Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
5564 serge 1
/*
2
 * Copyright (c) 2014 Scott Mansell
3
 * Copyright © 2014 Broadcom
4
 *
5
 * Permission is hereby granted, free of charge, to any person obtaining a
6
 * copy of this software and associated documentation files (the "Software"),
7
 * to deal in the Software without restriction, including without limitation
8
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9
 * and/or sell copies of the Software, and to permit persons to whom the
10
 * Software is furnished to do so, subject to the following conditions:
11
 *
12
 * The above copyright notice and this permission notice (including the next
13
 * paragraph) shall be included in all copies or substantial portions of the
14
 * Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22
 * IN THE SOFTWARE.
23
 */
24
 
25
#include 
26
#include "pipe/p_state.h"
27
#include "util/u_format.h"
28
#include "util/u_hash.h"
29
#include "util/u_math.h"
30
#include "util/u_memory.h"
31
#include "util/u_pack_color.h"
32
#include "util/format_srgb.h"
33
#include "util/ralloc.h"
34
#include "util/hash_table.h"
35
#include "tgsi/tgsi_dump.h"
36
#include "tgsi/tgsi_info.h"
37
#include "tgsi/tgsi_lowering.h"
38
#include "tgsi/tgsi_parse.h"
39
#include "nir/tgsi_to_nir.h"
40
 
41
#include "vc4_context.h"
42
#include "vc4_qpu.h"
43
#include "vc4_qir.h"
44
#ifdef USE_VC4_SIMULATOR
45
#include "simpenrose/simpenrose.h"
46
#endif
47
 
48
struct vc4_key {
49
        struct vc4_uncompiled_shader *shader_state;
50
        struct {
51
                enum pipe_format format;
52
                unsigned compare_mode:1;
53
                unsigned compare_func:3;
54
                unsigned wrap_s:3;
55
                unsigned wrap_t:3;
56
                uint8_t swizzle[4];
57
        } tex[VC4_MAX_TEXTURE_SAMPLERS];
58
        uint8_t ucp_enables;
59
};
60
 
61
struct vc4_fs_key {
62
        struct vc4_key base;
63
        enum pipe_format color_format;
64
        bool depth_enabled;
65
        bool stencil_enabled;
66
        bool stencil_twoside;
67
        bool stencil_full_writemasks;
68
        bool is_points;
69
        bool is_lines;
70
        bool alpha_test;
71
        bool point_coord_upper_left;
72
        bool light_twoside;
73
        uint8_t alpha_test_func;
74
        uint8_t logicop_func;
75
        uint32_t point_sprite_mask;
76
 
77
        struct pipe_rt_blend_state blend;
78
};
79
 
80
struct vc4_vs_key {
81
        struct vc4_key base;
82
 
83
        /**
84
         * This is a proxy for the array of FS input semantics, which is
85
         * larger than we would want to put in the key.
86
         */
87
        uint64_t compiled_fs_id;
88
 
89
        enum pipe_format attr_formats[8];
90
        bool is_coord;
91
        bool per_vertex_point_size;
92
};
93
 
94
static void
95
resize_qreg_array(struct vc4_compile *c,
96
                  struct qreg **regs,
97
                  uint32_t *size,
98
                  uint32_t decl_size)
99
{
100
        if (*size >= decl_size)
101
                return;
102
 
103
        uint32_t old_size = *size;
104
        *size = MAX2(*size * 2, decl_size);
105
        *regs = reralloc(c, *regs, struct qreg, *size);
106
        if (!*regs) {
107
                fprintf(stderr, "Malloc failure\n");
108
                abort();
109
        }
110
 
111
        for (uint32_t i = old_size; i < *size; i++)
112
                (*regs)[i] = c->undef;
113
}
114
 
115
static struct qreg
116
indirect_uniform_load(struct vc4_compile *c,
117
                      struct qreg indirect_offset,
118
                      unsigned offset)
119
{
120
        struct vc4_compiler_ubo_range *range = NULL;
121
        unsigned i;
122
        for (i = 0; i < c->num_uniform_ranges; i++) {
123
                range = &c->ubo_ranges[i];
124
                if (offset >= range->src_offset &&
125
                    offset < range->src_offset + range->size) {
126
                        break;
127
                }
128
        }
129
        /* The driver-location-based offset always has to be within a declared
130
         * uniform range.
131
         */
132
        assert(range);
133
        if (!range->used) {
134
                range->used = true;
135
                range->dst_offset = c->next_ubo_dst_offset;
136
                c->next_ubo_dst_offset += range->size;
137
                c->num_ubo_ranges++;
138
        };
139
 
140
        offset -= range->src_offset;
141
        /* Translate the user's TGSI register index from the TGSI register
142
         * base to a byte offset.
143
         */
144
        indirect_offset = qir_SHL(c, indirect_offset, qir_uniform_ui(c, 4));
145
 
146
        /* Adjust for where we stored the TGSI register base. */
147
        indirect_offset = qir_ADD(c, indirect_offset,
148
                                  qir_uniform_ui(c, (range->dst_offset +
149
                                                     offset)));
150
        indirect_offset = qir_MIN(c, indirect_offset,
151
                                  qir_uniform_ui(c, (range->dst_offset +
152
                                                     range->size - 4)));
153
 
154
        qir_TEX_DIRECT(c, indirect_offset, qir_uniform(c, QUNIFORM_UBO_ADDR, 0));
155
        struct qreg r4 = qir_TEX_RESULT(c);
156
        c->num_texture_samples++;
157
        return qir_MOV(c, r4);
158
}
159
 
160
static struct qreg *
161
ntq_get_dest(struct vc4_compile *c, nir_dest dest)
162
{
163
        assert(!dest.is_ssa);
164
        nir_register *reg = dest.reg.reg;
165
        struct hash_entry *entry = _mesa_hash_table_search(c->def_ht, reg);
166
        assert(reg->num_array_elems == 0);
167
        assert(dest.reg.base_offset == 0);
168
 
169
        struct qreg *qregs = entry->data;
170
        return qregs;
171
}
172
 
173
static struct qreg
174
ntq_get_src(struct vc4_compile *c, nir_src src, int i)
175
{
176
        struct hash_entry *entry;
177
        if (src.is_ssa) {
178
                entry = _mesa_hash_table_search(c->def_ht, src.ssa);
179
                assert(i < src.ssa->num_components);
180
        } else {
181
                nir_register *reg = src.reg.reg;
182
                entry = _mesa_hash_table_search(c->def_ht, reg);
183
                assert(reg->num_array_elems == 0);
184
                assert(src.reg.base_offset == 0);
185
                assert(i < reg->num_components);
186
        }
187
 
188
        struct qreg *qregs = entry->data;
189
        return qregs[i];
190
}
191
 
192
static struct qreg
193
ntq_get_alu_src(struct vc4_compile *c, nir_alu_instr *instr,
194
                unsigned src)
195
{
196
        assert(util_is_power_of_two(instr->dest.write_mask));
197
        unsigned chan = ffs(instr->dest.write_mask) - 1;
198
        struct qreg r = ntq_get_src(c, instr->src[src].src,
199
                                    instr->src[src].swizzle[chan]);
200
 
201
        assert(!instr->src[src].abs);
202
        assert(!instr->src[src].negate);
203
 
204
        return r;
205
};
206
 
207
static struct qreg
208
get_swizzled_channel(struct vc4_compile *c,
209
                     struct qreg *srcs, int swiz)
210
{
211
        switch (swiz) {
212
        default:
213
        case UTIL_FORMAT_SWIZZLE_NONE:
214
                fprintf(stderr, "warning: unknown swizzle\n");
215
                /* FALLTHROUGH */
216
        case UTIL_FORMAT_SWIZZLE_0:
217
                return qir_uniform_f(c, 0.0);
218
        case UTIL_FORMAT_SWIZZLE_1:
219
                return qir_uniform_f(c, 1.0);
220
        case UTIL_FORMAT_SWIZZLE_X:
221
        case UTIL_FORMAT_SWIZZLE_Y:
222
        case UTIL_FORMAT_SWIZZLE_Z:
223
        case UTIL_FORMAT_SWIZZLE_W:
224
                return srcs[swiz];
225
        }
226
}
227
 
228
static inline struct qreg
229
qir_SAT(struct vc4_compile *c, struct qreg val)
230
{
231
        return qir_FMAX(c,
232
                        qir_FMIN(c, val, qir_uniform_f(c, 1.0)),
233
                        qir_uniform_f(c, 0.0));
234
}
235
 
236
static struct qreg
237
ntq_rcp(struct vc4_compile *c, struct qreg x)
238
{
239
        struct qreg r = qir_RCP(c, x);
240
 
241
        /* Apply a Newton-Raphson step to improve the accuracy. */
242
        r = qir_FMUL(c, r, qir_FSUB(c,
243
                                    qir_uniform_f(c, 2.0),
244
                                    qir_FMUL(c, x, r)));
245
 
246
        return r;
247
}
248
 
249
static struct qreg
250
ntq_rsq(struct vc4_compile *c, struct qreg x)
251
{
252
        struct qreg r = qir_RSQ(c, x);
253
 
254
        /* Apply a Newton-Raphson step to improve the accuracy. */
255
        r = qir_FMUL(c, r, qir_FSUB(c,
256
                                    qir_uniform_f(c, 1.5),
257
                                    qir_FMUL(c,
258
                                             qir_uniform_f(c, 0.5),
259
                                             qir_FMUL(c, x,
260
                                                      qir_FMUL(c, r, r)))));
261
 
262
        return r;
263
}
264
 
265
static struct qreg
266
qir_srgb_decode(struct vc4_compile *c, struct qreg srgb)
267
{
268
        struct qreg low = qir_FMUL(c, srgb, qir_uniform_f(c, 1.0 / 12.92));
269
        struct qreg high = qir_POW(c,
270
                                   qir_FMUL(c,
271
                                            qir_FADD(c,
272
                                                     srgb,
273
                                                     qir_uniform_f(c, 0.055)),
274
                                            qir_uniform_f(c, 1.0 / 1.055)),
275
                                   qir_uniform_f(c, 2.4));
276
 
277
        qir_SF(c, qir_FSUB(c, srgb, qir_uniform_f(c, 0.04045)));
278
        return qir_SEL_X_Y_NS(c, low, high);
279
}
280
 
281
static struct qreg
282
qir_srgb_encode(struct vc4_compile *c, struct qreg linear)
283
{
284
        struct qreg low = qir_FMUL(c, linear, qir_uniform_f(c, 12.92));
285
        struct qreg high = qir_FSUB(c,
286
                                    qir_FMUL(c,
287
                                             qir_uniform_f(c, 1.055),
288
                                             qir_POW(c,
289
                                                     linear,
290
                                                     qir_uniform_f(c, 0.41666))),
291
                                    qir_uniform_f(c, 0.055));
292
 
293
        qir_SF(c, qir_FSUB(c, linear, qir_uniform_f(c, 0.0031308)));
294
        return qir_SEL_X_Y_NS(c, low, high);
295
}
296
 
297
static struct qreg
298
ntq_umul(struct vc4_compile *c, struct qreg src0, struct qreg src1)
299
{
300
        struct qreg src0_hi = qir_SHR(c, src0,
301
                                      qir_uniform_ui(c, 24));
302
        struct qreg src1_hi = qir_SHR(c, src1,
303
                                      qir_uniform_ui(c, 24));
304
 
305
        struct qreg hilo = qir_MUL24(c, src0_hi, src1);
306
        struct qreg lohi = qir_MUL24(c, src0, src1_hi);
307
        struct qreg lolo = qir_MUL24(c, src0, src1);
308
 
309
        return qir_ADD(c, lolo, qir_SHL(c,
310
                                        qir_ADD(c, hilo, lohi),
311
                                        qir_uniform_ui(c, 24)));
312
}
313
 
314
static void
315
ntq_emit_tex(struct vc4_compile *c, nir_tex_instr *instr)
316
{
317
        struct qreg s, t, r, lod, proj, compare;
318
        bool is_txb = false, is_txl = false, has_proj = false;
319
        unsigned unit = instr->sampler_index;
320
 
321
        for (unsigned i = 0; i < instr->num_srcs; i++) {
322
                switch (instr->src[i].src_type) {
323
                case nir_tex_src_coord:
324
                        s = ntq_get_src(c, instr->src[i].src, 0);
325
                        if (instr->sampler_dim != GLSL_SAMPLER_DIM_1D)
326
                                t = ntq_get_src(c, instr->src[i].src, 1);
327
                        if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
328
                                r = ntq_get_src(c, instr->src[i].src, 2);
329
                        break;
330
                case nir_tex_src_bias:
331
                        lod = ntq_get_src(c, instr->src[i].src, 0);
332
                        is_txb = true;
333
                        break;
334
                case nir_tex_src_lod:
335
                        lod = ntq_get_src(c, instr->src[i].src, 0);
336
                        is_txl = true;
337
                        break;
338
                case nir_tex_src_comparitor:
339
                        compare = ntq_get_src(c, instr->src[i].src, 0);
340
                        break;
341
                case nir_tex_src_projector:
342
                        proj = qir_RCP(c, ntq_get_src(c, instr->src[i].src, 0));
343
                        s = qir_FMUL(c, s, proj);
344
                        t = qir_FMUL(c, t, proj);
345
                        has_proj = true;
346
                        break;
347
                default:
348
                        unreachable("unknown texture source");
349
                }
350
        }
351
 
352
        struct qreg texture_u[] = {
353
                qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P0, unit),
354
                qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P1, unit),
355
                qir_uniform(c, QUNIFORM_CONSTANT, 0),
356
                qir_uniform(c, QUNIFORM_CONSTANT, 0),
357
        };
358
        uint32_t next_texture_u = 0;
359
 
360
        /* There is no native support for GL texture rectangle coordinates, so
361
         * we have to rescale from ([0, width], [0, height]) to ([0, 1], [0,
362
         * 1]).
363
         */
364
        if (instr->sampler_dim == GLSL_SAMPLER_DIM_RECT) {
365
                s = qir_FMUL(c, s,
366
                             qir_uniform(c, QUNIFORM_TEXRECT_SCALE_X, unit));
367
                t = qir_FMUL(c, t,
368
                             qir_uniform(c, QUNIFORM_TEXRECT_SCALE_Y, unit));
369
        }
370
 
