Subversion Repositories Kolibri OS

Rev

Rev 4358 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
4358 Serge 1
/**************************************************************************
5063 serge 2
 *
4358 Serge 3
 * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
4
 * All Rights Reserved.
5063 serge 5
 *
4358 Serge 6
 * Permission is hereby granted, free of charge, to any person obtaining a
7
 * copy of this software and associated documentation files (the
8
 * "Software"), to deal in the Software without restriction, including
9
 * without limitation the rights to use, copy, modify, merge, publish,
10
 * distribute, sub license, and/or sell copies of the Software, and to
11
 * permit persons to whom the Software is furnished to do so, subject to
12
 * the following conditions:
5063 serge 13
 *
4358 Serge 14
 * The above copyright notice and this permission notice (including the
15
 * next paragraph) shall be included in all copies or substantial portions
16
 * of the Software.
5063 serge 17
 *
4358 Serge 18
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21
 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22
 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24
 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
5063 serge 25
 *
4358 Serge 26
 **************************************************************************/
27
 
28
 
29
/**
30
 * Math utilities and approximations for common math functions.
31
 * Reduced precision is usually acceptable in shaders...
32
 *
33
 * "fast" is used in the names of functions which are low-precision,
34
 * or at least lower-precision than the normal C lib functions.
35
 */
36
 
37
 
38
#ifndef U_MATH_H
39
#define U_MATH_H
40
 
41
 
42
#include "pipe/p_compiler.h"
43
 
44
 
45
#ifdef __cplusplus
46
extern "C" {
47
#endif
48
 
49
 
50
#include 
51
#include 
52
 
53
#ifdef PIPE_OS_UNIX
54
#include  /* for ffs */
55
#endif
56
 
57
 
58
#ifndef M_SQRT2
59
#define M_SQRT2 1.41421356237309504880
60
#endif
61
 
62
 
5063 serge 63
#if defined(_MSC_VER)
4358 Serge 64
 
65
#if _MSC_VER < 1400 && !defined(__cplusplus)
5063 serge 66
 
67
static INLINE float cosf( float f )
4358 Serge 68
{
69
   return (float) cos( (double) f );
70
}
71
 
5063 serge 72
static INLINE float sinf( float f )
4358 Serge 73
{
74
   return (float) sin( (double) f );
75
}
76
 
5063 serge 77
static INLINE float ceilf( float f )
4358 Serge 78
{
79
   return (float) ceil( (double) f );
80
}
81
 
5063 serge 82
static INLINE float floorf( float f )
4358 Serge 83
{
84
   return (float) floor( (double) f );
85
}
86
 
5063 serge 87
static INLINE float powf( float f, float g )
4358 Serge 88
{
89
   return (float) pow( (double) f, (double) g );
90
}
91
 
5063 serge 92
static INLINE float sqrtf( float f )
4358 Serge 93
{
94
   return (float) sqrt( (double) f );
95
}
96
 
5063 serge 97
static INLINE float fabsf( float f )
4358 Serge 98
{
99
   return (float) fabs( (double) f );
100
}
101
 
5063 serge 102
static INLINE float logf( float f )
4358 Serge 103
{
104
   return (float) log( (double) f );
105
}
106
 
107
#else
108
/* Work-around an extra semi-colon in VS 2005 logf definition */
109
#ifdef logf
110
#undef logf
111
#define logf(x) ((float)log((double)(x)))
112
#endif /* logf */
113
 
114
#define isfinite(x) _finite((double)(x))
115
#define isnan(x) _isnan((double)(x))
116
#endif /* _MSC_VER < 1400 && !defined(__cplusplus) */
117
 
118
static INLINE double log2( double x )
119
{
120
   const double invln2 = 1.442695041;
121
   return log( x ) * invln2;
122
}
123
 
124
static INLINE double
125
round(double x)
126
{
127
   return x >= 0.0 ? floor(x + 0.5) : ceil(x - 0.5);
128
}
129
 
130
static INLINE float
131
roundf(float x)
132
{
133
   return x >= 0.0f ? floorf(x + 0.5f) : ceilf(x - 0.5f);
134
}
135
 
136
#endif /* _MSC_VER */
137
 
138
 
139
#ifdef PIPE_OS_ANDROID
140
 
141
static INLINE
142
double log2(double d)
143
{
144
   return log(d) * (1.0 / M_LN2);
145
}
146
 
147
/* workaround a conflict with main/imports.h */
148
#ifdef log2f
149
#undef log2f
150
#endif
151
 
