Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
5563 serge 1
/*
2
 * Copyright © 2010 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21
 * DEALINGS IN THE SOFTWARE.
22
 */
23
 
24
/**
25
 * \file lower_instructions.cpp
26
 *
27
 * Many GPUs lack native instructions for certain expression operations, and
28
 * must replace them with some other expression tree.  This pass lowers some
29
 * of the most common cases, allowing the lowering code to be implemented once
30
 * rather than in each driver backend.
31
 *
32
 * Currently supported transformations:
33
 * - SUB_TO_ADD_NEG
34
 * - DIV_TO_MUL_RCP
35
 * - INT_DIV_TO_MUL_RCP
36
 * - EXP_TO_EXP2
37
 * - POW_TO_EXP2
38
 * - LOG_TO_LOG2
39
 * - MOD_TO_FRACT
40
 * - LRP_TO_ARITH
41
 * - BITFIELD_INSERT_TO_BFM_BFI
42
 *
43
 * SUB_TO_ADD_NEG:
44
 * ---------------
45
 * Breaks an ir_binop_sub expression down to add(op0, neg(op1))
46
 *
47
 * This simplifies expression reassociation, and for many backends
48
 * there is no subtract operation separate from adding the negation.
49
 * For backends with native subtract operations, they will probably
50
 * want to recognize add(op0, neg(op1)) or the other way around to
51
 * produce a subtract anyway.
52
 *
53
 * DIV_TO_MUL_RCP and INT_DIV_TO_MUL_RCP:
54
 * --------------------------------------
55
 * Breaks an ir_binop_div expression down to op0 * (rcp(op1)).
56
 *
57
 * Many GPUs don't have a divide instruction (945 and 965 included),
58
 * but they do have an RCP instruction to compute an approximate
59
 * reciprocal.  By breaking the operation down, constant reciprocals
60
 * can get constant folded.
61
 *
62
 * DIV_TO_MUL_RCP only lowers floating point division; INT_DIV_TO_MUL_RCP
63
 * handles the integer case, converting to and from floating point so that
64
 * RCP is possible.
65
 *
66
 * EXP_TO_EXP2 and LOG_TO_LOG2:
67
 * ----------------------------
68
 * Many GPUs don't have a base e log or exponent instruction, but they
69
 * do have base 2 versions, so this pass converts exp and log to exp2
70
 * and log2 operations.
71
 *
72
 * POW_TO_EXP2:
73
 * -----------
74
 * Many older GPUs don't have an x**y instruction.  For these GPUs, convert
75
 * x**y to 2**(y * log2(x)).
76
 *
77
 * MOD_TO_FRACT:
78
 * -------------
79
 * Breaks an ir_binop_mod expression down to (op1 * fract(op0 / op1))
80
 *
81
 * Many GPUs don't have a MOD instruction (945 and 965 included), and
82
 * if we have to break it down like this anyway, it gives an
83
 * opportunity to do things like constant fold the (1.0 / op1) easily.
84
 *
85
 * LRP_TO_ARITH:
86
 * -------------
87
 * Converts ir_triop_lrp to (op0 * (1.0f - op2)) + (op1 * op2).
88
 *
89
 * BITFIELD_INSERT_TO_BFM_BFI:
90
 * ---------------------------
91
 * Breaks ir_quadop_bitfield_insert into ir_binop_bfm (bitfield mask) and
92
 * ir_triop_bfi (bitfield insert).
93
 *
94
 * Many GPUs implement the bitfieldInsert() built-in from ARB_gpu_shader_5
95
 * with a pair of instructions.
96
 *
97
 */
98
 
99
#include "main/core.h" /* for M_LOG2E */
100
#include "glsl_types.h"
101
#include "ir.h"
102
#include "ir_builder.h"
103
#include "ir_optimization.h"
104
 
105
using namespace ir_builder;
106
 
107
class lower_instructions_visitor : public ir_hierarchical_visitor {
108
public:
109
   lower_instructions_visitor(unsigned lower)
110
      : progress(false), lower(lower) { }
111
 
112
   ir_visitor_status visit_leave(ir_expression *);
113
 
114
   bool progress;
115
 
116
private:
117
   unsigned lower; /** Bitfield of which operations to lower */
118
 
119
   void sub_to_add_neg(ir_expression *);
120
   void div_to_mul_rcp(ir_expression *);
121
   void int_div_to_mul_rcp(ir_expression *);
122
   void mod_to_fract(ir_expression *);
123
   void exp_to_exp2(ir_expression *);
124
   void pow_to_exp2(ir_expression *);
125
   void log_to_log2(ir_expression *);
126
   void lrp_to_arith(ir_expression *);
127
   void bitfield_insert_to_bfm_bfi(ir_expression *);
128
};
129
 
130
/**
131
 * Determine if a particular type of lowering should occur
132
 */
133
#define lowering(x) (this->lower & x)
134
 