371
        if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE || is_txl) {
372
                texture_u[2] = qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P2,
373
                                           unit | (is_txl << 16));
374
        }
375
 
376
        if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
377
                struct qreg ma = qir_FMAXABS(c, qir_FMAXABS(c, s, t), r);
378
                struct qreg rcp_ma = qir_RCP(c, ma);
379
                s = qir_FMUL(c, s, rcp_ma);
380
                t = qir_FMUL(c, t, rcp_ma);
381
                r = qir_FMUL(c, r, rcp_ma);
382
 
383
                qir_TEX_R(c, r, texture_u[next_texture_u++]);
384
        } else if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
385
                   c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP ||
386
                   c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
387
                   c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
388
                qir_TEX_R(c, qir_uniform(c, QUNIFORM_TEXTURE_BORDER_COLOR, unit),
389
                          texture_u[next_texture_u++]);
390
        }
391
 
392
        if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP) {
393
                s = qir_SAT(c, s);
394
        }
395
 
396
        if (c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
397
                t = qir_SAT(c, t);
398
        }
399
 
400
        qir_TEX_T(c, t, texture_u[next_texture_u++]);
401
 
402
        if (is_txl || is_txb)
403
                qir_TEX_B(c, lod, texture_u[next_texture_u++]);
404
 
405
        qir_TEX_S(c, s, texture_u[next_texture_u++]);
406
 
407
        c->num_texture_samples++;
408
        struct qreg r4 = qir_TEX_RESULT(c);
409
 
410
        enum pipe_format format = c->key->tex[unit].format;
411
 
412
        struct qreg unpacked[4];
413
        if (util_format_is_depth_or_stencil(format)) {
414
                struct qreg depthf = qir_ITOF(c, qir_SHR(c, r4,
415
                                                         qir_uniform_ui(c, 8)));
416
                struct qreg normalized = qir_FMUL(c, depthf,
417
                                                  qir_uniform_f(c, 1.0f/0xffffff));
418
 
419
                struct qreg depth_output;
420
 
421
                struct qreg one = qir_uniform_f(c, 1.0f);
422
                if (c->key->tex[unit].compare_mode) {
423
                        if (has_proj)
424
                                compare = qir_FMUL(c, compare, proj);
425
 
426
                        switch (c->key->tex[unit].compare_func) {
427
                        case PIPE_FUNC_NEVER:
428
                                depth_output = qir_uniform_f(c, 0.0f);
429
                                break;
430
                        case PIPE_FUNC_ALWAYS:
431
                                depth_output = one;
432
                                break;
433
                        case PIPE_FUNC_EQUAL:
434
                                qir_SF(c, qir_FSUB(c, compare, normalized));
435
                                depth_output = qir_SEL_X_0_ZS(c, one);
436
                                break;
437
                        case PIPE_FUNC_NOTEQUAL:
438
                                qir_SF(c, qir_FSUB(c, compare, normalized));
439
                                depth_output = qir_SEL_X_0_ZC(c, one);
440
                                break;
441
                        case PIPE_FUNC_GREATER:
442
                                qir_SF(c, qir_FSUB(c, compare, normalized));
443
                                depth_output = qir_SEL_X_0_NC(c, one);
444
                                break;
445
                        case PIPE_FUNC_GEQUAL:
446
                                qir_SF(c, qir_FSUB(c, normalized, compare));
447
                                depth_output = qir_SEL_X_0_NS(c, one);
448
                                break;
449
                        case PIPE_FUNC_LESS:
450
                                qir_SF(c, qir_FSUB(c, compare, normalized));
451
                                depth_output = qir_SEL_X_0_NS(c, one);
452
                                break;
453
                        case PIPE_FUNC_LEQUAL:
454
                                qir_SF(c, qir_FSUB(c, normalized, compare));
455
                                depth_output = qir_SEL_X_0_NC(c, one);
456
                                break;
457
                        }
458
                } else {
459
                        depth_output = normalized;
460
                }
461
 
462
                for (int i = 0; i < 4; i++)
463
                        unpacked[i] = depth_output;
464
        } else {
465
                for (int i = 0; i < 4; i++)
466
                        unpacked[i] = qir_R4_UNPACK(c, r4, i);
467
        }
468
 
469
        const uint8_t *format_swiz = vc4_get_format_swizzle(format);
470
        struct qreg texture_output[4];
471
        for (int i = 0; i < 4; i++) {
472
                texture_output[i] = get_swizzled_channel(c, unpacked,
473
                                                         format_swiz[i]);
474
        }
475
 
476
        if (util_format_is_srgb(format)) {
477
                for (int i = 0; i < 3; i++)
478
                        texture_output[i] = qir_srgb_decode(c,
479
                                                            texture_output[i]);
480
        }
481
 
482
        struct qreg *dest = ntq_get_dest(c, instr->dest);
483
        for (int i = 0; i < 4; i++) {
484
                dest[i] = get_swizzled_channel(c, texture_output,
485
                                               c->key->tex[unit].swizzle[i]);
486
        }
487
}
488
 
489
/**
490
 * Computes x - floor(x), which is tricky because our FTOI truncates (rounds
491
 * to zero).
492
 */
493
static struct qreg
494
ntq_ffract(struct vc4_compile *c, struct qreg src)
495
{
496
        struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src));
497
        struct qreg diff = qir_FSUB(c, src, trunc);
498
        qir_SF(c, diff);
499
        return qir_SEL_X_Y_NS(c,
500
                              qir_FADD(c, diff, qir_uniform_f(c, 1.0)),
501
                              diff);
502
}
503
 
504
/**
505
 * Computes floor(x), which is tricky because our FTOI truncates (rounds to
506
 * zero).
507
 */
508
static struct qreg
509
ntq_ffloor(struct vc4_compile *c, struct qreg src)
510
{
511
        struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src));
512
 
513
        /* This will be < 0 if we truncated and the truncation was of a value
514
         * that was < 0 in the first place.
515
         */
516
        qir_SF(c, qir_FSUB(c, src, trunc));
517
 
518
        return qir_SEL_X_Y_NS(c,
519
                              qir_FSUB(c, trunc, qir_uniform_f(c, 1.0)),
520
                              trunc);
521
}
522
 
523
/**
524
 * Computes ceil(x), which is tricky because our FTOI truncates (rounds to
525
 * zero).
526
 */
527
static struct qreg
528
ntq_fceil(struct vc4_compile *c, struct qreg src)
529
{
530
        struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src));
531
 
532
        /* This will be < 0 if we truncated and the truncation was of a value
533
         * that was > 0 in the first place.
534
         */
535
        qir_SF(c, qir_FSUB(c, trunc, src));
536
 
537
        return qir_SEL_X_Y_NS(c,
538
                              qir_FADD(c, trunc, qir_uniform_f(c, 1.0)),
539
                              trunc);
540
}
541
 
542
static struct qreg
543
ntq_fsin(struct vc4_compile *c, struct qreg src)
544
{
545
        float coeff[] = {
546
                -2.0 * M_PI,
547
                pow(2.0 * M_PI, 3) / (3 * 2 * 1),
548
                -pow(2.0 * M_PI, 5) / (5 * 4 * 3 * 2 * 1),
549
                pow(2.0 * M_PI, 7) / (7 * 6 * 5 * 4 * 3 * 2 * 1),
550
                -pow(2.0 * M_PI, 9) / (9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
551
        };
552
 
553
        struct qreg scaled_x =
554
                qir_FMUL(c,
555
                         src,
556
                         qir_uniform_f(c, 1.0f / (M_PI * 2.0f)));
557
 
558
        struct qreg x = qir_FADD(c,
559
                                 ntq_ffract(c, scaled_x),
560
                                 qir_uniform_f(c, -0.5));
561
        struct qreg x2 = qir_FMUL(c, x, x);
562
        struct qreg sum = qir_FMUL(c, x, qir_uniform_f(c, coeff[0]));
563
        for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
564
                x = qir_FMUL(c, x, x2);
565
                sum = qir_FADD(c,
566
                               sum,
567
                               qir_FMUL(c,
568
                                        x,
569
                                        qir_uniform_f(c, coeff[i])));
570
        }
571
        return sum;
572
}
573
 
574
static struct qreg
575
ntq_fcos(struct vc4_compile *c, struct qreg src)
576
{
577
        float coeff[] = {
578
                -1.0f,
579
                pow(2.0 * M_PI, 2) / (2 * 1),
580
                -pow(2.0 * M_PI, 4) / (4 * 3 * 2 * 1),
581
                pow(2.0 * M_PI, 6) / (6 * 5 * 4 * 3 * 2 * 1),
582
                -pow(2.0 * M_PI, 8) / (8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
583
                pow(2.0 * M_PI, 10) / (10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
584
        };
585
 
586
        struct qreg scaled_x =
587
                qir_FMUL(c, src,
588
                         qir_uniform_f(c, 1.0f / (M_PI * 2.0f)));
589
        struct qreg x_frac = qir_FADD(c,
590
                                      ntq_ffract(c, scaled_x),
591
                                      qir_uniform_f(c, -0.5));
592
 
593
        struct qreg sum = qir_uniform_f(c, coeff[0]);
594
        struct qreg x2 = qir_FMUL(c, x_frac, x_frac);
595
        struct qreg x = x2; /* Current x^2, x^4, or x^6 */
596
        for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
597
                if (i != 1)
598
                        x = qir_FMUL(c, x, x2);
599
 
600
                struct qreg mul = qir_FMUL(c,
601
                                           x,
602
                                           qir_uniform_f(c, coeff[i]));
603
                if (i == 0)
604
                        sum = mul;
605
                else
606
                        sum = qir_FADD(c, sum, mul);
607
        }
608
        return sum;
609
}
610
 
611
static struct qreg
612
ntq_fsign(struct vc4_compile *c, struct qreg src)
613
{
614
        qir_SF(c, src);
615
        return qir_SEL_X_Y_NC(c,
616
                              qir_SEL_X_0_ZC(c, qir_uniform_f(c, 1.0)),
617
                              qir_uniform_f(c, -1.0));
618
}
619
 
620
static struct qreg
621
get_channel_from_vpm(struct vc4_compile *c,
622
                     struct qreg *vpm_reads,
623
                     uint8_t swiz,
624
                     const struct util_format_description *desc)
625
{
626
        const struct util_format_channel_description *chan =
627
                &desc->channel[swiz];
628
        struct qreg temp;
629
 
630
        if (swiz > UTIL_FORMAT_SWIZZLE_W)
631
                return get_swizzled_channel(c, vpm_reads, swiz);
632
        else if (chan->size == 32 &&
633
                 chan->type == UTIL_FORMAT_TYPE_FLOAT) {
634
                return get_swizzled_channel(c, vpm_reads, swiz);
635
        } else if (chan->size == 32 &&
636
                   chan->type == UTIL_FORMAT_TYPE_SIGNED) {
637
                if (chan->normalized) {
638
                        return qir_FMUL(c,
639
                                        qir_ITOF(c, vpm_reads[swiz]),
640
                                        qir_uniform_f(c,
641
                                                      1.0 / 0x7fffffff));
642
                } else {
643
                        return qir_ITOF(c, vpm_reads[swiz]);
644
                }
645
        } else if (chan->size == 8 &&
646
                   (chan->type == UTIL_FORMAT_TYPE_UNSIGNED ||
647
                    chan->type == UTIL_FORMAT_TYPE_SIGNED)) {
648
                struct qreg vpm = vpm_reads[0];
649
                if (chan->type == UTIL_FORMAT_TYPE_SIGNED) {
650
                        temp = qir_XOR(c, vpm, qir_uniform_ui(c, 0x80808080));
651
                        if (chan->normalized) {
652
                                return qir_FSUB(c, qir_FMUL(c,
653
                                                            qir_UNPACK_8_F(c, temp, swiz),
654
                                                            qir_uniform_f(c, 2.0)),
655
                                                qir_uniform_f(c, 1.0));
656
                        } else {
657
                                return qir_FADD(c,
658
                                                qir_ITOF(c,
659
                                                         qir_UNPACK_8_I(c, temp,
660
                                                                        swiz)),
661
                                                qir_uniform_f(c, -128.0));
662
                        }
663
                } else {
664
                        if (chan->normalized) {
665
                                return qir_UNPACK_8_F(c, vpm, swiz);
666
                        } else {
667
                                return qir_ITOF(c, qir_UNPACK_8_I(c, vpm, swiz));
668
                        }
669
                }
670
        } else if (chan->size == 16 &&
671
                   (chan->type == UTIL_FORMAT_TYPE_UNSIGNED ||
672
                    chan->type == UTIL_FORMAT_TYPE_SIGNED)) {
673
                struct qreg vpm = vpm_reads[swiz / 2];
674
 
675
                /* Note that UNPACK_16F eats a half float, not ints, so we use
676
                 * UNPACK_16_I for all of these.
677
                 */
678
                if (chan->type == UTIL_FORMAT_TYPE_SIGNED) {
679
                        temp = qir_ITOF(c, qir_UNPACK_16_I(c, vpm, swiz % 2));
680
                        if (chan->normalized) {
681
                                return qir_FMUL(c, temp,
682
                                                qir_uniform_f(c, 1/32768.0f));
683
                        } else {
684
                                return temp;
685
                        }
686
                } else {
687
                        /* UNPACK_16I sign-extends, so we have to emit ANDs. */
688
                        temp = vpm;
689
                        if (swiz == 1 || swiz == 3)
690
                                temp = qir_UNPACK_16_I(c, temp, 1);
691
                        temp = qir_AND(c, temp, qir_uniform_ui(c, 0xffff));
692
                        temp = qir_ITOF(c, temp);
693
 
694
                        if (chan->normalized) {
695
                                return qir_FMUL(c, temp,
696
                                                qir_uniform_f(c, 1 / 65535.0));
697
                        } else {
698
                                return temp;
699
                        }
700
                }
701
        } else {
702
                return c->undef;
703
        }
704
}
705
 
