Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
5564 serge 1
/*
2
 * Copyright © 2011 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21
 * DEALINGS IN THE SOFTWARE.
22
 */
23
 
24
/**
25
 * \file lower_varyings_to_packed.cpp
26
 *
27
 * This lowering pass generates GLSL code that manually packs varyings into
28
 * vec4 slots, for the benefit of back-ends that don't support packed varyings
29
 * natively.
30
 *
31
 * For example, the following shader:
32
 *
33
 *   out mat3x2 foo;  // location=4, location_frac=0
34
 *   out vec3 bar[2]; // location=5, location_frac=2
35
 *
36
 *   main()
37
 *   {
38
 *     ...
39
 *   }
40
 *
41
 * Is rewritten to:
42
 *
43
 *   mat3x2 foo;
44
 *   vec3 bar[2];
45
 *   out vec4 packed4; // location=4, location_frac=0
46
 *   out vec4 packed5; // location=5, location_frac=0
47
 *   out vec4 packed6; // location=6, location_frac=0
48
 *
49
 *   main()
50
 *   {
51
 *     ...
52
 *     packed4.xy = foo[0];
53
 *     packed4.zw = foo[1];
54
 *     packed5.xy = foo[2];
55
 *     packed5.zw = bar[0].xy;
56
 *     packed6.x = bar[0].z;
57
 *     packed6.yzw = bar[1];
58
 *   }
59
 *
60
 * This lowering pass properly handles "double parking" of a varying vector
61
 * across two varying slots.  For example, in the code above, two of the
62
 * components of bar[0] are stored in packed5, and the remaining component is
63
 * stored in packed6.
64
 *
65
 * Note that in theory, the extra instructions may cause some loss of
66
 * performance.  However, hopefully in most cases the performance loss will
67
 * either be absorbed by a later optimization pass, or it will be offset by
68
 * memory bandwidth savings (because fewer varyings are used).
69
 *
70
 * This lowering pass also packs flat floats, ints, and uints together, by
71
 * using ivec4 as the base type of flat "varyings", and using appropriate
72
 * casts to convert floats and uints into ints.
73
 *
74
 * This lowering pass also handles varyings whose type is a struct or an array
75
 * of struct.  Structs are packed in order and with no gaps, so there may be a
76
 * performance penalty due to structure elements being double-parked.
77
 *
78
 * Lowering of geometry shader inputs is slightly more complex, since geometry
79
 * inputs are always arrays, so we need to lower arrays to arrays.  For
80
 * example, the following input:
81
 *
82
 *   in struct Foo {
83
 *     float f;
84
 *     vec3 v;
85
 *     vec2 a[2];
86
 *   } arr[3];         // location=4, location_frac=0
87
 *
88
 * Would get lowered like this if it occurred in a fragment shader:
89
 *
90
 *   struct Foo {
91
 *     float f;
92
 *     vec3 v;
93
 *     vec2 a[2];
94
 *   } arr[3];
95
 *   in vec4 packed4;  // location=4, location_frac=0
96
 *   in vec4 packed5;  // location=5, location_frac=0
97
 *   in vec4 packed6;  // location=6, location_frac=0
98
 *   in vec4 packed7;  // location=7, location_frac=0
99
 *   in vec4 packed8;  // location=8, location_frac=0
100
 *   in vec4 packed9;  // location=9, location_frac=0
101
 *
102
 *   main()
103
 *   {
104
 *     arr[0].f = packed4.x;
105
 *     arr[0].v = packed4.yzw;
106
 *     arr[0].a[0] = packed5.xy;
107
 *     arr[0].a[1] = packed5.zw;
108
 *     arr[1].f = packed6.x;
109
 *     arr[1].v = packed6.yzw;
110
 *     arr[1].a[0] = packed7.xy;
111
 *     arr[1].a[1] = packed7.zw;
112
 *     arr[2].f = packed8.x;
113
 *     arr[2].v = packed8.yzw;
114
 *     arr[2].a[0] = packed9.xy;
115
 *     arr[2].a[1] = packed9.zw;
116
 *     ...
117
 *   }
118
 *
119
 * But it would get lowered like this if it occurred in a geometry shader:
120
 *
121
 *   struct Foo {
122
 *     float f;
123
 *     vec3 v;
124
 *     vec2 a[2];
125
 *   } arr[3];
126
 *   in vec4 packed4[3];  // location=4, location_frac=0
127
 *   in vec4 packed5[3];  // location=5, location_frac=0
128
 *
129
 *   main()
130
 *   {
131
 *     arr[0].f = packed4[0].x;
132
 *     arr[0].v = packed4[0].yzw;
133
 *     arr[0].a[0] = packed5[0].xy;
134
 *     arr[0].a[1] = packed5[0].zw;
135
 *     arr[1].f = packed4[1].x;
136
 *     arr[1].v = packed4[1].yzw;
137
 *     arr[1].a[0] = packed5[1].xy;
138
 *     arr[1].a[1] = packed5[1].zw;
139
 *     arr[2].f = packed4[2].x;
140
 *     arr[2].v = packed4[2].yzw;
141
 *     arr[2].a[0] = packed5[2].xy;
142
 *     arr[2].a[1] = packed5[2].zw;
143
 *     ...
144
 *   }
145
 */
146
 
