR_SUBOP_MADSP(4,0,0); // u16 u24 u32
1145
      else
1146
         bld.mkOp3(OP_MADSP, TYPE_U32, eau, v, src[2], eau)
1147
            ->subOp = NV50_IR_SUBOP_MADSP(0,0,0); // u32 u24 u32
1148
      // combine predicates
1149
      assert(p1);
1150
      bld.mkOp2(OP_OR, TYPE_U8, pred, pred, p1);
1151
   }
1152
 
1153
   if (atom) {
1154
      Value *lo = bf;
1155
      if (su->tex.target == TEX_TARGET_BUFFER) {
1156
         lo = zero;
1157
         bld.mkMov(off, bf);
1158
      }
1159
      //  bf == g[] address & 0xff
1160
      // eau == g[] address >> 8
1161
      bld.mkOp3(OP_PERMT, TYPE_U32,  bf,   lo, bld.loadImm(NULL, 0x6540), eau);
1162
      bld.mkOp3(OP_PERMT, TYPE_U32, eau, zero, bld.loadImm(NULL, 0x0007), eau);
1163
   } else
1164
   if (su->op == OP_SULDP && su->tex.target == TEX_TARGET_BUFFER) {
1165
      // Convert from u32 to u8 address format, which is what the library code
1166
      // doing SULDP currently uses.
1167
      // XXX: can SUEAU do this ?
1168
      // XXX: does it matter that we don't mask high bytes in bf ?
1169
      // Grrr.
1170
      bld.mkOp2(OP_SHR, TYPE_U32, off, bf, bld.mkImm(8));
1171
      bld.mkOp2(OP_ADD, TYPE_U32, eau, eau, off);
1172
   }
1173
 
1174
   bld.mkOp2(OP_MERGE, TYPE_U64, addr, bf, eau);
1175
 
1176
   if (atom && su->tex.target == TEX_TARGET_BUFFER)
1177
      bld.mkOp2(OP_ADD, TYPE_U64, addr, addr, off);
1178
 
1179
   // let's just set it 0 for raw access and hope it works
1180
   v = raw ?
1181
      bld.mkImm(0) : loadResInfo32(NULL, base + NVE4_SU_INFO_FMT);
1182
 
1183
   // get rid of old coordinate sources, make space for fmt info and predicate
1184
   su->moveSources(arg, 3 - arg);
1185
   // set 64 bit address and 32-bit format sources
1186
   su->setSrc(0, addr);
1187
   su->setSrc(1, v);
1188
   su->setSrc(2, pred);
1189
}
1190
 
1191
void
1192
NVC0LoweringPass::handleSurfaceOpNVE4(TexInstruction *su)
1193
{
1194
   processSurfaceCoordsNVE4(su);
1195
 
1196
   // Who do we hate more ? The person who decided that nvc0's SULD doesn't
1197
   // have to support conversion or the person who decided that, in OpenCL,
1198
   // you don't have to specify the format here like you do in OpenGL ?
1199
 
1200
   if (su->op == OP_SULDP) {
1201
      // We don't patch shaders. Ever.
1202
      // You get an indirect call to our library blob here.
1203
      // But at least it's uniform.
1204
      FlowInstruction *call;
1205
      LValue *p[3];
1206
      LValue *r[5];
1207
      uint16_t base = su->tex.r * NVE4_SU_INFO__STRIDE + NVE4_SU_INFO_CALL;
1208
 
1209
      for (int i = 0; i < 4; ++i)
1210
         (r[i] = bld.getScratch(4, FILE_GPR))->reg.data.id = i;
1211
      for (int i = 0; i < 3; ++i)
1212
         (p[i] = bld.getScratch(1, FILE_PREDICATE))->reg.data.id = i;
1213
      (r[4] = bld.getScratch(8, FILE_GPR))->reg.data.id = 4;
1214
 
1215
      bld.mkMov(p[1], bld.mkImm((su->cache == CACHE_CA) ? 1 : 0), TYPE_U8);
1216
      bld.mkMov(p[2], bld.mkImm((su->cache == CACHE_CG) ? 1 : 0), TYPE_U8);
1217
      bld.mkMov(p[0], su->getSrc(2), TYPE_U8);
1218
      bld.mkMov(r[4], su->getSrc(0), TYPE_U64);
1219
      bld.mkMov(r[2], su->getSrc(1), TYPE_U32);
1220
 