152
static INLINE
153
float log2f(float f)
154
{
155
   return logf(f) * (float) (1.0 / M_LN2);
156
}
157
 
158
#endif
159
 
160
 
161
 
162
 
163
#define POW2_TABLE_SIZE_LOG2 9
164
#define POW2_TABLE_SIZE (1 << POW2_TABLE_SIZE_LOG2)
165
#define POW2_TABLE_OFFSET (POW2_TABLE_SIZE/2)
166
#define POW2_TABLE_SCALE ((float)(POW2_TABLE_SIZE/2))
167
extern float pow2_table[POW2_TABLE_SIZE];
168
 
169
 
170
/**
171
 * Initialize math module.  This should be called before using any
172
 * other functions in this module.
173
 */
174
extern void
175
util_init_math(void);
176
 
177
 
178
union fi {
179
   float f;
180
   int32_t i;
181
   uint32_t ui;
182
};
183
 
184
 
185
union di {
186
   double d;
187
   int64_t i;
188
   uint64_t ui;
189
};
190
 
191
 
192
/**
193
 * Fast version of 2^x
194
 * Identity: exp2(a + b) = exp2(a) * exp2(b)
195
 * Let ipart = int(x)
196
 * Let fpart = x - ipart;
197
 * So, exp2(x) = exp2(ipart) * exp2(fpart)
198
 * Compute exp2(ipart) with i << ipart
199
 * Compute exp2(fpart) with lookup table.
200
 */
201
static INLINE float
202
util_fast_exp2(float x)
203
{
204
   int32_t ipart;
205
   float fpart, mpart;
206
   union fi epart;
207
 
208
   if(x > 129.00000f)
209
      return 3.402823466e+38f;
210
 
211
   if (x < -126.99999f)
212
      return 0.0f;
213
 
214
   ipart = (int32_t) x;
215
   fpart = x - (float) ipart;
216
 
217
   /* same as
218
    *   epart.f = (float) (1 << ipart)
219
    * but faster and without integer overflow for ipart > 31
220
    */
221
   epart.i = (ipart + 127 ) << 23;
222
 
223
   mpart = pow2_table[POW2_TABLE_OFFSET + (int)(fpart * POW2_TABLE_SCALE)];
224
 
225
   return epart.f * mpart;
226
}
227
 
228
 
229
/**
230
 * Fast approximation to exp(x).
231
 */
232
static INLINE float
233
util_fast_exp(float x)
234
{
235
   const float k = 1.44269f; /* = log2(e) */
236
   return util_fast_exp2(k * x);
237
}
238
 
239
 
240
#define LOG2_TABLE_SIZE_LOG2 16
241
#define LOG2_TABLE_SCALE (1 << LOG2_TABLE_SIZE_LOG2)
242
#define LOG2_TABLE_SIZE (LOG2_TABLE_SCALE + 1)
243
extern float log2_table[LOG2_TABLE_SIZE];
244
 
245
 
246
/**
247
 * Fast approximation to log2(x).
248
 */
249
static INLINE float
250
util_fast_log2(float x)
251
{
252
   union fi num;
253
   float epart, mpart;
254
   num.f = x;
255
   epart = (float)(((num.i & 0x7f800000) >> 23) - 127);
256
   /* mpart = log2_table[mantissa*LOG2_TABLE_SCALE + 0.5] */
257
   mpart = log2_table[((num.i & 0x007fffff) + (1 << (22 - LOG2_TABLE_SIZE_LOG2))) >> (23 - LOG2_TABLE_SIZE_LOG2)];
258
   return epart + mpart;
259
}
260
 
261
 
262
/**
263
 * Fast approximation to x^y.
264
 */
265
static INLINE float
266
util_fast_pow(float x, float y)
267
{
268
   return util_fast_exp2(util_fast_log2(x) * y);
269
}
270
 
271
/* Note that this counts zero as a power of two.
272
 */
273
static INLINE boolean
274
util_is_power_of_two( unsigned v )
275
{
276
   return (v & (v-1)) == 0;
277
}
278
 
279
 
280
/**
281
 * Floor(x), returned as int.
282
 */
283
static INLINE int
284
util_ifloor(float f)
285
{
286
   int ai, bi;
287
   double af, bf;
288
   union fi u;
289
   af = (3 << 22) + 0.5 + (double) f;
290
   bf = (3 << 22) + 0.5 - (double) f;
291
   u.f = (float) af;  ai = u.i;
292
   u.f = (float) bf;  bi = u.i;
293
   return (ai - bi) >> 1;
294
}
295
 