147
#include "glsl_symbol_table.h"
148
#include "ir.h"
149
#include "ir_builder.h"
150
#include "ir_optimization.h"
151
#include "program/prog_instruction.h"
152
 
153
using namespace ir_builder;
154
 
155
namespace {
156
 
157
/**
158
 * Visitor that performs varying packing.  For each varying declared in the
159
 * shader, this visitor determines whether it needs to be packed.  If so, it
160
 * demotes it to an ordinary global, creates new packed varyings, and
161
 * generates assignments to convert between the original varying and the
162
 * packed varying.
163
 */
164
class lower_packed_varyings_visitor
165
{
166
public:
167
   lower_packed_varyings_visitor(void *mem_ctx, unsigned locations_used,
168
                                 ir_variable_mode mode,
169
                                 unsigned gs_input_vertices,
170
                                 exec_list *out_instructions,
171
                                 exec_list *out_variables);
172
 
173
   void run(exec_list *instructions);
174
 
175
private:
176
   void bitwise_assign_pack(ir_rvalue *lhs, ir_rvalue *rhs);
177
   void bitwise_assign_unpack(ir_rvalue *lhs, ir_rvalue *rhs);
178
   unsigned lower_rvalue(ir_rvalue *rvalue, unsigned fine_location,
179
                         ir_variable *unpacked_var, const char *name,
180
                         bool gs_input_toplevel, unsigned vertex_index);
181
   unsigned lower_arraylike(ir_rvalue *rvalue, unsigned array_size,
182
                            unsigned fine_location,
183
                            ir_variable *unpacked_var, const char *name,
184
                            bool gs_input_toplevel, unsigned vertex_index);
185
   ir_dereference *get_packed_varying_deref(unsigned location,
186
                                            ir_variable *unpacked_var,
187
                                            const char *name,
188
                                            unsigned vertex_index);
189
   bool needs_lowering(ir_variable *var);
190
 
191
   /**
192
    * Memory context used to allocate new instructions for the shader.
193
    */
194
   void * const mem_ctx;
195
 
196
   /**
197
    * Number of generic varying slots which are used by this shader.  This is
198
    * used to allocate temporary intermediate data structures.  If any varying
199
    * used by this shader has a location greater than or equal to
200
    * VARYING_SLOT_VAR0 + locations_used, an assertion will fire.
201
    */
202
   const unsigned locations_used;
203
 
204
   /**
205
    * Array of pointers to the packed varyings that have been created for each
206
    * generic varying slot.  NULL entries in this array indicate varying slots
207
    * for which a packed varying has not been created yet.
208
    */
209
   ir_variable **packed_varyings;
210
 
211
   /**
212
    * Type of varying which is being lowered in this pass (either
213
    * ir_var_shader_in or ir_var_shader_out).
214
    */
215
   const ir_variable_mode mode;
216
 
217
   /**
218
    * If we are currently lowering geometry shader inputs, the number of input
219
    * vertices the geometry shader accepts.  Otherwise zero.
220
    */
221
   const unsigned gs_input_vertices;
222
 
223
   /**
224
    * Exec list into which the visitor should insert the packing instructions.
225
    * Caller provides this list; it should insert the instructions into the
226
    * appropriate place in the shader once the visitor has finished running.
227
    */
228
   exec_list *out_instructions;
229
 
230
   /**
231
    * Exec list into which the visitor should insert any new variables.
232
    */
233
   exec_list *out_variables;
234
};
235
 