706
static void
707
emit_vertex_input(struct vc4_compile *c, int attr)
708
{
709
        enum pipe_format format = c->vs_key->attr_formats[attr];
710
        uint32_t attr_size = util_format_get_blocksize(format);
711
        struct qreg vpm_reads[4];
712
 
713
        c->vattr_sizes[attr] = align(attr_size, 4);
714
        for (int i = 0; i < align(attr_size, 4) / 4; i++) {
715
                struct qreg vpm = { QFILE_VPM, attr * 4 + i };
716
                vpm_reads[i] = qir_MOV(c, vpm);
717
                c->num_inputs++;
718
        }
719
 
720
        bool format_warned = false;
721
        const struct util_format_description *desc =
722
                util_format_description(format);
723
 
724
        for (int i = 0; i < 4; i++) {
725
                uint8_t swiz = desc->swizzle[i];
726
                struct qreg result = get_channel_from_vpm(c, vpm_reads,
727
                                                          swiz, desc);
728
 
729
                if (result.file == QFILE_NULL) {
730
                        if (!format_warned) {
731
                                fprintf(stderr,
732
                                        "vtx element %d unsupported type: %s\n",
733
                                        attr, util_format_name(format));
734
                                format_warned = true;
735
                        }
736
                        result = qir_uniform_f(c, 0.0);
737
                }
738
                c->inputs[attr * 4 + i] = result;
739
        }
740
}
741
 
742
static void
743
emit_fragcoord_input(struct vc4_compile *c, int attr)
744
{
745
        c->inputs[attr * 4 + 0] = qir_FRAG_X(c);
746
        c->inputs[attr * 4 + 1] = qir_FRAG_Y(c);
747
        c->inputs[attr * 4 + 2] =
748
                qir_FMUL(c,
749
                         qir_ITOF(c, qir_FRAG_Z(c)),
750
                         qir_uniform_f(c, 1.0 / 0xffffff));
751
        c->inputs[attr * 4 + 3] = qir_RCP(c, qir_FRAG_W(c));
752
}
753
 
754
static void
755
emit_point_coord_input(struct vc4_compile *c, int attr)
756
{
757
        if (c->point_x.file == QFILE_NULL) {
758
                c->point_x = qir_uniform_f(c, 0.0);
759
                c->point_y = qir_uniform_f(c, 0.0);
760
        }
761
 
762
        c->inputs[attr * 4 + 0] = c->point_x;
763
        if (c->fs_key->point_coord_upper_left) {
764
                c->inputs[attr * 4 + 1] = qir_FSUB(c,
765
                                                   qir_uniform_f(c, 1.0),
766
                                                   c->point_y);
767
        } else {
768
                c->inputs[attr * 4 + 1] = c->point_y;
769
        }
770
        c->inputs[attr * 4 + 2] = qir_uniform_f(c, 0.0);
771
        c->inputs[attr * 4 + 3] = qir_uniform_f(c, 1.0);
772
}
773
 
774
static struct qreg
775
emit_fragment_varying(struct vc4_compile *c, uint8_t semantic,
776
                      uint8_t index, uint8_t swizzle)
777
{
778
        uint32_t i = c->num_input_semantics++;
779
        struct qreg vary = {
780
                QFILE_VARY,
781
                i
782
        };
783
 
784
        if (c->num_input_semantics >= c->input_semantics_array_size) {
785
                c->input_semantics_array_size =
786
                        MAX2(4, c->input_semantics_array_size * 2);
787
 
788
                c->input_semantics = reralloc(c, c->input_semantics,
789
                                              struct vc4_varying_semantic,
790
                                              c->input_semantics_array_size);
791
        }
792
 
793
        c->input_semantics[i].semantic = semantic;
794
        c->input_semantics[i].index = index;
795
        c->input_semantics[i].swizzle = swizzle;
796
 
797
        return qir_VARY_ADD_C(c, qir_FMUL(c, vary, qir_FRAG_W(c)));
798
}
799
 
800
static void
801
emit_fragment_input(struct vc4_compile *c, int attr,
802
                    unsigned semantic_name, unsigned semantic_index)
803
{
804
        for (int i = 0; i < 4; i++) {
805
                c->inputs[attr * 4 + i] =
806
                        emit_fragment_varying(c,
807
                                              semantic_name,
808
                                              semantic_index,
809
                                              i);
810
                c->num_inputs++;
811
        }
812
}
813
 
814
static void
815
emit_face_input(struct vc4_compile *c, int attr)
816
{
817
        c->inputs[attr * 4 + 0] = qir_FSUB(c,
818
                                           qir_uniform_f(c, 1.0),
819
                                           qir_FMUL(c,
820
                                                    qir_ITOF(c, qir_FRAG_REV_FLAG(c)),
821
                                                    qir_uniform_f(c, 2.0)));
822
        c->inputs[attr * 4 + 1] = qir_uniform_f(c, 0.0);
823
        c->inputs[attr * 4 + 2] = qir_uniform_f(c, 0.0);
824
        c->inputs[attr * 4 + 3] = qir_uniform_f(c, 1.0);
825
}
826
 
827
static void
828
add_output(struct vc4_compile *c,
829
           uint32_t decl_offset,
830
           uint8_t semantic_name,
831
           uint8_t semantic_index,
832
           uint8_t semantic_swizzle)
833
{
834
        uint32_t old_array_size = c->outputs_array_size;
835
        resize_qreg_array(c, &c->outputs, &c->outputs_array_size,
836
                          decl_offset + 1);
837
 
838
        if (old_array_size != c->outputs_array_size) {
839
                c->output_semantics = reralloc(c,
840
                                               c->output_semantics,
841
                                               struct vc4_varying_semantic,
842
                                               c->outputs_array_size);
843
        }
844
 
845
        c->output_semantics[decl_offset].semantic = semantic_name;
846
        c->output_semantics[decl_offset].index = semantic_index;
847
        c->output_semantics[decl_offset].swizzle = semantic_swizzle;
848
}
849
 
850
static void
851
declare_uniform_range(struct vc4_compile *c, uint32_t start, uint32_t size)
852
{
853
        unsigned array_id = c->num_uniform_ranges++;
854
        if (array_id >= c->ubo_ranges_array_size) {
855
                c->ubo_ranges_array_size = MAX2(c->ubo_ranges_array_size * 2,
856
                                                array_id + 1);
857
                c->ubo_ranges = reralloc(c, c->ubo_ranges,
858
                                         struct vc4_compiler_ubo_range,
859
                                         c->ubo_ranges_array_size);
860
        }
861
 
862
        c->ubo_ranges[array_id].dst_offset = 0;
863
        c->ubo_ranges[array_id].src_offset = start;
864
        c->ubo_ranges[array_id].size = size;
865
        c->ubo_ranges[array_id].used = false;
866
}
867
 
868
static void
869
ntq_emit_alu(struct vc4_compile *c, nir_alu_instr *instr)
870
{
871
        /* Vectors are special in that they have non-scalarized writemasks,
872
         * and just take the first swizzle channel for each argument in order
873
         * into each writemask channel.
874
         */
875
        if (instr->op == nir_op_vec2 ||
876
            instr->op == nir_op_vec3 ||
877
            instr->op == nir_op_vec4) {
878
                struct qreg srcs[4];
879
                for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
880
                        srcs[i] = ntq_get_src(c, instr->src[i].src,
881
                                              instr->src[i].swizzle[0]);
882
                struct qreg *dest = ntq_get_dest(c, instr->dest.dest);
883
                for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
884
                        dest[i] = srcs[i];
885
                return;
886
        }
887
 
888
        /* General case: We can just grab the one used channel per src. */
889
        struct qreg src[nir_op_infos[instr->op].num_inputs];
890
        for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
891
                src[i] = ntq_get_alu_src(c, instr, i);
892
        }
893
 
894
        /* Pick the channel to store the output in. */
895
        assert(!instr->dest.saturate);
896
        struct qreg *dest = ntq_get_dest(c, instr->dest.dest);
897
        assert(util_is_power_of_two(instr->dest.write_mask));
898
        dest += ffs(instr->dest.write_mask) - 1;
899
 
900
        switch (instr->op) {
901
        case nir_op_fmov:
902
        case nir_op_imov:
903
                *dest = qir_MOV(c, src[0]);
904
                break;
905
        case nir_op_fmul:
906
                *dest = qir_FMUL(c, src[0], src[1]);
907
                break;
908
        case nir_op_fadd:
909
                *dest = qir_FADD(c, src[0], src[1]);
910
                break;
911
        case nir_op_fsub:
912
                *dest = qir_FSUB(c, src[0], src[1]);
913
                break;
914
        case nir_op_fmin:
915
                *dest = qir_FMIN(c, src[0], src[1]);
916
                break;
917
        case nir_op_fmax:
918
                *dest = qir_FMAX(c, src[0], src[1]);
919
                break;
920
 
921
        case nir_op_f2i:
922
        case nir_op_f2u:
923
                *dest = qir_FTOI(c, src[0]);
924
                break;
925
        case nir_op_i2f:
926
        case nir_op_u2f:
927
                *dest = qir_ITOF(c, src[0]);
928
                break;
929
        case nir_op_b2f:
930
                *dest = qir_AND(c, src[0], qir_uniform_f(c, 1.0));
931
                break;
932
        case nir_op_b2i:
933
                *dest = qir_AND(c, src[0], qir_uniform_ui(c, 1));
934
                break;
935
        case nir_op_i2b:
936
        case nir_op_f2b:
937
                qir_SF(c, src[0]);
938
                *dest = qir_SEL_X_0_ZC(c, qir_uniform_ui(c, ~0));
939
                break;
940
 
941
        case nir_op_iadd:
942
                *dest = qir_ADD(c, src[0], src[1]);
943
                break;
944
        case nir_op_ushr:
945
                *dest = qir_SHR(c, src[0], src[1]);
946
                break;
947
        case nir_op_isub:
948
                *dest = qir_SUB(c, src[0], src[1]);
949
                break;
950
        case nir_op_ishr:
951
                *dest = qir_ASR(c, src[0], src[1]);
952
                break;
953
        case nir_op_ishl:
954
                *dest = qir_SHL(c, src[0], src[1]);
955
                break;
956
        case nir_op_imin:
957
                *dest = qir_MIN(c, src[0], src[1]);
958
                break;
959
        case nir_op_imax:
960
                *dest = qir_MAX(c, src[0], src[1]);
961
                break;
962
        case nir_op_iand:
963
                *dest = qir_AND(c, src[0], src[1]);
964
                break;
965
        case nir_op_ior:
966
                *dest = qir_OR(c, src[0], src[1]);
967
                break;
968
        case nir_op_ixor:
969
                *dest = qir_XOR(c, src[0], src[1]);
970
                break;
971
        case nir_op_inot:
972
                *dest = qir_NOT(c, src[0]);
973
                break;
974
 
975
        case nir_op_imul:
976
                *dest = ntq_umul(c, src[0], src[1]);
977
                break;
978
 
979
        case nir_op_seq:
980
                qir_SF(c, qir_FSUB(c, src[0], src[1]));
981
                *dest = qir_SEL_X_0_ZS(c, qir_uniform_f(c, 1.0));
982
                break;
983
        case nir_op_sne:
984
                qir_SF(c, qir_FSUB(c, src[0], src[1]));
985
                *dest = qir_SEL_X_0_ZC(c, qir_uniform_f(c, 1.0));
986
                break;
987
        case nir_op_sge:
988
                qir_SF(c, qir_FSUB(c, src[0], src[1]));
989
                *dest = qir_SEL_X_0_NC(c, qir_uniform_f(c, 1.0));
990
                break;
991
        case nir_op_slt:
992
                qir_SF(c, qir_FSUB(c, src[0], src[1]));
993
                *dest = qir_SEL_X_0_NS(c, qir_uniform_f(c, 1.0));
994
                break;
995
        case nir_op_feq:
996
                qir_SF(c, qir_FSUB(c, src[0], src[1]));
997
                *dest = qir_SEL_X_0_ZS(c, qir_uniform_ui(c, ~0));
998
                break;
999
        case nir_op_fne:
1000
                qir_SF(c, qir_FSUB(c, src[0], src[1]));
1001
                *dest = qir_SEL_X_0_ZC(c, qir_uniform_ui(c, ~0));
1002
                break;
1003
        case nir_op_fge:
1004
                qir_SF(c, qir_FSUB(c, src[0], src[1]));
1005
                *dest = qir_SEL_X_0_NC(c, qir_uniform_ui(c, ~0));
1006
                break;
1007
        case nir_op_flt:
1008
                qir_SF(c, qir_FSUB(c, src[0], src[1]));
1009
                *dest = qir_SEL_X_0_NS(c, qir_uniform_ui(c, ~0));
1010
                break;
1011
        case nir_op_ieq:
1012
                qir_SF(c, qir_SUB(c, src[0], src[1]));
1013
                *dest = qir_SEL_X_0_ZS(c, qir_uniform_ui(c, ~0));
1014
                break;
1015
        case nir_op_ine:
1016
                qir_SF(c, qir_SUB(c, src[0], src[1]));
1017
                *dest = qir_SEL_X_0_ZC(c, qir_uniform_ui(c, ~0));
1018
                break;
1019
        case nir_op_ige:
1020
                qir_SF(c, qir_SUB(c, src[0], src[1]));
1021
                *dest = qir_SEL_X_0_NC(c, qir_uniform_ui(c, ~0));
1022
                break;
1023
        case nir_op_ilt:
1024
                qir_SF(c, qir_SUB(c, src[0], src[1]));
1025
                *dest = qir_SEL_X_0_NS(c, qir_uniform_ui(c, ~0));
1026
                break;
1027
 
1028
        case nir_op_bcsel:
1029
                qir_SF(c, src[0]);
1030
                *dest = qir_SEL_X_Y_NS(c, src[1], src[2]);
1031
                break;
1032
        case nir_op_fcsel:
1033
                qir_SF(c, src[0]);
1034
                *dest = qir_SEL_X_Y_ZC(c, src[1], src[2]);
1035
                break;
1036
 