1221
      call = bld.mkFlow(OP_CALL, NULL, su->cc, su->getPredicate());
1222
 
1223
      call->indirect = 1;
1224
      call->absolute = 1;
1225
      call->setSrc(0, bld.mkSymbol(FILE_MEMORY_CONST,
1226
                                   prog->driver->io.resInfoCBSlot, TYPE_U32,
1227
                                   prog->driver->io.suInfoBase + base));
1228
      call->setSrc(1, r[2]);
1229
      call->setSrc(2, r[4]);
1230
      for (int i = 0; i < 3; ++i)
1231
         call->setSrc(3 + i, p[i]);
1232
      for (int i = 0; i < 4; ++i) {
1233
         call->setDef(i, r[i]);
1234
         bld.mkMov(su->getDef(i), r[i]);
1235
      }
1236
      call->setDef(4, p[1]);
1237
      delete_Instruction(bld.getProgram(), su);
1238
   }
1239
 
1240
   if (su->op == OP_SUREDB || su->op == OP_SUREDP) {
1241
      // FIXME: for out of bounds access, destination value will be undefined !
1242
      Value *pred = su->getSrc(2);
1243
      CondCode cc = CC_NOT_P;
1244
      if (su->getPredicate()) {
1245
         pred = bld.getScratch(1, FILE_PREDICATE);
1246
         cc = su->cc;
1247
         if (cc == CC_NOT_P) {
1248
            bld.mkOp2(OP_OR, TYPE_U8, pred, su->getPredicate(), su->getSrc(2));
1249
         } else {
1250
            bld.mkOp2(OP_AND, TYPE_U8, pred, su->getPredicate(), su->getSrc(2));
1251
            pred->getInsn()->src(1).mod = Modifier(NV50_IR_MOD_NOT);
1252
         }
1253
      }
1254
      Instruction *red = bld.mkOp(OP_ATOM, su->dType, su->getDef(0));
1255
      red->subOp = su->subOp;
1256
      if (!gMemBase)
1257
         gMemBase = bld.mkSymbol(FILE_MEMORY_GLOBAL, 0, TYPE_U32, 0);
1258
      red->setSrc(0, gMemBase);
1259
      red->setSrc(1, su->getSrc(3));
1260
      if (su->subOp == NV50_IR_SUBOP_ATOM_CAS)
1261
         red->setSrc(2, su->getSrc(4));
1262
      red->setIndirect(0, 0, su->getSrc(0));
1263
      red->setPredicate(cc, pred);
1264
      delete_Instruction(bld.getProgram(), su);
1265
      handleCasExch(red, true);
1266
   } else {
1267
      su->sType = (su->tex.target == TEX_TARGET_BUFFER) ? TYPE_U32 : TYPE_U8;
1268
   }
1269
}
1270
 
1271
bool
1272
NVC0LoweringPass::handleWRSV(Instruction *i)
1273
{
1274
   Instruction *st;
1275
   Symbol *sym;
1276
   uint32_t addr;
1277
 
1278
   // must replace, $sreg are not writeable
1279
   addr = targ->getSVAddress(FILE_SHADER_OUTPUT, i->getSrc(0)->asSym());
1280
   if (addr >= 0x400)
1281
      return false;
1282
   sym = bld.mkSymbol(FILE_SHADER_OUTPUT, 0, i->sType, addr);
1283
 
1284
   st = bld.mkStore(OP_EXPORT, i->dType, sym, i->getIndirect(0, 0),
1285
                    i->getSrc(1));
1286
   st->perPatch = i->perPatch;
1287
 
1288
   bld.getBB()->remove(i);
1289
   return true;
1290
}
1291
 
1292
void
1293
NVC0LoweringPass::readTessCoord(LValue *dst, int c)
1294
{
1295
   Value *laneid = bld.getSSA();
1296
   Value *x, *y;
1297
 