296
 
297
/**
298
 * Round float to nearest int.
299
 */
300
static INLINE int
301
util_iround(float f)
302
{
5063 serge 303
#if defined(PIPE_CC_GCC) && defined(PIPE_ARCH_X86)
4358 Serge 304
   int r;
305
   __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st");
306
   return r;
307
#elif defined(PIPE_CC_MSVC) && defined(PIPE_ARCH_X86)
308
   int r;
309
   _asm {
310
      fld f
311
      fistp r
312
   }
313
   return r;
314
#else
315
   if (f >= 0.0f)
316
      return (int) (f + 0.5f);
317
   else
318
      return (int) (f - 0.5f);
319
#endif
320
}
321
 
322
 
323
/**
324
 * Approximate floating point comparison
325
 */
326
static INLINE boolean
327
util_is_approx(float a, float b, float tol)
328
{
329
   return fabs(b - a) <= tol;
330
}
331
 
332
 
333
/**
334
 * util_is_X_inf_or_nan = test if x is NaN or +/- Inf
335
 * util_is_X_nan        = test if x is NaN
336
 * util_X_inf_sign      = return +1 for +Inf, -1 for -Inf, or 0 for not Inf
337
 *
338
 * NaN can be checked with x != x, however this fails with the fast math flag
339
 **/
340
 
341
 
342
/**
343
 * Single-float
344
 */
345
static INLINE boolean
346
util_is_inf_or_nan(float x)
347
{
348
   union fi tmp;
349
   tmp.f = x;
350
   return (tmp.ui & 0x7f800000) == 0x7f800000;
351
}
352
 
353
 
354
static INLINE boolean
355
util_is_nan(float x)
356
{
357
   union fi tmp;
358
   tmp.f = x;
359
   return (tmp.ui & 0x7fffffff) > 0x7f800000;
360
}
361
 
362
 
363
static INLINE int
364
util_inf_sign(float x)
365
{
366
   union fi tmp;
367
   tmp.f = x;
368
   if ((tmp.ui & 0x7fffffff) != 0x7f800000) {
369
      return 0;
370
   }
371
 
372
   return (x < 0) ? -1 : 1;
373
}
374
 
375
 
376
/**
377
 * Double-float
378
 */
379
static INLINE boolean
380
util_is_double_inf_or_nan(double x)
381
{
382
   union di tmp;
383
   tmp.d = x;
384
   return (tmp.ui & 0x7ff0000000000000ULL) == 0x7ff0000000000000ULL;
385
}
386
 
387
 
388
static INLINE boolean
389
util_is_double_nan(double x)
390
{
391
   union di tmp;
392
   tmp.d = x;
393
   return (tmp.ui & 0x7fffffffffffffffULL) > 0x7ff0000000000000ULL;
394
}
395
 
396
 
397
static INLINE int
398
util_double_inf_sign(double x)
399
{
400
   union di tmp;
401
   tmp.d = x;
402
   if ((tmp.ui & 0x7fffffffffffffffULL) != 0x7ff0000000000000ULL) {
403
      return 0;
404
   }
405
 
406
   return (x < 0) ? -1 : 1;
407
}
408
 
409
 
410
/**
411
 * Half-float
412
 */
413
static INLINE boolean
414
util_is_half_inf_or_nan(int16_t x)
415
{
416
   return (x & 0x7c00) == 0x7c00;
417
}
418
 
419
 
420
static INLINE boolean
421
util_is_half_nan(int16_t x)
422
{
423
   return (x & 0x7fff) > 0x7c00;
424
}
425
 
426
 
427
static INLINE int
428
util_half_inf_sign(int16_t x)
429
{
430
   if ((x & 0x7fff) != 0x7c00) {
431
      return 0;
432
   }
433
 
434
   return (x < 0) ? -1 : 1;
435
}
436
 
437
 
438
/**
439
 * Find first bit set in word.  Least significant bit is 1.
440
 * Return 0 if no bits set.
441
 */
442
#ifndef FFS_DEFINED
443
#define FFS_DEFINED 1
444
 
445
#define ffs __builtin_ffs
446
 
447
#endif /* FFS_DEFINED */
448
 
449
/**
450
 * Find last bit set in a word.  The least significant bit is 1.
451
 * Return 0 if no bits are set.
452
 */
453
static INLINE unsigned util_last_bit(unsigned u)
454
{
455
#if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304)
456
   return u == 0 ? 0 : 32 - __builtin_clz(u);
457
#else
458
   unsigned r = 0;
459
   while (u) {
460
       r++;
461
       u >>= 1;
462
   }
463
   return r;
464
#endif
465
}
466
 