236
} /* anonymous namespace */
237
 
238
lower_packed_varyings_visitor::lower_packed_varyings_visitor(
239
      void *mem_ctx, unsigned locations_used, ir_variable_mode mode,
240
      unsigned gs_input_vertices, exec_list *out_instructions,
241
      exec_list *out_variables)
242
   : mem_ctx(mem_ctx),
243
     locations_used(locations_used),
244
     packed_varyings((ir_variable **)
245
                     rzalloc_array_size(mem_ctx, sizeof(*packed_varyings),
246
                                        locations_used)),
247
     mode(mode),
248
     gs_input_vertices(gs_input_vertices),
249
     out_instructions(out_instructions),
250
     out_variables(out_variables)
251
{
252
}
253
 
254
void
255
lower_packed_varyings_visitor::run(exec_list *instructions)
256
{
257
   foreach_in_list(ir_instruction, node, instructions) {
258
      ir_variable *var = node->as_variable();
259
      if (var == NULL)
260
         continue;
261
 
262
      if (var->data.mode != this->mode ||
263
          var->data.location < VARYING_SLOT_VAR0 ||
264
          !this->needs_lowering(var))
265
         continue;
266
 
267
      /* This lowering pass is only capable of packing floats and ints
268
       * together when their interpolation mode is "flat".  Therefore, to be
269
       * safe, caller should ensure that integral varyings always use flat
270
       * interpolation, even when this is not required by GLSL.
271
       */
272
      assert(var->data.interpolation == INTERP_QUALIFIER_FLAT ||
273
             !var->type->contains_integer());
274
 
275
      /* Change the old varying into an ordinary global. */
276
      assert(var->data.mode != ir_var_temporary);
277
      var->data.mode = ir_var_auto;
278
 
279
      /* Create a reference to the old varying. */
280
      ir_dereference_variable *deref
281
         = new(this->mem_ctx) ir_dereference_variable(var);
282
 
283
      /* Recursively pack or unpack it. */
284
      this->lower_rvalue(deref, var->data.location * 4 + var->data.location_frac, var,
285
                         var->name, this->gs_input_vertices != 0, 0);
286
   }
287
}
288
 
289
#define SWIZZLE_ZWZW MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W)
290
 
291
/**
292
 * Make an ir_assignment from \c rhs to \c lhs, performing appropriate
293
 * bitcasts if necessary to match up types.
294
 *
295
 * This function is called when packing varyings.
296
 */
297
void
298
lower_packed_varyings_visitor::bitwise_assign_pack(ir_rvalue *lhs,
299
                                                   ir_rvalue *rhs)
300
{
301
   if (lhs->type->base_type != rhs->type->base_type) {
302
      /* Since we only mix types in flat varyings, and we always store flat
303
       * varyings as type ivec4, we need only produce conversions from (uint
304
       * or float) to int.
305
       */
306
      assert(lhs->type->base_type == GLSL_TYPE_INT);
307
      switch (rhs->type->base_type) {
308
      case GLSL_TYPE_UINT:
309
         rhs = new(this->mem_ctx)
310
            ir_expression(ir_unop_u2i, lhs->type, rhs);
311
         break;
312
      case GLSL_TYPE_FLOAT:
313
         rhs = new(this->mem_ctx)
314
            ir_expression(ir_unop_bitcast_f2i, lhs->type, rhs);
315
         break;
316
      case GLSL_TYPE_DOUBLE:
317
         assert(rhs->type->vector_elements <= 2);
318
         if (rhs->type->vector_elements == 2) {
319
            ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "pack", ir_var_temporary);
320
 
321
            assert(lhs->type->vector_elements == 4);
322
            this->out_variables->push_tail(t);
323
            this->out_instructions->push_tail(
324
                  assign(t, u2i(expr(ir_unop_unpack_double_2x32, swizzle_x(rhs->clone(mem_ctx, NULL)))), 0x3));
325
            this->out_instructions->push_tail(
326
                  assign(t,  u2i(expr(ir_unop_unpack_double_2x32, swizzle_y(rhs))), 0xc));
327
            rhs = deref(t).val;
328
         } else {
329
            rhs = u2i(expr(ir_unop_unpack_double_2x32, rhs));
330
         }
331
         break;
332
      default:
333
         assert(!"Unexpected type conversion while lowering varyings");
334
         break;
335
      }
336
   }
337
   this->out_instructions->push_tail(new (this->mem_ctx) ir_assignment(lhs, rhs));
338
}
339
 