1298
   bld.mkOp1(OP_RDSV, TYPE_U32, laneid, bld.mkSysVal(SV_LANEID, 0));
1299
 
1300
   if (c == 0) {
1301
      x = dst;
1302
      y = NULL;
1303
   } else
1304
   if (c == 1) {
1305
      x = NULL;
1306
      y = dst;
1307
   } else {
1308
      assert(c == 2);
1309
      x = bld.getSSA();
1310
      y = bld.getSSA();
1311
   }
1312
   if (x)
1313
      bld.mkFetch(x, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f0, NULL, laneid);
1314
   if (y)
1315
      bld.mkFetch(y, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f4, NULL, laneid);
1316
 
1317
   if (c == 2) {
1318
      bld.mkOp2(OP_ADD, TYPE_F32, dst, x, y);
1319
      bld.mkOp2(OP_SUB, TYPE_F32, dst, bld.loadImm(NULL, 1.0f), dst);
1320
   }
1321
}
1322
 
1323
bool
1324
NVC0LoweringPass::handleRDSV(Instruction *i)
1325
{
1326
   Symbol *sym = i->getSrc(0)->asSym();
1327
   const SVSemantic sv = sym->reg.data.sv.sv;
1328
   Value *vtx = NULL;
1329
   Instruction *ld;
1330
   uint32_t addr = targ->getSVAddress(FILE_SHADER_INPUT, sym);
1331
 
1332
   if (addr >= 0x400) {
1333
      // mov $sreg
1334
      if (sym->reg.data.sv.index == 3) {
1335
         // TGSI backend may use 4th component of TID,NTID,CTAID,NCTAID
1336
         i->op = OP_MOV;
1337
         i->setSrc(0, bld.mkImm((sv == SV_NTID || sv == SV_NCTAID) ? 1 : 0));
1338
      }
1339
      return true;
1340
   }
1341
 
1342
   switch (sv) {
1343
   case SV_POSITION:
1344
      assert(prog->getType() == Program::TYPE_FRAGMENT);
1345
      bld.mkInterp(NV50_IR_INTERP_LINEAR, i->getDef(0), addr, NULL);
1346
      break;
1347
   case SV_FACE:
1348
   {
1349
      Value *face = i->getDef(0);
1350
      bld.mkInterp(NV50_IR_INTERP_FLAT, face, addr, NULL);
1351
      if (i->dType == TYPE_F32) {
1352
         bld.mkOp2(OP_AND, TYPE_U32, face, face, bld.mkImm(0x80000000));
1353
         bld.mkOp2(OP_XOR, TYPE_U32, face, face, bld.mkImm(0xbf800000));
1354
      }
1355
   }
1356
      break;
1357
   case SV_TESS_COORD:
1358
      assert(prog->getType() == Program::TYPE_TESSELLATION_EVAL);
1359
      readTessCoord(i->getDef(0)->asLValue(), i->getSrc(0)->reg.data.sv.index);
1360
      break;
1361
   case SV_NTID:
1362
   case SV_NCTAID:
1363
   case SV_GRIDID:
1364
      assert(targ->getChipset() >= NVISA_GK104_CHIPSET); // mov $sreg otherwise
1365
      if (sym->reg.data.sv.index == 3) {
1366
         i->op = OP_MOV;
1367
         i->setSrc(0, bld.mkImm(sv == SV_GRIDID ? 0 : 1));
1368
         return true;
1369
      }
1370
      addr += prog->driver->prop.cp.gridInfoBase;
1371
      bld.mkLoad(TYPE_U32, i->getDef(0),
1372
                 bld.mkSymbol(FILE_MEMORY_CONST, 0, TYPE_U32, addr), NULL);
1373
      break;
1374
   default:
1375
      if (prog->getType() == Program::TYPE_TESSELLATION_EVAL)
1376
         vtx = bld.mkOp1v(OP_PFETCH, TYPE_U32, bld.getSSA(), bld.mkImm(0));
1377
      ld = bld.mkFetch(i->getDef(0), i->dType,
1378
                       FILE_SHADER_INPUT, addr, i->getIndirect(0, 0), vtx);
1379
      ld->perPatch = i->perPatch;
1380
      break;
1381
   }
1382
   bld.getBB()->remove(i);
1383
   return true;
1384
}
1385
 