467
 
468
/* Destructively loop over all of the bits in a mask as in:
469
 *
470
 * while (mymask) {
471
 *   int i = u_bit_scan(&mymask);
472
 *   ... process element i
473
 * }
5063 serge 474
 *
4358 Serge 475
 */
476
static INLINE int u_bit_scan(unsigned *mask)
477
{
478
   int i = ffs(*mask) - 1;
479
   *mask &= ~(1 << i);
480
   return i;
481
}
482
 
483
 
484
/**
485
 * Return float bits.
486
 */
487
static INLINE unsigned
488
fui( float f )
489
{
490
   union fi fi;
491
   fi.f = f;
492
   return fi.ui;
493
}
494
 
495
 
496
/**
497
 * Convert ubyte to float in [0, 1].
498
 * XXX a 256-entry lookup table would be slightly faster.
499
 */
500
static INLINE float
501
ubyte_to_float(ubyte ub)
502
{
503
   return (float) ub * (1.0f / 255.0f);
504
}
505
 
506
 
507
/**
508
 * Convert float in [0,1] to ubyte in [0,255] with clamping.
509
 */
510
static INLINE ubyte
511
float_to_ubyte(float f)
512
{
513
   union fi tmp;
514
 
515
   tmp.f = f;
516
   if (tmp.i < 0) {
517
      return (ubyte) 0;
518
   }
519
   else if (tmp.i >= 0x3f800000 /* 1.0f */) {
520
      return (ubyte) 255;
521
   }
522
   else {
523
      tmp.f = tmp.f * (255.0f/256.0f) + 32768.0f;
524
      return (ubyte) tmp.i;
525
   }
526
}
527
 
528
static INLINE float
529
byte_to_float_tex(int8_t b)
530
{
531
   return (b == -128) ? -1.0F : b * 1.0F / 127.0F;
532
}
533
 
534
static INLINE int8_t
535
float_to_byte_tex(float f)
536
{
537
   return (int8_t) (127.0F * f);
538
}
539
 
540
/**
541
 * Calc log base 2
542
 */
543
static INLINE unsigned
544
util_logbase2(unsigned n)
545
{
546
#if defined(PIPE_CC_GCC) && (PIPE_CC_GCC_VERSION >= 304)
547
   return ((sizeof(unsigned) * 8 - 1) - __builtin_clz(n | 1));
548
#else
549
   unsigned pos = 0;
550
   if (n >= 1<<16) { n >>= 16; pos += 16; }
551
   if (n >= 1<< 8) { n >>=  8; pos +=  8; }
552
   if (n >= 1<< 4) { n >>=  4; pos +=  4; }
553
   if (n >= 1<< 2) { n >>=  2; pos +=  2; }
554
   if (n >= 1<< 1) {           pos +=  1; }
555
   return pos;
556
#endif
557
}
558
 
559
 
560
/**
561
 * Returns the smallest power of two >= x
562
 */
563
static INLINE unsigned
564
util_next_power_of_two(unsigned x)
565
{
566
#if defined(PIPE_CC_GCC) && (PIPE_CC_GCC_VERSION >= 304)
567
   if (x <= 1)
568
       return 1;
569
 
570
   return (1 << ((sizeof(unsigned) * 8) - __builtin_clz(x - 1)));
571
#else
572
   unsigned val = x;
573
 
574
   if (x <= 1)
575
      return 1;
576
 
577
   if (util_is_power_of_two(x))
578
      return x;
579
 
580
   val--;
581
   val = (val >> 1) | val;
582
   val = (val >> 2) | val;
583
   val = (val >> 4) | val;
584
   val = (val >> 8) | val;
585
   val = (val >> 16) | val;
586
   val++;
587
   return val;
588
#endif
589
}
590
 
591
 
592
/**
593
 * Return number of bits set in n.
594
 */
595
static INLINE unsigned
596
util_bitcount(unsigned n)
597
{
598
#if defined(PIPE_CC_GCC) && (PIPE_CC_GCC_VERSION >= 304)
599
   return __builtin_popcount(n);
600
#else
601
   /* K&R classic bitcount.
602
    *
603
    * For each iteration, clear the LSB from the bitfield.
604
    * Requires only one iteration per set bit, instead of
605
    * one iteration per bit less than highest set bit.
606
    */
607
   unsigned bits = 0;
608
   for (bits; n; bits++) {
609
      n &= n - 1;
610
   }
611
   return bits;
612
#endif
613
}
614
 