340
 
341
/**
342
 * Make an ir_assignment from \c rhs to \c lhs, performing appropriate
343
 * bitcasts if necessary to match up types.
344
 *
345
 * This function is called when unpacking varyings.
346
 */
347
void
348
lower_packed_varyings_visitor::bitwise_assign_unpack(ir_rvalue *lhs,
349
                                                     ir_rvalue *rhs)
350
{
351
   if (lhs->type->base_type != rhs->type->base_type) {
352
      /* Since we only mix types in flat varyings, and we always store flat
353
       * varyings as type ivec4, we need only produce conversions from int to
354
       * (uint or float).
355
       */
356
      assert(rhs->type->base_type == GLSL_TYPE_INT);
357
      switch (lhs->type->base_type) {
358
      case GLSL_TYPE_UINT:
359
         rhs = new(this->mem_ctx)
360
            ir_expression(ir_unop_i2u, lhs->type, rhs);
361
         break;
362
      case GLSL_TYPE_FLOAT:
363
         rhs = new(this->mem_ctx)
364
            ir_expression(ir_unop_bitcast_i2f, lhs->type, rhs);
365
         break;
366
      case GLSL_TYPE_DOUBLE:
367
         assert(lhs->type->vector_elements <= 2);
368
         if (lhs->type->vector_elements == 2) {
369
            ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "unpack", ir_var_temporary);
370
            assert(rhs->type->vector_elements == 4);
371
            this->out_variables->push_tail(t);
372
            this->out_instructions->push_tail(
373
                  assign(t, expr(ir_unop_pack_double_2x32, i2u(swizzle_xy(rhs->clone(mem_ctx, NULL)))), 0x1));
374
            this->out_instructions->push_tail(
375
                  assign(t, expr(ir_unop_pack_double_2x32, i2u(swizzle(rhs->clone(mem_ctx, NULL), SWIZZLE_ZWZW, 2))), 0x2));
376
            rhs = deref(t).val;
377
         } else {
378
            rhs = expr(ir_unop_pack_double_2x32, i2u(rhs));
379
         }
380
         break;
381
      default:
382
         assert(!"Unexpected type conversion while lowering varyings");
383
         break;
384
      }
385
   }
386
   this->out_instructions->push_tail(new(this->mem_ctx) ir_assignment(lhs, rhs));
387
}
388
 
389
 
390
/**
391
 * Recursively pack or unpack the given varying (or portion of a varying) by
392
 * traversing all of its constituent vectors.
393
 *
394
 * \param fine_location is the location where the first constituent vector
395
 * should be packed--the word "fine" indicates that this location is expressed
396
 * in multiples of a float, rather than multiples of a vec4 as is used
397
 * elsewhere in Mesa.
398
 *
399
 * \param gs_input_toplevel should be set to true if we are lowering geometry
400
 * shader inputs, and we are currently lowering the whole input variable
401
 * (i.e. we are lowering the array whose index selects the vertex).
402
 *
403
 * \param vertex_index: if we are lowering geometry shader inputs, and the
404
 * level of the array that we are currently lowering is *not* the top level,
405
 * then this indicates which vertex we are currently lowering.  Otherwise it
406
 * is ignored.
407
 *
408
 * \return the location where the next constituent vector (after this one)
409
 * should be packed.
410
 */
411
unsigned
412
lower_packed_varyings_visitor::lower_rvalue(ir_rvalue *rvalue,
413
                                            unsigned fine_location,
414
                                            ir_variable *unpacked_var,
415
                                            const char *name,
416
                                            bool gs_input_toplevel,
417
                                            unsigned vertex_index)
418
{
419
   unsigned dmul = rvalue->type->is_double() ? 2 : 1;
420
   /* When gs_input_toplevel is set, we should be looking at a geometry shader
421
    * input array.
422
    */
423
   assert(!gs_input_toplevel || rvalue->type->is_array());
424
 