1386
bool
1387
NVC0LoweringPass::handleDIV(Instruction *i)
1388
{
1389
   if (!isFloatType(i->dType))
1390
      return true;
1391
   bld.setPosition(i, false);
1392
   Instruction *rcp = bld.mkOp1(OP_RCP, i->dType, bld.getSSA(), i->getSrc(1));
1393
   i->op = OP_MUL;
1394
   i->setSrc(1, rcp->getDef(0));
1395
   return true;
1396
}
1397
 
1398
bool
1399
NVC0LoweringPass::handleMOD(Instruction *i)
1400
{
1401
   if (i->dType != TYPE_F32)
1402
      return true;
1403
   LValue *value = bld.getScratch();
1404
   bld.mkOp1(OP_RCP, TYPE_F32, value, i->getSrc(1));
1405
   bld.mkOp2(OP_MUL, TYPE_F32, value, i->getSrc(0), value);
1406
   bld.mkOp1(OP_TRUNC, TYPE_F32, value, value);
1407
   bld.mkOp2(OP_MUL, TYPE_F32, value, i->getSrc(1), value);
1408
   i->op = OP_SUB;
1409
   i->setSrc(1, value);
1410
   return true;
1411
}
1412
 
1413
bool
1414
NVC0LoweringPass::handleSQRT(Instruction *i)
1415
{
1416
   Instruction *rsq = bld.mkOp1(OP_RSQ, TYPE_F32,
1417
                                bld.getSSA(), i->getSrc(0));
1418
   i->op = OP_MUL;
1419
   i->setSrc(1, rsq->getDef(0));
1420
 
1421
   return true;
1422
}
1423
 
1424
bool
1425
NVC0LoweringPass::handlePOW(Instruction *i)
1426
{
1427
   LValue *val = bld.getScratch();
1428
 
1429
   bld.mkOp1(OP_LG2, TYPE_F32, val, i->getSrc(0));
1430
   bld.mkOp2(OP_MUL, TYPE_F32, val, i->getSrc(1), val)->dnz = 1;
1431
   bld.mkOp1(OP_PREEX2, TYPE_F32, val, val);
1432
 
1433
   i->op = OP_EX2;
1434
   i->setSrc(0, val);
1435
   i->setSrc(1, NULL);
1436
 
1437
   return true;
1438
}
1439
 
1440
bool
1441
NVC0LoweringPass::handleEXPORT(Instruction *i)
1442
{
1443
   if (prog->getType() == Program::TYPE_FRAGMENT) {
1444
      int id = i->getSrc(0)->reg.data.offset / 4;
1445
 
1446
      if (i->src(0).isIndirect(0)) // TODO, ugly
1447
         return false;
1448
      i->op = OP_MOV;
1449
      i->subOp = NV50_IR_SUBOP_MOV_FINAL;
1450
      i->src(0).set(i->src(1));
1451
      i->setSrc(1, NULL);
1452
      i->setDef(0, new_LValue(func, FILE_GPR));
1453
      i->getDef(0)->reg.data.id = id;
1454
 
1455
      prog->maxGPR = MAX2(prog->maxGPR, id);
1456
   } else
1457
   if (prog->getType() == Program::TYPE_GEOMETRY) {
1458
      i->setIndirect(0, 1, gpEmitAddress);
1459
   }
1460
   return true;
1461
}
1462
 
1463
bool
1464
NVC0LoweringPass::handleOUT(Instruction *i)
1465
{
1466
   if (i->op == OP_RESTART && i->prev && i->prev->op == OP_EMIT) {
1467
      i->prev->subOp = NV50_IR_SUBOP_EMIT_RESTART;
1468
      delete_Instruction(prog, i);
1469
   } else {
1470
      assert(gpEmitAddress);
1471
      i->setDef(0, gpEmitAddress);
1472
      if (i->srcExists(0))
1473
         i->setSrc(1, i->getSrc(0));
1474
      i->setSrc(0, gpEmitAddress);
1475
   }
1476
   return true;
1477
}
1478
 
1479
// Generate a binary predicate if an instruction is predicated by
1480
// e.g. an f32 value.
1481
void
1482
NVC0LoweringPass::checkPredicate(Instruction *insn)
1483
{
1484
   Value *pred = insn->getPredicate();
1485
   Value *pdst;
1486
 