1037
        case nir_op_frcp:
1038
                *dest = ntq_rcp(c, src[0]);
1039
                break;
1040
        case nir_op_frsq:
1041
                *dest = ntq_rsq(c, src[0]);
1042
                break;
1043
        case nir_op_fexp2:
1044
                *dest = qir_EXP2(c, src[0]);
1045
                break;
1046
        case nir_op_flog2:
1047
                *dest = qir_LOG2(c, src[0]);
1048
                break;
1049
 
1050
        case nir_op_ftrunc:
1051
                *dest = qir_ITOF(c, qir_FTOI(c, src[0]));
1052
                break;
1053
        case nir_op_fceil:
1054
                *dest = ntq_fceil(c, src[0]);
1055
                break;
1056
        case nir_op_ffract:
1057
                *dest = ntq_ffract(c, src[0]);
1058
                break;
1059
        case nir_op_ffloor:
1060
                *dest = ntq_ffloor(c, src[0]);
1061
                break;
1062
 
1063
        case nir_op_fsin:
1064
                *dest = ntq_fsin(c, src[0]);
1065
                break;
1066
        case nir_op_fcos:
1067
                *dest = ntq_fcos(c, src[0]);
1068
                break;
1069
 
1070
        case nir_op_fsign:
1071
                *dest = ntq_fsign(c, src[0]);
1072
                break;
1073
 
1074
        case nir_op_fabs:
1075
                *dest = qir_FMAXABS(c, src[0], src[0]);
1076
                break;
1077
        case nir_op_iabs:
1078
                *dest = qir_MAX(c, src[0],
1079
                                qir_SUB(c, qir_uniform_ui(c, 0), src[0]));
1080
                break;
1081
 
1082
        default:
1083
                fprintf(stderr, "unknown NIR ALU inst: ");
1084
                nir_print_instr(&instr->instr, stderr);
1085
                fprintf(stderr, "\n");
1086
                abort();
1087
        }
1088
}
1089
 
1090
static struct qreg
1091
vc4_blend_channel(struct vc4_compile *c,
1092
                  struct qreg *dst,
1093
                  struct qreg *src,
1094
                  struct qreg val,
1095
                  unsigned factor,
1096
                  int channel)
1097
{
1098
        switch(factor) {
1099
        case PIPE_BLENDFACTOR_ONE:
1100
                return val;
1101
        case PIPE_BLENDFACTOR_SRC_COLOR:
1102
                return qir_FMUL(c, val, src[channel]);
1103
        case PIPE_BLENDFACTOR_SRC_ALPHA:
1104
                return qir_FMUL(c, val, src[3]);
1105
        case PIPE_BLENDFACTOR_DST_ALPHA:
1106
                return qir_FMUL(c, val, dst[3]);
1107
        case PIPE_BLENDFACTOR_DST_COLOR:
1108
                return qir_FMUL(c, val, dst[channel]);
1109
        case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
1110
                if (channel != 3) {
1111
                        return qir_FMUL(c,
1112
                                        val,
1113
                                        qir_FMIN(c,
1114
                                                 src[3],
1115
                                                 qir_FSUB(c,
1116
                                                          qir_uniform_f(c, 1.0),
1117
                                                          dst[3])));
1118
                } else {
1119
                        return val;
1120
                }
1121
        case PIPE_BLENDFACTOR_CONST_COLOR:
1122
                return qir_FMUL(c, val,
1123
                                qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR,
1124
                                            channel));
1125
        case PIPE_BLENDFACTOR_CONST_ALPHA:
1126
                return qir_FMUL(c, val,
1127
                                qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR, 3));
1128
        case PIPE_BLENDFACTOR_ZERO:
1129
                return qir_uniform_f(c, 0.0);
1130
        case PIPE_BLENDFACTOR_INV_SRC_COLOR:
1131
                return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(c, 1.0),
1132
                                                 src[channel]));
1133
        case PIPE_BLENDFACTOR_INV_SRC_ALPHA:
1134
                return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(c, 1.0),
1135
                                                 src[3]));
1136
        case PIPE_BLENDFACTOR_INV_DST_ALPHA:
1137
                return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(c, 1.0),
1138
                                                 dst[3]));
1139
        case PIPE_BLENDFACTOR_INV_DST_COLOR:
1140
                return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(c, 1.0),
1141
                                                 dst[channel]));
1142
        case PIPE_BLENDFACTOR_INV_CONST_COLOR:
1143
                return qir_FMUL(c, val,
1144
                                qir_FSUB(c, qir_uniform_f(c, 1.0),
1145
                                         qir_uniform(c,
1146
                                                     QUNIFORM_BLEND_CONST_COLOR,
1147
                                                     channel)));
1148
        case PIPE_BLENDFACTOR_INV_CONST_ALPHA:
1149
                return qir_FMUL(c, val,
1150
                                qir_FSUB(c, qir_uniform_f(c, 1.0),
1151
                                         qir_uniform(c,
1152
                                                     QUNIFORM_BLEND_CONST_COLOR,
1153
                                                     3)));
1154
 
1155
        default:
1156
        case PIPE_BLENDFACTOR_SRC1_COLOR:
1157
        case PIPE_BLENDFACTOR_SRC1_ALPHA:
1158
        case PIPE_BLENDFACTOR_INV_SRC1_COLOR:
1159
        case PIPE_BLENDFACTOR_INV_SRC1_ALPHA:
1160
                /* Unsupported. */
1161
                fprintf(stderr, "Unknown blend factor %d\n", factor);
1162
                return val;
1163
        }
1164
}
1165
 
1166
static struct qreg
1167
vc4_blend_func(struct vc4_compile *c,
1168
               struct qreg src, struct qreg dst,
1169
               unsigned func)
1170
{
1171
        switch (func) {
1172
        case PIPE_BLEND_ADD:
1173
                return qir_FADD(c, src, dst);
1174
        case PIPE_BLEND_SUBTRACT:
1175
                return qir_FSUB(c, src, dst);
1176
        case PIPE_BLEND_REVERSE_SUBTRACT:
1177
                return qir_FSUB(c, dst, src);
1178
        case PIPE_BLEND_MIN:
1179
                return qir_FMIN(c, src, dst);
1180
        case PIPE_BLEND_MAX:
1181
                return qir_FMAX(c, src, dst);
1182
 
1183
        default:
1184
                /* Unsupported. */
1185
                fprintf(stderr, "Unknown blend func %d\n", func);
1186
                return src;
1187
 
1188
        }
1189
}
1190
 
1191
/**
1192
 * Implements fixed function blending in shader code.
1193
 *
1194
 * VC4 doesn't have any hardware support for blending.  Instead, you read the
1195
 * current contents of the destination from the tile buffer after having
1196
 * waited for the scoreboard (which is handled by vc4_qpu_emit.c), then do
1197
 * math using your output color and that destination value, and update the
1198
 * output color appropriately.
1199
 */
1200
static void
1201
vc4_blend(struct vc4_compile *c, struct qreg *result,
1202
          struct qreg *dst_color, struct qreg *src_color)
1203
{
1204
        struct pipe_rt_blend_state *blend = &c->fs_key->blend;
1205
 
1206
        if (!blend->blend_enable) {
1207
                for (int i = 0; i < 4; i++)
1208
                        result[i] = src_color[i];
1209
                return;
1210
        }
1211
 
1212
        struct qreg clamped_src[4];
1213
        struct qreg clamped_dst[4];
1214
        for (int i = 0; i < 4; i++) {
1215
                clamped_src[i] = qir_SAT(c, src_color[i]);
1216
                clamped_dst[i] = qir_SAT(c, dst_color[i]);
1217
        }
1218
        src_color = clamped_src;
1219
        dst_color = clamped_dst;
1220
 
1221
        struct qreg src_blend[4], dst_blend[4];
1222
        for (int i = 0; i < 3; i++) {
1223
                src_blend[i] = vc4_blend_channel(c,
1224
                                                 dst_color, src_color,
1225
                                                 src_color[i],
1226
                                                 blend->rgb_src_factor, i);
1227
                dst_blend[i] = vc4_blend_channel(c,
1228
                                                 dst_color, src_color,
1229
                                                 dst_color[i],
1230
                                                 blend->rgb_dst_factor, i);
1231
        }
1232
        src_blend[3] = vc4_blend_channel(c,
1233
                                         dst_color, src_color,
1234
                                         src_color[3],
1235
                                         blend->alpha_src_factor, 3);
1236
        dst_blend[3] = vc4_blend_channel(c,
1237
                                         dst_color, src_color,
1238
                                         dst_color[3],
1239
                                         blend->alpha_dst_factor, 3);
1240
 
1241
        for (int i = 0; i < 3; i++) {
1242
                result[i] = vc4_blend_func(c,
1243
                                           src_blend[i], dst_blend[i],
1244
                                           blend->rgb_func);
1245
        }
1246
        result[3] = vc4_blend_func(c,
1247
                                   src_blend[3], dst_blend[3],
1248
                                   blend->alpha_func);
1249
}
1250
 
1251
static void
1252
clip_distance_discard(struct vc4_compile *c)
1253
{
1254
        for (int i = 0; i < PIPE_MAX_CLIP_PLANES; i++) {
1255
                if (!(c->key->ucp_enables & (1 << i)))
1256
                        continue;
1257
 
1258
                struct qreg dist = emit_fragment_varying(c,
1259
                                                         TGSI_SEMANTIC_CLIPDIST,
1260
                                                         i,
1261
                                                         TGSI_SWIZZLE_X);
1262
 
1263
                qir_SF(c, dist);
1264
 
1265
                if (c->discard.file == QFILE_NULL)
1266
                        c->discard = qir_uniform_ui(c, 0);
1267
 
1268
                c->discard = qir_SEL_X_Y_NS(c, qir_uniform_ui(c, ~0),
1269
                                            c->discard);
1270
        }
1271
}
1272
 
1273
static void
1274
alpha_test_discard(struct vc4_compile *c)
1275
{
1276
        struct qreg src_alpha;
1277
        struct qreg alpha_ref = qir_uniform(c, QUNIFORM_ALPHA_REF, 0);
1278
 
1279
        if (!c->fs_key->alpha_test)
1280
                return;
1281
 
1282
        if (c->output_color_index != -1)
1283
                src_alpha = c->outputs[c->output_color_index + 3];
1284
        else
1285
                src_alpha = qir_uniform_f(c, 1.0);
1286
 
1287
        if (c->discard.file == QFILE_NULL)
1288
                c->discard = qir_uniform_ui(c, 0);
1289
 
1290
        switch (c->fs_key->alpha_test_func) {
1291
        case PIPE_FUNC_NEVER:
1292
                c->discard = qir_uniform_ui(c, ~0);
1293
                break;
1294
        case PIPE_FUNC_ALWAYS:
1295
                break;
1296
        case PIPE_FUNC_EQUAL:
1297
                qir_SF(c, qir_FSUB(c, src_alpha, alpha_ref));
1298
                c->discard = qir_SEL_X_Y_ZS(c, c->discard,
1299
                                            qir_uniform_ui(c, ~0));
1300
                break;
1301
        case PIPE_FUNC_NOTEQUAL:
1302
                qir_SF(c, qir_FSUB(c, src_alpha, alpha_ref));
1303
                c->discard = qir_SEL_X_Y_ZC(c, c->discard,
1304
                                            qir_uniform_ui(c, ~0));
1305
                break;
1306
        case PIPE_FUNC_GREATER:
1307
                qir_SF(c, qir_FSUB(c, src_alpha, alpha_ref));
1308
                c->discard = qir_SEL_X_Y_NC(c, c->discard,
1309
                                            qir_uniform_ui(c, ~0));
1310
                break;
1311
        case PIPE_FUNC_GEQUAL:
1312
                qir_SF(c, qir_FSUB(c, alpha_ref, src_alpha));
1313
                c->discard = qir_SEL_X_Y_NS(c, c->discard,
1314
                                            qir_uniform_ui(c, ~0));
1315
                break;
1316
        case PIPE_FUNC_LESS:
1317
                qir_SF(c, qir_FSUB(c, src_alpha, alpha_ref));
1318
                c->discard = qir_SEL_X_Y_NS(c, c->discard,
1319
                                            qir_uniform_ui(c, ~0));
1320
                break;
1321
        case PIPE_FUNC_LEQUAL:
1322
                qir_SF(c, qir_FSUB(c, alpha_ref, src_alpha));
1323
                c->discard = qir_SEL_X_Y_NC(c, c->discard,
1324
                                            qir_uniform_ui(c, ~0));
1325
                break;
1326
        }
1327
}
1328
 
1329
static struct qreg
1330
vc4_logicop(struct vc4_compile *c, struct qreg src, struct qreg dst)
1331
{
1332
        switch (c->fs_key->logicop_func) {
1333
        case PIPE_LOGICOP_CLEAR:
1334
                return qir_uniform_f(c, 0.0);
1335
        case PIPE_LOGICOP_NOR:
1336
                return qir_NOT(c, qir_OR(c, src, dst));
1337
        case PIPE_LOGICOP_AND_INVERTED:
1338
                return qir_AND(c, qir_NOT(c, src), dst);
1339
        case PIPE_LOGICOP_COPY_INVERTED:
1340
                return qir_NOT(c, src);
1341
        case PIPE_LOGICOP_AND_REVERSE:
1342
                return qir_AND(c, src, qir_NOT(c, dst));
1343
        case PIPE_LOGICOP_INVERT:
1344
                return qir_NOT(c, dst);
1345
        case PIPE_LOGICOP_XOR:
1346
                return qir_XOR(c, src, dst);
1347
        case PIPE_LOGICOP_NAND:
1348
                return qir_NOT(c, qir_AND(c, src, dst));
1349
        case PIPE_LOGICOP_AND:
1350
                return qir_AND(c, src, dst);
1351
        case PIPE_LOGICOP_EQUIV:
1352
                return qir_NOT(c, qir_XOR(c, src, dst));
1353
        case PIPE_LOGICOP_NOOP:
1354
                return dst;
1355
        case PIPE_LOGICOP_OR_INVERTED:
1356
                return qir_OR(c, qir_NOT(c, src), dst);
1357
        case PIPE_LOGICOP_OR_REVERSE:
1358
                return qir_OR(c, src, qir_NOT(c, dst));
1359
        case PIPE_LOGICOP_OR:
1360
                return qir_OR(c, src, dst);
1361
        case PIPE_LOGICOP_SET:
1362
                return qir_uniform_ui(c, ~0);
1363
        case PIPE_LOGICOP_COPY:
1364
        default:
1365
                return src;
1366
        }
1367
}
1368
 