425
   if (rvalue->type->is_record()) {
426
      for (unsigned i = 0; i < rvalue->type->length; i++) {
427
         if (i != 0)
428
            rvalue = rvalue->clone(this->mem_ctx, NULL);
429
         const char *field_name = rvalue->type->fields.structure[i].name;
430
         ir_dereference_record *dereference_record = new(this->mem_ctx)
431
            ir_dereference_record(rvalue, field_name);
432
         char *deref_name
433
            = ralloc_asprintf(this->mem_ctx, "%s.%s", name, field_name);
434
         fine_location = this->lower_rvalue(dereference_record, fine_location,
435
                                            unpacked_var, deref_name, false,
436
                                            vertex_index);
437
      }
438
      return fine_location;
439
   } else if (rvalue->type->is_array()) {
440
      /* Arrays are packed/unpacked by considering each array element in
441
       * sequence.
442
       */
443
      return this->lower_arraylike(rvalue, rvalue->type->array_size(),
444
                                   fine_location, unpacked_var, name,
445
                                   gs_input_toplevel, vertex_index);
446
   } else if (rvalue->type->is_matrix()) {
447
      /* Matrices are packed/unpacked by considering each column vector in
448
       * sequence.
449
       */
450
      return this->lower_arraylike(rvalue, rvalue->type->matrix_columns,
451
                                   fine_location, unpacked_var, name,
452
                                   false, vertex_index);
453
   } else if (rvalue->type->vector_elements * dmul +
454
              fine_location % 4 > 4) {
455
      /* This vector is going to be "double parked" across two varying slots,
456
       * so handle it as two separate assignments. For doubles, a dvec3/dvec4
457
       * can end up being spread over 3 slots. However the second splitting
458
       * will happen later, here we just always want to split into 2.
459
       */
460
      unsigned left_components, right_components;
461
      unsigned left_swizzle_values[4] = { 0, 0, 0, 0 };
462
      unsigned right_swizzle_values[4] = { 0, 0, 0, 0 };
463
      char left_swizzle_name[4] = { 0, 0, 0, 0 };
464
      char right_swizzle_name[4] = { 0, 0, 0, 0 };
465
 
466
      left_components = 4 - fine_location % 4;
467
      if (rvalue->type->is_double()) {
468
         /* We might actually end up with 0 left components! */
469
         left_components /= 2;
470
      }
471
      right_components = rvalue->type->vector_elements - left_components;
472
 
473
      for (unsigned i = 0; i < left_components; i++) {
474
         left_swizzle_values[i] = i;
475
         left_swizzle_name[i] = "xyzw"[i];
476
      }
477
      for (unsigned i = 0; i < right_components; i++) {
478
         right_swizzle_values[i] = i + left_components;
479
         right_swizzle_name[i] = "xyzw"[i + left_components];
480
      }
481
      ir_swizzle *left_swizzle = new(this->mem_ctx)
482
         ir_swizzle(rvalue, left_swizzle_values, left_components);
483
      ir_swizzle *right_swizzle = new(this->mem_ctx)
484
         ir_swizzle(rvalue->clone(this->mem_ctx, NULL), right_swizzle_values,
485
                    right_components);
486
      char *left_name
487
         = ralloc_asprintf(this->mem_ctx, "%s.%s", name, left_swizzle_name);
488
      char *right_name
489
         = ralloc_asprintf(this->mem_ctx, "%s.%s", name, right_swizzle_name);
490
      if (left_components)
491
         fine_location = this->lower_rvalue(left_swizzle, fine_location,
492
                                            unpacked_var, left_name, false,
493
                                            vertex_index);
494
      else
495
         /* Top up the fine location to the next slot */
496
         fine_location++;
497
      return this->lower_rvalue(right_swizzle, fine_location, unpacked_var,
498
                                right_name, false, vertex_index);
499
   } else {
500
      /* No special handling is necessary; pack the rvalue into the
501
       * varying.
502
       */
503
      unsigned swizzle_values[4] = { 0, 0, 0, 0 };
504
      unsigned components = rvalue->type->vector_elements * dmul;
505
      unsigned location = fine_location / 4;
506
      unsigned location_frac = fine_location % 4;
507
      for (unsigned i = 0; i < components; ++i)
508
         swizzle_values[i] = i + location_frac;
509
      ir_dereference *packed_deref =
510
         this->get_packed_varying_deref(location, unpacked_var, name,
511
                                        vertex_index);
512
      ir_swizzle *swizzle = new(this->mem_ctx)
513
         ir_swizzle(packed_deref, swizzle_values, components);
514
      if (this->mode == ir_var_shader_out) {
515
         this->bitwise_assign_pack(swizzle, rvalue);
516
      } else {
517
         this->bitwise_assign_unpack(rvalue, swizzle);
518
      }
519
      return fine_location + components;
520
   }
521
}
522
 