1487
   if (!pred || pred->reg.file == FILE_PREDICATE)
1488
      return;
1489
   pdst = new_LValue(func, FILE_PREDICATE);
1490
 
1491
   // CAUTION: don't use pdst->getInsn, the definition might not be unique,
1492
   //  delay turning PSET(FSET(x,y),0) into PSET(x,y) to a later pass
1493
 
1494
   bld.mkCmp(OP_SET, CC_NEU, insn->dType, pdst, bld.mkImm(0), pred);
1495
 
1496
   insn->setPredicate(insn->cc, pdst);
1497
}
1498
 
1499
//
1500
// - add quadop dance for texturing
1501
// - put FP outputs in GPRs
1502
// - convert instruction sequences
1503
//
1504
bool
1505
NVC0LoweringPass::visit(Instruction *i)
1506
{
1507
   bld.setPosition(i, false);
1508
 
1509
   if (i->cc != CC_ALWAYS)
1510
      checkPredicate(i);
1511
 
1512
   switch (i->op) {
1513
   case OP_TEX:
1514
   case OP_TXB:
1515
   case OP_TXL:
1516
   case OP_TXF:
1517
   case OP_TXG:
1518
      return handleTEX(i->asTex());
1519
   case OP_TXD:
1520
      return handleTXD(i->asTex());
1521
   case OP_TXQ:
1522
     return handleTXQ(i->asTex());
1523
   case OP_EX2:
1524
      bld.mkOp1(OP_PREEX2, TYPE_F32, i->getDef(0), i->getSrc(0));
1525
      i->setSrc(0, i->getDef(0));
1526
      break;
1527
   case OP_POW:
1528
      return handlePOW(i);
1529
   case OP_DIV:
1530
      return handleDIV(i);
1531
   case OP_MOD:
1532
      return handleMOD(i);
1533
   case OP_SQRT:
1534
      return handleSQRT(i);
1535
   case OP_EXPORT:
1536
      return handleEXPORT(i);
1537
   case OP_EMIT:
1538
   case OP_RESTART:
1539
      return handleOUT(i);
1540
   case OP_RDSV:
1541
      return handleRDSV(i);
1542
   case OP_WRSV:
1543
      return handleWRSV(i);
1544
   case OP_LOAD:
1545
      if (i->src(0).getFile() == FILE_SHADER_INPUT) {
1546
         if (prog->getType() == Program::TYPE_COMPUTE) {
1547
            i->getSrc(0)->reg.file = FILE_MEMORY_CONST;
1548
            i->getSrc(0)->reg.fileIndex = 0;
1549
         } else {
1550
            i->op = OP_VFETCH;
1551
            assert(prog->getType() != Program::TYPE_FRAGMENT); // INTERP
1552
         }
1553
      }
1554
      break;
1555
   case OP_ATOM:
1556
   {
1557
      const bool cctl = i->src(0).getFile() == FILE_MEMORY_GLOBAL;
1558
      handleATOM(i);
1559
      handleCasExch(i, cctl);
1560
   }
1561
      break;
1562
   case OP_SULDB:
1563
   case OP_SULDP:
1564
   case OP_SUSTB:
1565
   case OP_SUSTP:
1566
   case OP_SUREDB:
1567
   case OP_SUREDP:
1568
      if (targ->getChipset() >= NVISA_GK104_CHIPSET)
1569
         handleSurfaceOpNVE4(i->asTex());
1570
      break;
1571
   default:
1572
      break;
1573
   }
1574
   return true;
1575
}
1576
 
1577
bool
1578
TargetNVC0::runLegalizePass(Program *prog, CGStage stage) const
1579
{
1580
   if (stage == CG_STAGE_PRE_SSA) {
1581
      NVC0LoweringPass pass(prog);
1582
      return pass.run(prog, false, true);
1583
   } else
1584
   if (stage == CG_STAGE_POST_RA) {
1585
      NVC0LegalizePostRA pass(prog);
1586
      return pass.run(prog, false, true);
1587
   } else
1588
   if (stage == CG_STAGE_SSA) {
1589
      NVC0LegalizeSSA pass;
1590
      return pass.run(prog, false, true);
1591
   }
1592
   return false;
1593
}
1594
 
1595
} // namespace nv50_ir