1369
static void
1370
emit_frag_end(struct vc4_compile *c)
1371
{
1372
        clip_distance_discard(c);
1373
        alpha_test_discard(c);
1374
 
1375
        enum pipe_format color_format = c->fs_key->color_format;
1376
        const uint8_t *format_swiz = vc4_get_format_swizzle(color_format);
1377
        struct qreg tlb_read_color[4] = { c->undef, c->undef, c->undef, c->undef };
1378
        struct qreg dst_color[4] = { c->undef, c->undef, c->undef, c->undef };
1379
        struct qreg linear_dst_color[4] = { c->undef, c->undef, c->undef, c->undef };
1380
        struct qreg packed_dst_color = c->undef;
1381
 
1382
        if (c->fs_key->blend.blend_enable ||
1383
            c->fs_key->blend.colormask != 0xf ||
1384
            c->fs_key->logicop_func != PIPE_LOGICOP_COPY) {
1385
                struct qreg r4 = qir_TLB_COLOR_READ(c);
1386
                for (int i = 0; i < 4; i++)
1387
                        tlb_read_color[i] = qir_R4_UNPACK(c, r4, i);
1388
                for (int i = 0; i < 4; i++) {
1389
                        dst_color[i] = get_swizzled_channel(c,
1390
                                                            tlb_read_color,
1391
                                                            format_swiz[i]);
1392
                        if (util_format_is_srgb(color_format) && i != 3) {
1393
                                linear_dst_color[i] =
1394
                                        qir_srgb_decode(c, dst_color[i]);
1395
                        } else {
1396
                                linear_dst_color[i] = dst_color[i];
1397
                        }
1398
                }
1399
 
1400
                /* Save the packed value for logic ops.  Can't reuse r4
1401
                 * because other things might smash it (like sRGB)
1402
                 */
1403
                packed_dst_color = qir_MOV(c, r4);
1404
        }
1405
 
1406
        struct qreg blend_color[4];
1407
        struct qreg undef_array[4] = {
1408
                c->undef, c->undef, c->undef, c->undef
1409
        };
1410
        vc4_blend(c, blend_color, linear_dst_color,
1411
                  (c->output_color_index != -1 ?
1412
                   c->outputs + c->output_color_index :
1413
                   undef_array));
1414
 
1415
        if (util_format_is_srgb(color_format)) {
1416
                for (int i = 0; i < 3; i++)
1417
                        blend_color[i] = qir_srgb_encode(c, blend_color[i]);
1418
        }
1419
 
1420
        /* Debug: Sometimes you're getting a black output and just want to see
1421
         * if the FS is getting executed at all.  Spam magenta into the color
1422
         * output.
1423
         */
1424
        if (0) {
1425
                blend_color[0] = qir_uniform_f(c, 1.0);
1426
                blend_color[1] = qir_uniform_f(c, 0.0);
1427
                blend_color[2] = qir_uniform_f(c, 1.0);
1428
                blend_color[3] = qir_uniform_f(c, 0.5);
1429
        }
1430
 
1431
        struct qreg swizzled_outputs[4];
1432
        for (int i = 0; i < 4; i++) {
1433
                swizzled_outputs[i] = get_swizzled_channel(c, blend_color,
1434
                                                           format_swiz[i]);
1435
        }
1436
 
1437
        if (c->discard.file != QFILE_NULL)
1438
                qir_TLB_DISCARD_SETUP(c, c->discard);
1439
 
1440
        if (c->fs_key->stencil_enabled) {
1441
                qir_TLB_STENCIL_SETUP(c, qir_uniform(c, QUNIFORM_STENCIL, 0));
1442
                if (c->fs_key->stencil_twoside) {
1443
                        qir_TLB_STENCIL_SETUP(c, qir_uniform(c, QUNIFORM_STENCIL, 1));
1444
                }
1445
                if (c->fs_key->stencil_full_writemasks) {
1446
                        qir_TLB_STENCIL_SETUP(c, qir_uniform(c, QUNIFORM_STENCIL, 2));
1447
                }
1448
        }
1449
 
1450
        if (c->fs_key->depth_enabled) {
1451
                struct qreg z;
1452
                if (c->output_position_index != -1) {
1453
                        z = qir_FTOI(c, qir_FMUL(c, c->outputs[c->output_position_index + 2],
1454
                                                 qir_uniform_f(c, 0xffffff)));
1455
                } else {
1456
                        z = qir_FRAG_Z(c);
1457
                }
1458
                qir_TLB_Z_WRITE(c, z);
1459
        }
1460
 
1461
        struct qreg packed_color = c->undef;
1462
        for (int i = 0; i < 4; i++) {
1463
                if (swizzled_outputs[i].file == QFILE_NULL)
1464
                        continue;
1465
                if (packed_color.file == QFILE_NULL) {
1466
                        packed_color = qir_PACK_8888_F(c, swizzled_outputs[i]);
1467
                } else {
1468
                        packed_color = qir_PACK_8_F(c,
1469
                                                    packed_color,
1470
                                                    swizzled_outputs[i],
1471
                                                    i);
1472
                }
1473
        }
1474
 
1475
        if (packed_color.file == QFILE_NULL)
1476
                packed_color = qir_uniform_ui(c, 0);
1477
 
1478
        if (c->fs_key->logicop_func != PIPE_LOGICOP_COPY) {
1479
                packed_color = vc4_logicop(c, packed_color, packed_dst_color);
1480
        }
1481
 
1482
        /* If the bit isn't set in the color mask, then just return the
1483
         * original dst color, instead.
1484
         */
1485
        uint32_t colormask = 0xffffffff;
1486
        for (int i = 0; i < 4; i++) {
1487
                if (format_swiz[i] < 4 &&
1488
                    !(c->fs_key->blend.colormask & (1 << format_swiz[i]))) {
1489
                        colormask &= ~(0xff << (i * 8));
1490
                }
1491
        }
1492
        if (colormask != 0xffffffff) {
1493
                packed_color = qir_OR(c,
1494
                                      qir_AND(c, packed_color,
1495
                                              qir_uniform_ui(c, colormask)),
1496
                                      qir_AND(c, packed_dst_color,
1497
                                              qir_uniform_ui(c, ~colormask)));
1498
        }
1499
 
1500
        qir_emit(c, qir_inst(QOP_TLB_COLOR_WRITE, c->undef,
1501
                             packed_color, c->undef));
1502
}
1503
 
1504
static void
1505
emit_scaled_viewport_write(struct vc4_compile *c, struct qreg rcp_w)
1506
{
1507
        struct qreg xyi[2];
1508
 
1509
        for (int i = 0; i < 2; i++) {
1510
                struct qreg scale =
1511
                        qir_uniform(c, QUNIFORM_VIEWPORT_X_SCALE + i, 0);
1512
 
1513
                xyi[i] = qir_FTOI(c, qir_FMUL(c,
1514
                                              qir_FMUL(c,
1515
                                                       c->outputs[c->output_position_index + i],
1516
                                                       scale),
1517
                                              rcp_w));
1518
        }
1519
 
1520
        qir_VPM_WRITE(c, qir_PACK_SCALED(c, xyi[0], xyi[1]));
1521
}
1522
 
1523
static void
1524
emit_zs_write(struct vc4_compile *c, struct qreg rcp_w)
1525
{
1526
        struct qreg zscale = qir_uniform(c, QUNIFORM_VIEWPORT_Z_SCALE, 0);
1527
        struct qreg zoffset = qir_uniform(c, QUNIFORM_VIEWPORT_Z_OFFSET, 0);
1528
 
1529
        qir_VPM_WRITE(c, qir_FADD(c, qir_FMUL(c, qir_FMUL(c,
1530
                                                          c->outputs[c->output_position_index + 2],
1531
                                                          zscale),
1532
                                              rcp_w),
1533
                                  zoffset));
1534
}
1535
 
1536
static void
1537
emit_rcp_wc_write(struct vc4_compile *c, struct qreg rcp_w)
1538
{
1539
        qir_VPM_WRITE(c, rcp_w);
1540
}
1541
 
1542
static void
1543
emit_point_size_write(struct vc4_compile *c)
1544
{
1545
        struct qreg point_size;
1546
 
1547
        if (c->output_point_size_index != -1)
1548
                point_size = c->outputs[c->output_point_size_index + 3];
1549
        else
1550
                point_size = qir_uniform_f(c, 1.0);
1551
 
1552
        /* Workaround: HW-2726 PTB does not handle zero-size points (BCM2835,
1553
         * BCM21553).
1554
         */
1555
        point_size = qir_FMAX(c, point_size, qir_uniform_f(c, .125));
1556
 
1557
        qir_VPM_WRITE(c, point_size);
1558
}
1559
 
1560
/**
1561
 * Emits a VPM read of the stub vertex attribute set up by vc4_draw.c.
1562
 *
1563
 * The simulator insists that there be at least one vertex attribute, so
1564
 * vc4_draw.c will emit one if it wouldn't have otherwise.  The simulator also
1565
 * insists that all vertex attributes loaded get read by the VS/CS, so we have
1566
 * to consume it here.
1567
 */
1568
static void
1569
emit_stub_vpm_read(struct vc4_compile *c)
1570
{
1571
        if (c->num_inputs)
1572
                return;
1573
 
1574
        c->vattr_sizes[0] = 4;
1575
        struct qreg vpm = { QFILE_VPM, 0 };
1576
        (void)qir_MOV(c, vpm);
1577
        c->num_inputs++;
1578
}
1579
 
1580
static void
1581
emit_ucp_clipdistance(struct vc4_compile *c)
1582
{
1583
        unsigned cv;
1584
        if (c->output_clipvertex_index != -1)
1585
                cv = c->output_clipvertex_index;
1586
        else if (c->output_position_index != -1)
1587
                cv = c->output_position_index;
1588
        else
1589
                return;
1590
 
1591
        for (int plane = 0; plane < PIPE_MAX_CLIP_PLANES; plane++) {
1592
                if (!(c->key->ucp_enables & (1 << plane)))
1593
                        continue;
1594
 
1595
                /* Pick the next outputs[] that hasn't been written to, since
1596
                 * there are no other program writes left to be processed at
1597
                 * this point.  If something had been declared but not written
1598
                 * (like a w component), we'll just smash over the top of it.
1599
                 */
1600
                uint32_t output_index = c->num_outputs++;
1601
                add_output(c, output_index,
1602
                           TGSI_SEMANTIC_CLIPDIST,
1603
                           plane,
1604
                           TGSI_SWIZZLE_X);
1605
 
1606
 
1607
                struct qreg dist = qir_uniform_f(c, 0.0);
1608
                for (int i = 0; i < 4; i++) {
1609
                        struct qreg pos_chan = c->outputs[cv + i];
1610
                        struct qreg ucp =
1611
                                qir_uniform(c, QUNIFORM_USER_CLIP_PLANE,
1612
                                            plane * 4 + i);
1613
                        dist = qir_FADD(c, dist, qir_FMUL(c, pos_chan, ucp));
1614
                }
1615
 
1616
                c->outputs[output_index] = dist;
1617
        }
1618
}
1619
 
1620
static void
1621
emit_vert_end(struct vc4_compile *c,
1622
              struct vc4_varying_semantic *fs_inputs,
1623
              uint32_t num_fs_inputs)
1624
{
1625
        struct qreg rcp_w = qir_RCP(c, c->outputs[c->output_position_index + 3]);
1626
 
1627
        emit_stub_vpm_read(c);
1628
        emit_ucp_clipdistance(c);
1629
 
1630
        emit_scaled_viewport_write(c, rcp_w);
1631
        emit_zs_write(c, rcp_w);
1632
        emit_rcp_wc_write(c, rcp_w);
1633
        if (c->vs_key->per_vertex_point_size)
1634
                emit_point_size_write(c);
1635
 
1636
        for (int i = 0; i < num_fs_inputs; i++) {
1637
                struct vc4_varying_semantic *input = &fs_inputs[i];
1638
                int j;
1639
 
1640
                for (j = 0; j < c->num_outputs; j++) {
1641
                        struct vc4_varying_semantic *output =
1642
                                &c->output_semantics[j];
1643
 
1644
                        if (input->semantic == output->semantic &&
1645
                            input->index == output->index &&
1646
                            input->swizzle == output->swizzle) {
1647
                                qir_VPM_WRITE(c, c->outputs[j]);
1648
                                break;
1649
                        }
1650
                }
1651
                /* Emit padding if we didn't find a declared VS output for
1652
                 * this FS input.
1653
                 */
1654
                if (j == c->num_outputs)
1655
                        qir_VPM_WRITE(c, qir_uniform_f(c, 0.0));
1656
        }
1657
}
1658
 
1659
static void
1660
emit_coord_end(struct vc4_compile *c)
1661
{
1662
        struct qreg rcp_w = qir_RCP(c, c->outputs[c->output_position_index + 3]);
1663
 
1664
        emit_stub_vpm_read(c);
1665
 
1666
        for (int i = 0; i < 4; i++)
1667
                qir_VPM_WRITE(c, c->outputs[c->output_position_index + i]);
1668
 
1669
        emit_scaled_viewport_write(c, rcp_w);
1670
        emit_zs_write(c, rcp_w);
1671
        emit_rcp_wc_write(c, rcp_w);
1672
        if (c->vs_key->per_vertex_point_size)
1673
                emit_point_size_write(c);
1674
}
1675
 
1676
static void
1677
vc4_optimize_nir(struct nir_shader *s)
1678
{
1679
        bool progress;
1680
 