523
/**
524
 * Recursively pack or unpack a varying for which we need to iterate over its
525
 * constituent elements, accessing each one using an ir_dereference_array.
526
 * This takes care of both arrays and matrices, since ir_dereference_array
527
 * treats a matrix like an array of its column vectors.
528
 *
529
 * \param gs_input_toplevel should be set to true if we are lowering geometry
530
 * shader inputs, and we are currently lowering the whole input variable
531
 * (i.e. we are lowering the array whose index selects the vertex).
532
 *
533
 * \param vertex_index: if we are lowering geometry shader inputs, and the
534
 * level of the array that we are currently lowering is *not* the top level,
535
 * then this indicates which vertex we are currently lowering.  Otherwise it
536
 * is ignored.
537
 */
538
unsigned
539
lower_packed_varyings_visitor::lower_arraylike(ir_rvalue *rvalue,
540
                                               unsigned array_size,
541
                                               unsigned fine_location,
542
                                               ir_variable *unpacked_var,
543
                                               const char *name,
544
                                               bool gs_input_toplevel,
545
                                               unsigned vertex_index)
546
{
547
   for (unsigned i = 0; i < array_size; i++) {
548
      if (i != 0)
549
         rvalue = rvalue->clone(this->mem_ctx, NULL);
550
      ir_constant *constant = new(this->mem_ctx) ir_constant(i);
551
      ir_dereference_array *dereference_array = new(this->mem_ctx)
552
         ir_dereference_array(rvalue, constant);
553
      if (gs_input_toplevel) {
554
         /* Geometry shader inputs are a special case.  Instead of storing
555
          * each element of the array at a different location, all elements
556
          * are at the same location, but with a different vertex index.
557
          */
558
         (void) this->lower_rvalue(dereference_array, fine_location,
559
                                   unpacked_var, name, false, i);
560
      } else {
561
         char *subscripted_name
562
            = ralloc_asprintf(this->mem_ctx, "%s[%d]", name, i);
563
         fine_location =
564
            this->lower_rvalue(dereference_array, fine_location,
565
                               unpacked_var, subscripted_name,
566
                               false, vertex_index);
567
      }
568
   }
569
   return fine_location;
570
}
571
 
572
/**
573
 * Retrieve the packed varying corresponding to the given varying location.
574
 * If no packed varying has been created for the given varying location yet,
575
 * create it and add it to the shader before returning it.
576
 *
577
 * The newly created varying inherits its interpolation parameters from \c
578
 * unpacked_var.  Its base type is ivec4 if we are lowering a flat varying,
579
 * vec4 otherwise.
580
 *
581
 * \param vertex_index: if we are lowering geometry shader inputs, then this
582
 * indicates which vertex we are currently lowering.  Otherwise it is ignored.
583
 */
584
ir_dereference *
585
lower_packed_varyings_visitor::get_packed_varying_deref(
586
      unsigned location, ir_variable *unpacked_var, const char *name,
587
      unsigned vertex_index)
588
{
589
   unsigned slot = location - VARYING_SLOT_VAR0;
590
   assert(slot < locations_used);
591
   if (this->packed_varyings[slot] == NULL) {
592
      char *packed_name = ralloc_asprintf(this->mem_ctx, "packed:%s", name);
593
      const glsl_type *packed_type;
594
      if (unpacked_var->data.interpolation == INTERP_QUALIFIER_FLAT)
595
         packed_type = glsl_type::ivec4_type;
596
      else
597
         packed_type = glsl_type::vec4_type;
598
      if (this->gs_input_vertices != 0) {
599
         packed_type =
600
            glsl_type::get_array_instance(packed_type,
601
                                          this->gs_input_vertices);
602
      }
603
      ir_variable *packed_var = new(this->mem_ctx)
604
         ir_variable(packed_type, packed_name, this->mode);
605
      if (this->gs_input_vertices != 0) {
606
         /* Prevent update_array_sizes() from messing with the size of the
607
          * array.
608
          */
609
         packed_var->data.max_array_access = this->gs_input_vertices - 1;
610
      }
611
      packed_var->data.centroid = unpacked_var->data.centroid;
612
      packed_var->data.sample = unpacked_var->data.sample;
613
      packed_var->data.interpolation = unpacked_var->data.interpolation;
614
      packed_var->data.location = location;
615
      unpacked_var->insert_before(packed_var);
616
      this->packed_varyings[slot] = packed_var;
617
   } else {
618
      /* For geometry shader inputs, only update the packed variable name the
619
       * first time we visit each component.
620
       */
621
      if (this->gs_input_vertices == 0 || vertex_index == 0) {
622
         ralloc_asprintf_append((char **) &this->packed_varyings[slot]->name,
623
                                ",%s", name);
624
      }
625
   }
626
 