135
bool
136
lower_instructions(exec_list *instructions, unsigned what_to_lower)
137
{
138
   lower_instructions_visitor v(what_to_lower);
139
 
140
   visit_list_elements(&v, instructions);
141
   return v.progress;
142
}
143
 
144
void
145
lower_instructions_visitor::sub_to_add_neg(ir_expression *ir)
146
{
147
   ir->operation = ir_binop_add;
148
   ir->operands[1] = new(ir) ir_expression(ir_unop_neg, ir->operands[1]->type,
149
					   ir->operands[1], NULL);
150
   this->progress = true;
151
}
152
 
153
void
154
lower_instructions_visitor::div_to_mul_rcp(ir_expression *ir)
155
{
156
   assert(ir->operands[1]->type->is_float());
157
 
158
   /* New expression for the 1.0 / op1 */
159
   ir_rvalue *expr;
160
   expr = new(ir) ir_expression(ir_unop_rcp,
161
				ir->operands[1]->type,
162
				ir->operands[1]);
163
 
164
   /* op0 / op1 -> op0 * (1.0 / op1) */
165
   ir->operation = ir_binop_mul;
166
   ir->operands[1] = expr;
167
 
168
   this->progress = true;
169
}
170
 
171
void
172
lower_instructions_visitor::int_div_to_mul_rcp(ir_expression *ir)
173
{
174
   assert(ir->operands[1]->type->is_integer());
175
 
176
   /* Be careful with integer division -- we need to do it as a
177
    * float and re-truncate, since rcp(n > 1) of an integer would
178
    * just be 0.
179
    */
180
   ir_rvalue *op0, *op1;
181
   const struct glsl_type *vec_type;
182
 
183
   vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
184
				      ir->operands[1]->type->vector_elements,
185
				      ir->operands[1]->type->matrix_columns);
186
 
187
   if (ir->operands[1]->type->base_type == GLSL_TYPE_INT)
188
      op1 = new(ir) ir_expression(ir_unop_i2f, vec_type, ir->operands[1], NULL);
189
   else
190
      op1 = new(ir) ir_expression(ir_unop_u2f, vec_type, ir->operands[1], NULL);
191
 
192
   op1 = new(ir) ir_expression(ir_unop_rcp, op1->type, op1, NULL);
193
 
194
   vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
195
				      ir->operands[0]->type->vector_elements,
196
				      ir->operands[0]->type->matrix_columns);
197
 
198
   if (ir->operands[0]->type->base_type == GLSL_TYPE_INT)
199
      op0 = new(ir) ir_expression(ir_unop_i2f, vec_type, ir->operands[0], NULL);
200
   else
201
      op0 = new(ir) ir_expression(ir_unop_u2f, vec_type, ir->operands[0], NULL);
202
 
203
   vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
204
				      ir->type->vector_elements,
205
				      ir->type->matrix_columns);
206
 
207
   op0 = new(ir) ir_expression(ir_binop_mul, vec_type, op0, op1);
208
 
209
   if (ir->operands[1]->type->base_type == GLSL_TYPE_INT) {
210
      ir->operation = ir_unop_f2i;
211
      ir->operands[0] = op0;
212
   } else {
213
      ir->operation = ir_unop_i2u;
214
      ir->operands[0] = new(ir) ir_expression(ir_unop_f2i, op0);
215
   }
216
   ir->operands[1] = NULL;
217
 
218
   this->progress = true;
219
}
220
 
221
void
222
lower_instructions_visitor::exp_to_exp2(ir_expression *ir)
223
{
224
   ir_constant *log2_e = new(ir) ir_constant(float(M_LOG2E));
225
 
226
   ir->operation = ir_unop_exp2;
227
   ir->operands[0] = new(ir) ir_expression(ir_binop_mul, ir->operands[0]->type,
228
					   ir->operands[0], log2_e);
229
   this->progress = true;
230
}
231
 
232
void
233
lower_instructions_visitor::pow_to_exp2(ir_expression *ir)
234
{
235
   ir_expression *const log2_x =
236
      new(ir) ir_expression(ir_unop_log2, ir->operands[0]->type,
237
			    ir->operands[0]);
238
 
239
   ir->operation = ir_unop_exp2;
240
   ir->operands[0] = new(ir) ir_expression(ir_binop_mul, ir->operands[1]->type,
241
					   ir->operands[1], log2_x);
242
   ir->operands[1] = NULL;
243
   this->progress = true;
244
}
245
 
246
void
247
lower_instructions_visitor::log_to_log2(ir_expression *ir)
248
{
249
   ir->operation = ir_binop_mul;
250
   ir->operands[0] = new(ir) ir_expression(ir_unop_log2, ir->operands[0]->type,
251
					   ir->operands[0], NULL);
252
   ir->operands[1] = new(ir) ir_constant(float(1.0 / M_LOG2E));
253
   this->progress = true;
254
}
255
 