1681
        do {
1682
                progress = false;
1683
 
1684
                nir_lower_vars_to_ssa(s);
1685
                nir_lower_alu_to_scalar(s);
1686
 
1687
                progress = nir_copy_prop(s) || progress;
1688
                progress = nir_opt_dce(s) || progress;
1689
                progress = nir_opt_cse(s) || progress;
1690
                progress = nir_opt_peephole_select(s) || progress;
1691
                progress = nir_opt_algebraic(s) || progress;
1692
                progress = nir_opt_constant_folding(s) || progress;
1693
        } while (progress);
1694
}
1695
 
1696
static int
1697
driver_location_compare(const void *in_a, const void *in_b)
1698
{
1699
        const nir_variable *const *a = in_a;
1700
        const nir_variable *const *b = in_b;
1701
 
1702
        return (*a)->data.driver_location - (*b)->data.driver_location;
1703
}
1704
 
1705
static void
1706
ntq_setup_inputs(struct vc4_compile *c)
1707
{
1708
        unsigned num_entries = 0;
1709
        foreach_list_typed(nir_variable, var, node, &c->s->inputs)
1710
                num_entries++;
1711
 
1712
        nir_variable *vars[num_entries];
1713
 
1714
        unsigned i = 0;
1715
        foreach_list_typed(nir_variable, var, node, &c->s->inputs)
1716
                vars[i++] = var;
1717
 
1718
        /* Sort the variables so that we emit the input setup in
1719
         * driver_location order.  This is required for VPM reads, whose data
1720
         * is fetched into the VPM in driver_location (TGSI register index)
1721
         * order.
1722
         */
1723
        qsort(&vars, num_entries, sizeof(*vars), driver_location_compare);
1724
 
1725
        for (unsigned i = 0; i < num_entries; i++) {
1726
                nir_variable *var = vars[i];
1727
                unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1728
                /* XXX: map loc slots to semantics */
1729
                unsigned semantic_name = var->data.location;
1730
                unsigned semantic_index = var->data.index;
1731
                unsigned loc = var->data.driver_location;
1732
 
1733
                assert(array_len == 1);
1734
                resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
1735
                                  (loc + 1) * 4);
1736
 
1737
                if (c->stage == QSTAGE_FRAG) {
1738
                        if (semantic_name == TGSI_SEMANTIC_POSITION) {
1739
                                emit_fragcoord_input(c, loc);
1740
                        } else if (semantic_name == TGSI_SEMANTIC_FACE) {
1741
                                emit_face_input(c, loc);
1742
                        } else if (semantic_name == TGSI_SEMANTIC_GENERIC &&
1743
                                   (c->fs_key->point_sprite_mask &
1744
                                    (1 << semantic_index))) {
1745
                                emit_point_coord_input(c, loc);
1746
                        } else {
1747
                                emit_fragment_input(c, loc,
1748
                                                    semantic_name,
1749
                                                    semantic_index);
1750
                        }
1751
                } else {
1752
                        emit_vertex_input(c, loc);
1753
                }
1754
        }
1755
}
1756
 
1757
static void
1758
ntq_setup_outputs(struct vc4_compile *c)
1759
{
1760
        foreach_list_typed(nir_variable, var, node, &c->s->outputs) {
1761
                unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1762
                /* XXX: map loc slots to semantics */
1763
                unsigned semantic_name = var->data.location;
1764
                unsigned semantic_index = var->data.index;
1765
                unsigned loc = var->data.driver_location * 4;
1766
 
1767
                assert(array_len == 1);
1768
 
1769
                for (int i = 0; i < 4; i++) {
1770
                        add_output(c,
1771
                                   loc + i,
1772
                                   semantic_name,
1773
                                   semantic_index,
1774
                                   i);
1775
                }
1776
 
1777
                switch (semantic_name) {
1778
                case TGSI_SEMANTIC_POSITION:
1779
                        c->output_position_index = loc;
1780
                        break;
1781
                case TGSI_SEMANTIC_CLIPVERTEX:
1782
                        c->output_clipvertex_index = loc;
1783
                        break;
1784
                case TGSI_SEMANTIC_COLOR:
1785
                        c->output_color_index = loc;
1786
                        break;
1787
                case TGSI_SEMANTIC_PSIZE:
1788
                        c->output_point_size_index = loc;
1789
                        break;
1790
                }
1791
 
1792
        }
1793
}
1794
 
1795
static void
1796
ntq_setup_uniforms(struct vc4_compile *c)
1797
{
1798
        foreach_list_typed(nir_variable, var, node, &c->s->uniforms) {
1799
                unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1800
                unsigned array_elem_size = 4 * sizeof(float);
1801
 
1802
                declare_uniform_range(c, var->data.driver_location * array_elem_size,
1803
                                      array_len * array_elem_size);
1804
 
1805
        }
1806
}
1807
 
1808
/**
1809
 * Sets up the mapping from nir_register to struct qreg *.
1810
 *
1811
 * Each nir_register gets a struct qreg per 32-bit component being stored.
1812
 */
1813
static void
1814
ntq_setup_registers(struct vc4_compile *c, struct exec_list *list)
1815
{
1816
        foreach_list_typed(nir_register, nir_reg, node, list) {
1817
                unsigned array_len = MAX2(nir_reg->num_array_elems, 1);
1818
                struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
1819
                                                  array_len *
1820
                                                  nir_reg->num_components);
1821
 
1822
                _mesa_hash_table_insert(c->def_ht, nir_reg, qregs);
1823
 
1824
                for (int i = 0; i < array_len * nir_reg->num_components; i++)
1825
                        qregs[i] = qir_uniform_ui(c, 0);
1826
        }
1827
}
1828
 
1829
static void
1830
ntq_emit_load_const(struct vc4_compile *c, nir_load_const_instr *instr)
1831
{
1832
        struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
1833
                                          instr->def.num_components);
1834
        for (int i = 0; i < instr->def.num_components; i++)
1835
                qregs[i] = qir_uniform_ui(c, instr->value.u[i]);
1836
 
1837
        _mesa_hash_table_insert(c->def_ht, &instr->def, qregs);
1838
}
1839
 
1840
static void
1841
ntq_emit_intrinsic(struct vc4_compile *c, nir_intrinsic_instr *instr)
1842
{
1843
        const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
1844
        struct qreg *dest = NULL;
1845
 
1846
        if (info->has_dest) {
1847
                dest = ntq_get_dest(c, instr->dest);
1848
        }
1849
 
1850
        switch (instr->intrinsic) {
1851
        case nir_intrinsic_load_uniform:
1852
                assert(instr->const_index[1] == 1);
1853
 
1854
                for (int i = 0; i < instr->num_components; i++) {
1855
                        dest[i] = qir_uniform(c, QUNIFORM_UNIFORM,
1856
                                              instr->const_index[0] * 4 + i);
1857
                }
1858
                break;
1859
 
1860
        case nir_intrinsic_load_uniform_indirect:
1861
                assert(instr->const_index[1] == 1);
1862
 
1863
                for (int i = 0; i < instr->num_components; i++) {
1864
                        dest[i] = indirect_uniform_load(c,
1865
                                                        ntq_get_src(c, instr->src[0], 0),
1866
                                                        (instr->const_index[0] *
1867
                                                         4 + i) * sizeof(float));
1868
                }
1869
 
1870
                break;
1871
 
1872
        case nir_intrinsic_load_input:
1873
                assert(instr->const_index[1] == 1);
1874
 
1875
                for (int i = 0; i < instr->num_components; i++)
1876
                        dest[i] = c->inputs[instr->const_index[0] * 4 + i];
1877
 
1878
                break;
1879
 
1880
        case nir_intrinsic_store_output:
1881
                for (int i = 0; i < instr->num_components; i++) {
1882
                        c->outputs[instr->const_index[0] * 4 + i] =
1883
                                qir_MOV(c, ntq_get_src(c, instr->src[0], i));
1884
                }
1885
                c->num_outputs = MAX2(c->num_outputs,
1886
                                      instr->const_index[0] * 4 +
1887
                                      instr->num_components + 1);
1888
                break;
1889
 
1890
        case nir_intrinsic_discard:
1891
                c->discard = qir_uniform_ui(c, ~0);
1892
                break;
1893
 
1894
        case nir_intrinsic_discard_if:
1895
                if (c->discard.file == QFILE_NULL)
1896
                        c->discard = qir_uniform_ui(c, 0);
1897
                c->discard = qir_OR(c, c->discard,
1898
                                    ntq_get_src(c, instr->src[0], 0));
1899
                break;
1900
 
1901
        default:
1902
                fprintf(stderr, "Unknown intrinsic: ");
1903
                nir_print_instr(&instr->instr, stderr);
1904
                fprintf(stderr, "\n");
1905
                break;
1906
        }
1907
}
1908
 
1909
static void
1910
ntq_emit_if(struct vc4_compile *c, nir_if *if_stmt)
1911
{
1912
        fprintf(stderr, "general IF statements not handled.\n");
1913
}
1914
 
1915
static void
1916
ntq_emit_instr(struct vc4_compile *c, nir_instr *instr)
1917
{
1918
        switch (instr->type) {
1919
        case nir_instr_type_alu:
1920
                ntq_emit_alu(c, nir_instr_as_alu(instr));
1921
                break;
1922
 
1923
        case nir_instr_type_intrinsic:
1924
                ntq_emit_intrinsic(c, nir_instr_as_intrinsic(instr));
1925
                break;
1926
 
1927
        case nir_instr_type_load_const:
1928
                ntq_emit_load_const(c, nir_instr_as_load_const(instr));
1929
                break;
1930
 
1931
        case nir_instr_type_tex:
1932
                ntq_emit_tex(c, nir_instr_as_tex(instr));
1933
                break;
1934
 
1935
        default:
1936
                fprintf(stderr, "Unknown NIR instr type: ");
1937
                nir_print_instr(instr, stderr);
1938
                fprintf(stderr, "\n");
1939
                abort();
1940
        }
1941
}
1942
 
1943
static void
1944
ntq_emit_block(struct vc4_compile *c, nir_block *block)
1945
{
1946
        nir_foreach_instr(block, instr) {
1947
                ntq_emit_instr(c, instr);
1948
        }
1949
}
1950
 
1951
static void
1952
ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list)
1953
{
1954
        foreach_list_typed(nir_cf_node, node, node, list) {
1955
                switch (node->type) {
1956
                        /* case nir_cf_node_loop: */
1957
                case nir_cf_node_block:
1958
                        ntq_emit_block(c, nir_cf_node_as_block(node));
1959
                        break;
1960
 
1961
                case nir_cf_node_if:
1962
                        ntq_emit_if(c, nir_cf_node_as_if(node));
1963
                        break;
1964
 
1965
                default:
1966
                        assert(0);
1967
                }
1968
        }
1969
}
1970
 
1971
static void
1972
ntq_emit_impl(struct vc4_compile *c, nir_function_impl *impl)
1973
{
1974
        ntq_setup_registers(c, &impl->registers);
1975
        ntq_emit_cf_list(c, &impl->body);
1976
}
1977
 
1978
static void
1979
nir_to_qir(struct vc4_compile *c)
1980
{
1981
        ntq_setup_inputs(c);
1982
        ntq_setup_outputs(c);
1983
        ntq_setup_uniforms(c);
1984
        ntq_setup_registers(c, &c->s->registers);
1985
 
1986
        /* Find the main function and emit the body. */
1987
        nir_foreach_overload(c->s, overload) {
1988
                assert(strcmp(overload->function->name, "main") == 0);
1989
                assert(overload->impl);
1990
                ntq_emit_impl(c, overload->impl);
1991
        }
1992
}
1993
 
1994
static const nir_shader_compiler_options nir_options = {
1995
        .lower_ffma = true,
1996
        .lower_flrp = true,
1997
        .lower_fpow = true,
1998
        .lower_fsat = true,
1999
        .lower_fsqrt = true,
2000
        .lower_negate = true,
2001
};
2002
 
2003
static bool
2004
count_nir_instrs_in_block(nir_block *block, void *state)
2005
{
2006
        int *count = (int *) state;
2007
        nir_foreach_instr(block, instr) {
2008
                *count = *count + 1;
2009
        }
2010
        return true;
2011
}
2012
 
2013
static int
2014
count_nir_instrs(nir_shader *nir)
2015
{
2016
        int count = 0;
2017
        nir_foreach_overload(nir, overload) {
2018
                if (!overload->impl)
2019
                        continue;
2020
                nir_foreach_block(overload->impl, count_nir_instrs_in_block, &count);
2021
        }
2022
        return count;
2023
}
2024
 
2025
static struct vc4_compile *
2026
vc4_shader_ntq(struct vc4_context *vc4, enum qstage stage,
2027
                       struct vc4_key *key)
2028
{
2029
        struct vc4_compile *c = qir_compile_init();
2030
 
2031
        c->stage = stage;
2032
        c->shader_state = &key->shader_state->base;
2033
        c->program_id = key->shader_state->program_id;
2034
        c->variant_id = key->shader_state->compiled_variant_count++;
2035
 
2036
        c->key = key;
2037
        switch (stage) {
2038
        case QSTAGE_FRAG:
2039
                c->fs_key = (struct vc4_fs_key *)key;
2040
                if (c->fs_key->is_points) {
2041
                        c->point_x = emit_fragment_varying(c, ~0, ~0, 0);
2042
                        c->point_y = emit_fragment_varying(c, ~0, ~0, 0);
2043
                } else if (c->fs_key->is_lines) {
2044
                        c->line_x = emit_fragment_varying(c, ~0, ~0, 0);
2045
                }
2046
                break;
2047
        case QSTAGE_VERT:
2048
                c->vs_key = (struct vc4_vs_key *)key;
2049
                break;
2050
        case QSTAGE_COORD:
2051
                c->vs_key = (struct vc4_vs_key *)key;
2052
                break;
2053
        }
2054
 