627
   ir_dereference *deref = new(this->mem_ctx)
628
      ir_dereference_variable(this->packed_varyings[slot]);
629
   if (this->gs_input_vertices != 0) {
630
      /* When lowering GS inputs, the packed variable is an array, so we need
631
       * to dereference it using vertex_index.
632
       */
633
      ir_constant *constant = new(this->mem_ctx) ir_constant(vertex_index);
634
      deref = new(this->mem_ctx) ir_dereference_array(deref, constant);
635
   }
636
   return deref;
637
}
638
 
639
bool
640
lower_packed_varyings_visitor::needs_lowering(ir_variable *var)
641
{
642
   /* Things composed of vec4's and varyings with explicitly assigned
643
    * locations don't need lowering.  Everything else does.
644
    */
645
   if (var->data.explicit_location)
646
      return false;
647
 
648
   const glsl_type *type = var->type->without_array();
649
   if (type->vector_elements == 4 && !type->is_double())
650
      return false;
651
   return true;
652
}
653
 
654
 
655
/**
656
 * Visitor that splices varying packing code before every use of EmitVertex()
657
 * in a geometry shader.
658
 */
659
class lower_packed_varyings_gs_splicer : public ir_hierarchical_visitor
660
{
661
public:
662
   explicit lower_packed_varyings_gs_splicer(void *mem_ctx,
663
                                             const exec_list *instructions);
664
 
665
   virtual ir_visitor_status visit_leave(ir_emit_vertex *ev);
666
 
667
private:
668
   /**
669
    * Memory context used to allocate new instructions for the shader.
670
    */
671
   void * const mem_ctx;
672
 
673
   /**
674
    * Instructions that should be spliced into place before each EmitVertex()
675
    * call.
676
    */
677
   const exec_list *instructions;
678
};
679
 
680
 
681
lower_packed_varyings_gs_splicer::lower_packed_varyings_gs_splicer(
682
      void *mem_ctx, const exec_list *instructions)
683
   : mem_ctx(mem_ctx), instructions(instructions)
684
{
685
}
686
 
687
 
688
ir_visitor_status
689
lower_packed_varyings_gs_splicer::visit_leave(ir_emit_vertex *ev)
690
{
691
   foreach_in_list(ir_instruction, ir, this->instructions) {
692
      ev->insert_before(ir->clone(this->mem_ctx, NULL));
693
   }
694
   return visit_continue;
695
}
696
 
697
 
698
void
699
lower_packed_varyings(void *mem_ctx, unsigned locations_used,
700
                      ir_variable_mode mode, unsigned gs_input_vertices,
701
                      gl_shader *shader)
702
{
703
   exec_list *instructions = shader->ir;
704
   ir_function *main_func = shader->symbols->get_function("main");
705
   exec_list void_parameters;
706
   ir_function_signature *main_func_sig
707
      = main_func->matching_signature(NULL, &void_parameters, false);
708
   exec_list new_instructions, new_variables;
709
   lower_packed_varyings_visitor visitor(mem_ctx, locations_used, mode,
710
                                         gs_input_vertices,
711
                                         &new_instructions,
712
                                         &new_variables);
713
   visitor.run(instructions);
714
   if (mode == ir_var_shader_out) {
715
      if (shader->Stage == MESA_SHADER_GEOMETRY) {
716
         /* For geometry shaders, outputs need to be lowered before each call
717
          * to EmitVertex()
718
          */
719
         lower_packed_varyings_gs_splicer splicer(mem_ctx, &new_instructions);
720
 
721
         /* Add all the variables in first. */
722
         main_func_sig->body.head->insert_before(&new_variables);
723
 
724
         /* Now update all the EmitVertex instances */
725
         splicer.run(instructions);
726
      } else {
727
         /* For other shader types, outputs need to be lowered at the end of
728
          * main()
729
          */
730
         main_func_sig->body.append_list(&new_variables);
731
         main_func_sig->body.append_list(&new_instructions);
732
      }
733
   } else {
734
      /* Shader inputs need to be lowered at the beginning of main() */
735
      main_func_sig->body.head->insert_before(&new_instructions);
736
      main_func_sig->body.head->insert_before(&new_variables);
737
   }
738
}