615
 
616
/**
617
 * Convert from little endian to CPU byte order.
618
 */
619
 
620
#ifdef PIPE_ARCH_BIG_ENDIAN
621
#define util_le32_to_cpu(x) util_bswap32(x)
622
#define util_le16_to_cpu(x) util_bswap16(x)
623
#else
624
#define util_le32_to_cpu(x) (x)
625
#define util_le16_to_cpu(x) (x)
626
#endif
627
 
628
 
629
/**
630
 * Reverse byte order of a 32 bit word.
631
 */
632
static INLINE uint32_t
633
util_bswap32(uint32_t n)
634
{
635
#if defined(PIPE_CC_GCC) && (PIPE_CC_GCC_VERSION >= 403)
636
   return __builtin_bswap32(n);
637
#else
638
   return (n >> 24) |
639
          ((n >> 8) & 0x0000ff00) |
640
          ((n << 8) & 0x00ff0000) |
641
          (n << 24);
642
#endif
643
}
644
 
645
 
646
/**
647
 * Reverse byte order of a 16 bit word.
648
 */
649
static INLINE uint16_t
650
util_bswap16(uint16_t n)
651
{
652
   return (n >> 8) |
653
          (n << 8);
654
}
655
 
656
 
657
/**
658
 * Clamp X to [MIN, MAX].
659
 * This is a macro to allow float, int, uint, etc. types.
660
 */
661
#define CLAMP( X, MIN, MAX )  ( (X)<(MIN) ? (MIN) : ((X)>(MAX) ? (MAX) : (X)) )
662
 
663
#define MIN2( A, B )   ( (A)<(B) ? (A) : (B) )
664
#define MAX2( A, B )   ( (A)>(B) ? (A) : (B) )
665
 
666
#define MIN3( A, B, C ) ((A) < (B) ? MIN2(A, C) : MIN2(B, C))
667
#define MAX3( A, B, C ) ((A) > (B) ? MAX2(A, C) : MAX2(B, C))
668
 
669
#define MIN4( A, B, C, D ) ((A) < (B) ? MIN3(A, C, D) : MIN3(B, C, D))
670
#define MAX4( A, B, C, D ) ((A) > (B) ? MAX3(A, C, D) : MAX3(B, C, D))
671
 
672
 
673
/**
674
 * Align a value, only works pot alignemnts.
675
 */
676
static INLINE int
677
align(int value, int alignment)
678
{
679
   return (value + alignment - 1) & ~(alignment - 1);
680
}
681
 
682
/**
683
 * Works like align but on npot alignments.
684
 */
685
static INLINE size_t
686
util_align_npot(size_t value, size_t alignment)
687
{
688
   if (value % alignment)
689
      return value + (alignment - (value % alignment));
690
   return value;
691
}
692
 
693
static INLINE unsigned
694
u_minify(unsigned value, unsigned levels)
695
{
696
    return MAX2(1, value >> levels);
697
}
698
 
699
#ifndef COPY_4V
700
#define COPY_4V( DST, SRC )         \
701
do {                                \
702
   (DST)[0] = (SRC)[0];             \
703
   (DST)[1] = (SRC)[1];             \
704
   (DST)[2] = (SRC)[2];             \
705
   (DST)[3] = (SRC)[3];             \
706
} while (0)
707
#endif
708
 
709
 
710
#ifndef COPY_4FV
711
#define COPY_4FV( DST, SRC )  COPY_4V(DST, SRC)
712
#endif
713
 
714
 
715
#ifndef ASSIGN_4V
716
#define ASSIGN_4V( DST, V0, V1, V2, V3 ) \
717
do {                                     \
718
   (DST)[0] = (V0);                      \
719
   (DST)[1] = (V1);                      \
720
   (DST)[2] = (V2);                      \
721
   (DST)[3] = (V3);                      \
722
} while (0)
723
#endif
724
 
725
 
726
static INLINE uint32_t util_unsigned_fixed(float value, unsigned frac_bits)
727
{
728
   return value < 0 ? 0 : (uint32_t)(value * (1<
729
}
730
 
731
static INLINE int32_t util_signed_fixed(float value, unsigned frac_bits)
732
{
733
   return (int32_t)(value * (1<
734
}
735
 
736
unsigned
737
util_fpstate_get(void);
738
unsigned
739
util_fpstate_set_denorms_to_zero(unsigned current_fpstate);
740
void
741
util_fpstate_set(unsigned fpstate);
742
 
743
 
744
 
745
#ifdef __cplusplus
746
}
747
#endif
748
 
749
#endif /* U_MATH_H */