2055
        const struct tgsi_token *tokens = key->shader_state->base.tokens;
2056
        if (c->fs_key && c->fs_key->light_twoside) {
2057
                if (!key->shader_state->twoside_tokens) {
2058
                        const struct tgsi_lowering_config lowering_config = {
2059
                                .color_two_side = true,
2060
                        };
2061
                        struct tgsi_shader_info info;
2062
                        key->shader_state->twoside_tokens =
2063
                                tgsi_transform_lowering(&lowering_config,
2064
                                                        key->shader_state->base.tokens,
2065
                                                        &info);
2066
 
2067
                        /* If no transformation occurred, then NULL is
2068
                         * returned and we just use our original tokens.
2069
                         */
2070
                        if (!key->shader_state->twoside_tokens) {
2071
                                key->shader_state->twoside_tokens =
2072
                                        key->shader_state->base.tokens;
2073
                        }
2074
                }
2075
                tokens = key->shader_state->twoside_tokens;
2076
        }
2077
 
2078
        if (vc4_debug & VC4_DEBUG_TGSI) {
2079
                fprintf(stderr, "%s prog %d/%d TGSI:\n",
2080
                        qir_get_stage_name(c->stage),
2081
                        c->program_id, c->variant_id);
2082
                tgsi_dump(tokens, 0);
2083
        }
2084
 
2085
        c->s = tgsi_to_nir(tokens, &nir_options);
2086
        nir_opt_global_to_local(c->s);
2087
        nir_convert_to_ssa(c->s);
2088
        nir_lower_idiv(c->s);
2089
 
2090
        vc4_optimize_nir(c->s);
2091
 
2092
        nir_remove_dead_variables(c->s);
2093
 
2094
        nir_convert_from_ssa(c->s);
2095
 
2096
        if (vc4_debug & VC4_DEBUG_SHADERDB) {
2097
                fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d NIR instructions\n",
2098
                        qir_get_stage_name(c->stage),
2099
                        c->program_id, c->variant_id,
2100
                        count_nir_instrs(c->s));
2101
        }
2102
 
2103
        if (vc4_debug & VC4_DEBUG_NIR) {
2104
                fprintf(stderr, "%s prog %d/%d NIR:\n",
2105
                        qir_get_stage_name(c->stage),
2106
                        c->program_id, c->variant_id);
2107
                nir_print_shader(c->s, stderr);
2108
        }
2109
 
2110
        nir_to_qir(c);
2111
 
2112
        switch (stage) {
2113
        case QSTAGE_FRAG:
2114
                emit_frag_end(c);
2115
                break;
2116
        case QSTAGE_VERT:
2117
                emit_vert_end(c,
2118
                              vc4->prog.fs->input_semantics,
2119
                              vc4->prog.fs->num_inputs);
2120
                break;
2121
        case QSTAGE_COORD:
2122
                emit_coord_end(c);
2123
                break;
2124
        }
2125
 
2126
        if (vc4_debug & VC4_DEBUG_QIR) {
2127
                fprintf(stderr, "%s prog %d/%d pre-opt QIR:\n",
2128
                        qir_get_stage_name(c->stage),
2129
                        c->program_id, c->variant_id);
2130
                qir_dump(c);
2131
        }
2132
 
2133
        qir_optimize(c);
2134
        qir_lower_uniforms(c);
2135
 
2136
        if (vc4_debug & VC4_DEBUG_QIR) {
2137
                fprintf(stderr, "%s prog %d/%d QIR:\n",
2138
                        qir_get_stage_name(c->stage),
2139
                        c->program_id, c->variant_id);
2140
                qir_dump(c);
2141
        }
2142
        qir_reorder_uniforms(c);
2143
        vc4_generate_code(vc4, c);
2144
 
2145
        if (vc4_debug & VC4_DEBUG_SHADERDB) {
2146
                fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d instructions\n",
2147
                        qir_get_stage_name(c->stage),
2148
                        c->program_id, c->variant_id,
2149
                        c->qpu_inst_count);
2150
                fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d uniforms\n",
2151
                        qir_get_stage_name(c->stage),
2152
                        c->program_id, c->variant_id,
2153
                        c->num_uniforms);
2154
        }
2155
 
2156
        ralloc_free(c->s);
2157
 
2158
        return c;
2159
}
2160
 
2161
static void *
2162
vc4_shader_state_create(struct pipe_context *pctx,
2163
                        const struct pipe_shader_state *cso)
2164
{
2165
        struct vc4_context *vc4 = vc4_context(pctx);
2166
        struct vc4_uncompiled_shader *so = CALLOC_STRUCT(vc4_uncompiled_shader);
2167
        if (!so)
2168
                return NULL;
2169
 
2170
        so->base.tokens = tgsi_dup_tokens(cso->tokens);
2171
        so->program_id = vc4->next_uncompiled_program_id++;
2172
 
2173
        return so;
2174
}
2175
 
2176
static void
2177
copy_uniform_state_to_shader(struct vc4_compiled_shader *shader,
2178
                             struct vc4_compile *c)
2179
{
2180
        int count = c->num_uniforms;
2181
        struct vc4_shader_uniform_info *uinfo = &shader->uniforms;
2182
 
2183
        uinfo->count = count;
2184
        uinfo->data = ralloc_array(shader, uint32_t, count);
2185
        memcpy(uinfo->data, c->uniform_data,
2186
               count * sizeof(*uinfo->data));
2187
        uinfo->contents = ralloc_array(shader, enum quniform_contents, count);
2188
        memcpy(uinfo->contents, c->uniform_contents,
2189
               count * sizeof(*uinfo->contents));
2190
        uinfo->num_texture_samples = c->num_texture_samples;
2191
}
2192
 
2193
static struct vc4_compiled_shader *
2194
vc4_get_compiled_shader(struct vc4_context *vc4, enum qstage stage,
2195
                        struct vc4_key *key)
2196
{
2197
        struct hash_table *ht;
2198
        uint32_t key_size;
2199
        if (stage == QSTAGE_FRAG) {
2200
                ht = vc4->fs_cache;
2201
                key_size = sizeof(struct vc4_fs_key);
2202
        } else {
2203
                ht = vc4->vs_cache;
2204
                key_size = sizeof(struct vc4_vs_key);
2205
        }
2206
 
2207
        struct vc4_compiled_shader *shader;
2208
        struct hash_entry *entry = _mesa_hash_table_search(ht, key);
2209
        if (entry)
2210
                return entry->data;
2211
 
2212
        struct vc4_compile *c = vc4_shader_ntq(vc4, stage, key);
2213
        shader = rzalloc(NULL, struct vc4_compiled_shader);
2214
 
2215
        shader->program_id = vc4->next_compiled_program_id++;
2216
        if (stage == QSTAGE_FRAG) {
2217
                bool input_live[c->num_input_semantics];
2218
                struct simple_node *node;
2219
 
2220
                memset(input_live, 0, sizeof(input_live));
2221
                foreach(node, &c->instructions) {
2222
                        struct qinst *inst = (struct qinst *)node;
2223
                        for (int i = 0; i < qir_get_op_nsrc(inst->op); i++) {
2224
                                if (inst->src[i].file == QFILE_VARY)
2225
                                        input_live[inst->src[i].index] = true;
2226
                        }
2227
                }
2228
 
2229
                shader->input_semantics = ralloc_array(shader,
2230
                                                       struct vc4_varying_semantic,
2231
                                                       c->num_input_semantics);
2232
 
2233
                for (int i = 0; i < c->num_input_semantics; i++) {
2234
                        struct vc4_varying_semantic *sem = &c->input_semantics[i];
2235
 
2236
                        if (!input_live[i])
2237
                                continue;
2238
 
2239
                        /* Skip non-VS-output inputs. */
2240
                        if (sem->semantic == (uint8_t)~0)
2241
                                continue;
2242
 
2243
                        if (sem->semantic == TGSI_SEMANTIC_COLOR ||
2244
                            sem->semantic == TGSI_SEMANTIC_BCOLOR) {
2245
                                shader->color_inputs |= (1 << shader->num_inputs);
2246
                        }
2247
 
2248
                        shader->input_semantics[shader->num_inputs] = *sem;
2249
                        shader->num_inputs++;
2250
                }
2251
        } else {
2252
                shader->num_inputs = c->num_inputs;
2253
 
2254
                shader->vattr_offsets[0] = 0;
2255
                for (int i = 0; i < 8; i++) {
2256
                        shader->vattr_offsets[i + 1] =
2257
                                shader->vattr_offsets[i] + c->vattr_sizes[i];
2258
 
2259
                        if (c->vattr_sizes[i])
2260
                                shader->vattrs_live |= (1 << i);
2261
                }
2262
        }
2263
 
2264
        copy_uniform_state_to_shader(shader, c);
2265
        shader->bo = vc4_bo_alloc_mem(vc4->screen, c->qpu_insts,
2266
                                      c->qpu_inst_count * sizeof(uint64_t),
2267
                                      "code");
2268
 
2269
        /* Copy the compiler UBO range state to the compiled shader, dropping
2270
         * out arrays that were never referenced by an indirect load.
2271
         *
2272
         * (Note that QIR dead code elimination of an array access still
2273
         * leaves that array alive, though)
2274
         */
2275
        if (c->num_ubo_ranges) {
2276
                shader->num_ubo_ranges = c->num_ubo_ranges;
2277
                shader->ubo_ranges = ralloc_array(shader, struct vc4_ubo_range,
2278
                                                  c->num_ubo_ranges);
2279
                uint32_t j = 0;
2280
                for (int i = 0; i < c->num_uniform_ranges; i++) {
2281
                        struct vc4_compiler_ubo_range *range =
2282
                                &c->ubo_ranges[i];
2283
                        if (!range->used)
2284
                                continue;
2285
 
2286
                        shader->ubo_ranges[j].dst_offset = range->dst_offset;
2287
                        shader->ubo_ranges[j].src_offset = range->src_offset;
2288
                        shader->ubo_ranges[j].size = range->size;
2289
                        shader->ubo_size += c->ubo_ranges[i].size;
2290
                        j++;
2291
                }
2292
        }
2293
        if (shader->ubo_size) {
2294
                fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d UBO uniforms\n",
2295
                        qir_get_stage_name(c->stage),
2296
                        c->program_id, c->variant_id,
2297
                        shader->ubo_size / 4);
2298
        }
2299
 
2300
        qir_compile_destroy(c);
2301
 
2302
        struct vc4_key *dup_key;
2303
        dup_key = ralloc_size(shader, key_size);
2304
        memcpy(dup_key, key, key_size);
2305
        _mesa_hash_table_insert(ht, dup_key, shader);
2306
 
2307
        return shader;
2308
}
2309
 
2310
static void
2311
vc4_setup_shared_key(struct vc4_context *vc4, struct vc4_key *key,
2312
                     struct vc4_texture_stateobj *texstate)
2313
{
2314
        for (int i = 0; i < texstate->num_textures; i++) {
2315
                struct pipe_sampler_view *sampler = texstate->textures[i];
2316
                struct pipe_sampler_state *sampler_state =
2317
                        texstate->samplers[i];
2318
 
2319
                if (sampler) {
2320
                        key->tex[i].format = sampler->format;
2321
                        key->tex[i].swizzle[0] = sampler->swizzle_r;
2322
                        key->tex[i].swizzle[1] = sampler->swizzle_g;
2323
                        key->tex[i].swizzle[2] = sampler->swizzle_b;
2324
                        key->tex[i].swizzle[3] = sampler->swizzle_a;
2325
                        key->tex[i].compare_mode = sampler_state->compare_mode;
2326
                        key->tex[i].compare_func = sampler_state->compare_func;
2327
                        key->tex[i].wrap_s = sampler_state->wrap_s;
2328
                        key->tex[i].wrap_t = sampler_state->wrap_t;
2329
                }
2330
        }
2331
 
2332
        key->ucp_enables = vc4->rasterizer->base.clip_plane_enable;
2333
}
2334
 
2335
static void
2336
vc4_update_compiled_fs(struct vc4_context *vc4, uint8_t prim_mode)
2337
{
2338
        struct vc4_fs_key local_key;
2339
        struct vc4_fs_key *key = &local_key;
2340
 
2341
        if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
2342
                            VC4_DIRTY_BLEND |
2343
                            VC4_DIRTY_FRAMEBUFFER |
2344
                            VC4_DIRTY_ZSA |
2345
                            VC4_DIRTY_RASTERIZER |
2346
                            VC4_DIRTY_FRAGTEX |
2347
                            VC4_DIRTY_TEXSTATE |
2348
                            VC4_DIRTY_UNCOMPILED_FS))) {
2349
                return;
2350
        }
2351
 
2352
        memset(key, 0, sizeof(*key));
2353
        vc4_setup_shared_key(vc4, &key->base, &vc4->fragtex);
2354
        key->base.shader_state = vc4->prog.bind_fs;
2355
        key->is_points = (prim_mode == PIPE_PRIM_POINTS);
2356
        key->is_lines = (prim_mode >= PIPE_PRIM_LINES &&
2357
                         prim_mode <= PIPE_PRIM_LINE_STRIP);
2358
        key->blend = vc4->blend->rt[0];
2359
        if (vc4->blend->logicop_enable) {
2360
                key->logicop_func = vc4->blend->logicop_func;
2361
        } else {
2362
                key->logicop_func = PIPE_LOGICOP_COPY;
2363
        }
2364
        if (vc4->framebuffer.cbufs[0])
2365
                key->color_format = vc4->framebuffer.cbufs[0]->format;
2366
 
2367
        key->stencil_enabled = vc4->zsa->stencil_uniforms[0] != 0;
2368
        key->stencil_twoside = vc4->zsa->stencil_uniforms[1] != 0;
2369
        key->stencil_full_writemasks = vc4->zsa->stencil_uniforms[2] != 0;
2370
        key->depth_enabled = (vc4->zsa->base.depth.enabled ||
2371
                              key->stencil_enabled);
2372
        if (vc4->zsa->base.alpha.enabled) {
2373
                key->alpha_test = true;
2374
                key->alpha_test_func = vc4->zsa->base.alpha.func;
2375
        }
2376
 
2377
        if (key->is_points) {
2378
                key->point_sprite_mask =
2379
                        vc4->rasterizer->base.sprite_coord_enable;
2380
                key->point_coord_upper_left =
2381
                        (vc4->rasterizer->base.sprite_coord_mode ==
2382
                         PIPE_SPRITE_COORD_UPPER_LEFT);
2383
        }
2384
 