256
void
257
lower_instructions_visitor::mod_to_fract(ir_expression *ir)
258
{
259
   ir_variable *temp = new(ir) ir_variable(ir->operands[1]->type, "mod_b",
260
					   ir_var_temporary);
261
   this->base_ir->insert_before(temp);
262
 
263
   ir_assignment *const assign =
264
      new(ir) ir_assignment(new(ir) ir_dereference_variable(temp),
265
			    ir->operands[1], NULL);
266
 
267
   this->base_ir->insert_before(assign);
268
 
269
   ir_expression *const div_expr =
270
      new(ir) ir_expression(ir_binop_div, ir->operands[0]->type,
271
			    ir->operands[0],
272
			    new(ir) ir_dereference_variable(temp));
273
 
274
   /* Don't generate new IR that would need to be lowered in an additional
275
    * pass.
276
    */
277
   if (lowering(DIV_TO_MUL_RCP))
278
      div_to_mul_rcp(div_expr);
279
 
280
   ir_rvalue *expr = new(ir) ir_expression(ir_unop_fract,
281
					   ir->operands[0]->type,
282
					   div_expr,
283
					   NULL);
284
 
285
   ir->operation = ir_binop_mul;
286
   ir->operands[0] = new(ir) ir_dereference_variable(temp);
287
   ir->operands[1] = expr;
288
   this->progress = true;
289
}
290
 
291
void
292
lower_instructions_visitor::lrp_to_arith(ir_expression *ir)
293
{
294
   /* (lrp x y a) -> x*(1-a) + y*a */
295
 
296
   /* Save op2 */
297
   ir_variable *temp = new(ir) ir_variable(ir->operands[2]->type, "lrp_factor",
298
					   ir_var_temporary);
299
   this->base_ir->insert_before(temp);
300
   this->base_ir->insert_before(assign(temp, ir->operands[2]));
301
 
302
   ir_constant *one = new(ir) ir_constant(1.0f);
303
 
304
   ir->operation = ir_binop_add;
305
   ir->operands[0] = mul(ir->operands[0], sub(one, temp));
306
   ir->operands[1] = mul(ir->operands[1], temp);
307
   ir->operands[2] = NULL;
308
 
309
   this->progress = true;
310
}
311
 
312
void
313
lower_instructions_visitor::bitfield_insert_to_bfm_bfi(ir_expression *ir)
314
{
315
   /* Translates
316
    *    ir_quadop_bitfield_insert base insert offset bits
317
    * into
318
    *    ir_triop_bfi (ir_binop_bfm bits offset) insert base
319
    */
320
 
321
   ir_rvalue *base_expr = ir->operands[0];
322
 
323
   ir->operation = ir_triop_bfi;
324
   ir->operands[0] = new(ir) ir_expression(ir_binop_bfm,
325
                                           ir->type->get_base_type(),
326
                                           ir->operands[3],
327
                                           ir->operands[2]);
328
   /* ir->operands[1] is still the value to insert. */
329
   ir->operands[2] = base_expr;
330
   ir->operands[3] = NULL;
331
 
332
   this->progress = true;
333
}
334
 
335
ir_visitor_status
336
lower_instructions_visitor::visit_leave(ir_expression *ir)
337
{
338
   switch (ir->operation) {
339
   case ir_binop_sub:
340
      if (lowering(SUB_TO_ADD_NEG))
341
	 sub_to_add_neg(ir);
342
      break;
343
 
344
   case ir_binop_div:
345
      if (ir->operands[1]->type->is_integer() && lowering(INT_DIV_TO_MUL_RCP))
346
	 int_div_to_mul_rcp(ir);
347
      else if (ir->operands[1]->type->is_float() && lowering(DIV_TO_MUL_RCP))
348
	 div_to_mul_rcp(ir);
349
      break;
350
 
351
   case ir_unop_exp:
352
      if (lowering(EXP_TO_EXP2))
353
	 exp_to_exp2(ir);
354
      break;
355
 
356
   case ir_unop_log:
357
      if (lowering(LOG_TO_LOG2))
358
	 log_to_log2(ir);
359
      break;
360
 
361
   case ir_binop_mod:
362
      if (lowering(MOD_TO_FRACT) && ir->type->is_float())
363
	 mod_to_fract(ir);
364
      break;
365
 
366
   case ir_binop_pow:
367
      if (lowering(POW_TO_EXP2))
368
	 pow_to_exp2(ir);
369
      break;
370
 
371
   case ir_triop_lrp:
372
      if (lowering(LRP_TO_ARITH))
373
	 lrp_to_arith(ir);
374
      break;
375
 
376
   case ir_quadop_bitfield_insert:
377
      if (lowering(BITFIELD_INSERT_TO_BFM_BFI))
378
         bitfield_insert_to_bfm_bfi(ir);
379
      break;
380
 
381
   default:
382
      return visit_continue;
383
   }
384
 
385
   return visit_continue;
386
}