2385
        key->light_twoside = vc4->rasterizer->base.light_twoside;
2386
 
2387
        struct vc4_compiled_shader *old_fs = vc4->prog.fs;
2388
        vc4->prog.fs = vc4_get_compiled_shader(vc4, QSTAGE_FRAG, &key->base);
2389
        if (vc4->prog.fs == old_fs)
2390
                return;
2391
 
2392
        vc4->dirty |= VC4_DIRTY_COMPILED_FS;
2393
        if (vc4->rasterizer->base.flatshade &&
2394
            old_fs && vc4->prog.fs->color_inputs != old_fs->color_inputs) {
2395
                vc4->dirty |= VC4_DIRTY_FLAT_SHADE_FLAGS;
2396
        }
2397
}
2398
 
2399
static void
2400
vc4_update_compiled_vs(struct vc4_context *vc4, uint8_t prim_mode)
2401
{
2402
        struct vc4_vs_key local_key;
2403
        struct vc4_vs_key *key = &local_key;
2404
 
2405
        if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
2406
                            VC4_DIRTY_RASTERIZER |
2407
                            VC4_DIRTY_VERTTEX |
2408
                            VC4_DIRTY_TEXSTATE |
2409
                            VC4_DIRTY_VTXSTATE |
2410
                            VC4_DIRTY_UNCOMPILED_VS |
2411
                            VC4_DIRTY_COMPILED_FS))) {
2412
                return;
2413
        }
2414
 
2415
        memset(key, 0, sizeof(*key));
2416
        vc4_setup_shared_key(vc4, &key->base, &vc4->verttex);
2417
        key->base.shader_state = vc4->prog.bind_vs;
2418
        key->compiled_fs_id = vc4->prog.fs->program_id;
2419
 
2420
        for (int i = 0; i < ARRAY_SIZE(key->attr_formats); i++)
2421
                key->attr_formats[i] = vc4->vtx->pipe[i].src_format;
2422
 
2423
        key->per_vertex_point_size =
2424
                (prim_mode == PIPE_PRIM_POINTS &&
2425
                 vc4->rasterizer->base.point_size_per_vertex);
2426
 
2427
        vc4->prog.vs = vc4_get_compiled_shader(vc4, QSTAGE_VERT, &key->base);
2428
        key->is_coord = true;
2429
        vc4->prog.cs = vc4_get_compiled_shader(vc4, QSTAGE_COORD, &key->base);
2430
}
2431
 
2432
void
2433
vc4_update_compiled_shaders(struct vc4_context *vc4, uint8_t prim_mode)
2434
{
2435
        vc4_update_compiled_fs(vc4, prim_mode);
2436
        vc4_update_compiled_vs(vc4, prim_mode);
2437
}
2438
 
2439
static uint32_t
2440
fs_cache_hash(const void *key)
2441
{
2442
        return _mesa_hash_data(key, sizeof(struct vc4_fs_key));
2443
}
2444
 
2445
static uint32_t
2446
vs_cache_hash(const void *key)
2447
{
2448
        return _mesa_hash_data(key, sizeof(struct vc4_vs_key));
2449
}
2450
 
2451
static bool
2452
fs_cache_compare(const void *key1, const void *key2)
2453
{
2454
        return memcmp(key1, key2, sizeof(struct vc4_fs_key)) == 0;
2455
}
2456
 
2457
static bool
2458
vs_cache_compare(const void *key1, const void *key2)
2459
{
2460
        return memcmp(key1, key2, sizeof(struct vc4_vs_key)) == 0;
2461
}
2462
 
2463
static void
2464
delete_from_cache_if_matches(struct hash_table *ht,
2465
                             struct hash_entry *entry,
2466
                             struct vc4_uncompiled_shader *so)
2467
{
2468
        const struct vc4_key *key = entry->key;
2469
 
2470
        if (key->shader_state == so) {
2471
                struct vc4_compiled_shader *shader = entry->data;
2472
                _mesa_hash_table_remove(ht, entry);
2473
                vc4_bo_unreference(&shader->bo);
2474
                ralloc_free(shader);
2475
        }
2476
}
2477
 
2478
static void
2479
vc4_shader_state_delete(struct pipe_context *pctx, void *hwcso)
2480
{
2481
        struct vc4_context *vc4 = vc4_context(pctx);
2482
        struct vc4_uncompiled_shader *so = hwcso;
2483
 
2484
        struct hash_entry *entry;
2485
        hash_table_foreach(vc4->fs_cache, entry)
2486
                delete_from_cache_if_matches(vc4->fs_cache, entry, so);
2487
        hash_table_foreach(vc4->vs_cache, entry)
2488
                delete_from_cache_if_matches(vc4->vs_cache, entry, so);
2489
 
2490
        if (so->twoside_tokens != so->base.tokens)
2491
                free((void *)so->twoside_tokens);
2492
        free((void *)so->base.tokens);
2493
        free(so);
2494
}
2495
 
2496
static uint32_t translate_wrap(uint32_t p_wrap, bool using_nearest)
2497
{
2498
        switch (p_wrap) {
2499
        case PIPE_TEX_WRAP_REPEAT:
2500
                return 0;
2501
        case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2502
                return 1;
2503
        case PIPE_TEX_WRAP_MIRROR_REPEAT:
2504
                return 2;
2505
        case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2506
                return 3;
2507
        case PIPE_TEX_WRAP_CLAMP:
2508
                return (using_nearest ? 1 : 3);
2509
        default:
2510
                fprintf(stderr, "Unknown wrap mode %d\n", p_wrap);
2511
                assert(!"not reached");
2512
                return 0;
2513
        }
2514
}
2515
 
2516
static void
2517
write_texture_p0(struct vc4_context *vc4,
2518
                 struct vc4_texture_stateobj *texstate,
2519
                 uint32_t unit)
2520
{
2521
        struct pipe_sampler_view *texture = texstate->textures[unit];
2522
        struct vc4_resource *rsc = vc4_resource(texture->texture);
2523
 
2524
        cl_reloc(vc4, &vc4->uniforms, rsc->bo,
2525
                 VC4_SET_FIELD(rsc->slices[0].offset >> 12, VC4_TEX_P0_OFFSET) |
2526
                 VC4_SET_FIELD(texture->u.tex.last_level -
2527
                               texture->u.tex.first_level, VC4_TEX_P0_MIPLVLS) |
2528
                 VC4_SET_FIELD(texture->target == PIPE_TEXTURE_CUBE,
2529
                               VC4_TEX_P0_CMMODE) |
2530
                 VC4_SET_FIELD(rsc->vc4_format & 15, VC4_TEX_P0_TYPE));
2531
}
2532
 
2533
static void
2534
write_texture_p1(struct vc4_context *vc4,
2535
                 struct vc4_texture_stateobj *texstate,
2536
                 uint32_t unit)
2537
{
2538
        struct pipe_sampler_view *texture = texstate->textures[unit];
2539
        struct vc4_resource *rsc = vc4_resource(texture->texture);
2540
        struct pipe_sampler_state *sampler = texstate->samplers[unit];
2541
        static const uint8_t minfilter_map[6] = {
2542
                VC4_TEX_P1_MINFILT_NEAR_MIP_NEAR,
2543
                VC4_TEX_P1_MINFILT_LIN_MIP_NEAR,
2544
                VC4_TEX_P1_MINFILT_NEAR_MIP_LIN,
2545
                VC4_TEX_P1_MINFILT_LIN_MIP_LIN,
2546
                VC4_TEX_P1_MINFILT_NEAREST,
2547
                VC4_TEX_P1_MINFILT_LINEAR,
2548
        };
2549
        static const uint32_t magfilter_map[] = {
2550
                [PIPE_TEX_FILTER_NEAREST] = VC4_TEX_P1_MAGFILT_NEAREST,
2551
                [PIPE_TEX_FILTER_LINEAR] = VC4_TEX_P1_MAGFILT_LINEAR,
2552
        };
2553
 
2554
        bool either_nearest =
2555
                (sampler->mag_img_filter == PIPE_TEX_MIPFILTER_NEAREST ||
2556
                 sampler->min_img_filter == PIPE_TEX_MIPFILTER_NEAREST);
2557
 
2558
        cl_aligned_u32(&vc4->uniforms,
2559
               VC4_SET_FIELD(rsc->vc4_format >> 4, VC4_TEX_P1_TYPE4) |
2560
               VC4_SET_FIELD(texture->texture->height0 & 2047,
2561
                             VC4_TEX_P1_HEIGHT) |
2562
               VC4_SET_FIELD(texture->texture->width0 & 2047,
2563
                             VC4_TEX_P1_WIDTH) |
2564
               VC4_SET_FIELD(magfilter_map[sampler->mag_img_filter],
2565
                             VC4_TEX_P1_MAGFILT) |
2566
               VC4_SET_FIELD(minfilter_map[sampler->min_mip_filter * 2 +
2567
                                           sampler->min_img_filter],
2568
                             VC4_TEX_P1_MINFILT) |
2569
               VC4_SET_FIELD(translate_wrap(sampler->wrap_s, either_nearest),
2570
                             VC4_TEX_P1_WRAP_S) |
2571
               VC4_SET_FIELD(translate_wrap(sampler->wrap_t, either_nearest),
2572
                             VC4_TEX_P1_WRAP_T));
2573
}
2574
 
2575
static void
2576
write_texture_p2(struct vc4_context *vc4,
2577
                 struct vc4_texture_stateobj *texstate,
2578
                 uint32_t data)
2579
{
2580
        uint32_t unit = data & 0xffff;
2581
        struct pipe_sampler_view *texture = texstate->textures[unit];
2582
        struct vc4_resource *rsc = vc4_resource(texture->texture);
2583
 
2584
        cl_aligned_u32(&vc4->uniforms,
2585
               VC4_SET_FIELD(VC4_TEX_P2_PTYPE_CUBE_MAP_STRIDE,
2586
                             VC4_TEX_P2_PTYPE) |
2587
               VC4_SET_FIELD(rsc->cube_map_stride >> 12, VC4_TEX_P2_CMST) |
2588
               VC4_SET_FIELD((data >> 16) & 1, VC4_TEX_P2_BSLOD));
2589
}
2590
 
2591
 
2592
#define SWIZ(x,y,z,w) {          \
2593
        UTIL_FORMAT_SWIZZLE_##x, \
2594
        UTIL_FORMAT_SWIZZLE_##y, \
2595
        UTIL_FORMAT_SWIZZLE_##z, \
2596
        UTIL_FORMAT_SWIZZLE_##w  \
2597
}
2598
 
2599
static void
2600
write_texture_border_color(struct vc4_context *vc4,
2601
                           struct vc4_texture_stateobj *texstate,
2602
                           uint32_t unit)
2603
{
2604
        struct pipe_sampler_state *sampler = texstate->samplers[unit];
2605
        struct pipe_sampler_view *texture = texstate->textures[unit];
2606
        struct vc4_resource *rsc = vc4_resource(texture->texture);
2607
        union util_color uc;
2608
 
2609
        const struct util_format_description *tex_format_desc =
2610
                util_format_description(texture->format);
2611
 
2612
        float border_color[4];
2613
        for (int i = 0; i < 4; i++)
2614
                border_color[i] = sampler->border_color.f[i];
2615
        if (util_format_is_srgb(texture->format)) {
2616
                for (int i = 0; i < 3; i++)
2617
                        border_color[i] =
2618
                                util_format_linear_to_srgb_float(border_color[i]);
2619
        }
2620
 
2621
        /* Turn the border color into the layout of channels that it would
2622
         * have when stored as texture contents.
2623
         */
2624
        float storage_color[4];
2625
        util_format_unswizzle_4f(storage_color,
2626
                                 border_color,
2627
                                 tex_format_desc->swizzle);
2628
 
2629
        /* Now, pack so that when the vc4_format-sampled texture contents are
2630
         * replaced with our border color, the vc4_get_format_swizzle()
2631
         * swizzling will get the right channels.
2632
         */
2633
        if (util_format_is_depth_or_stencil(texture->format)) {
2634
                uc.ui[0] = util_pack_z(PIPE_FORMAT_Z24X8_UNORM,
2635
                                       sampler->border_color.f[0]) << 8;
2636
        } else {
2637
                switch (rsc->vc4_format) {
2638
                default:
2639
                case VC4_TEXTURE_TYPE_RGBA8888:
2640
                        util_pack_color(storage_color,
2641
                                        PIPE_FORMAT_R8G8B8A8_UNORM, &uc);
2642
                        break;
2643
                case VC4_TEXTURE_TYPE_RGBA4444:
2644
                        util_pack_color(storage_color,
2645
                                        PIPE_FORMAT_A8B8G8R8_UNORM, &uc);
2646
                        break;
2647
                case VC4_TEXTURE_TYPE_RGB565:
2648
                        util_pack_color(storage_color,
2649
                                        PIPE_FORMAT_B8G8R8A8_UNORM, &uc);
2650
                        break;
2651
                case VC4_TEXTURE_TYPE_ALPHA:
2652
                        uc.ui[0] = float_to_ubyte(storage_color[0]) << 24;
2653
                        break;
2654
                case VC4_TEXTURE_TYPE_LUMALPHA:
2655
                        uc.ui[0] = ((float_to_ubyte(storage_color[1]) << 24) |
2656
                                    (float_to_ubyte(storage_color[0]) << 0));
2657
                        break;
2658
                }
2659
        }
2660
 
2661
        cl_aligned_u32(&vc4->uniforms, uc.ui[0]);
2662
}
2663
 
2664
static uint32_t
2665
get_texrect_scale(struct vc4_texture_stateobj *texstate,
2666
                  enum quniform_contents contents,
2667
                  uint32_t data)
2668
{
2669
        struct pipe_sampler_view *texture = texstate->textures[data];
2670
        uint32_t dim;
2671
 
2672
        if (contents == QUNIFORM_TEXRECT_SCALE_X)
2673
                dim = texture->texture->width0;
2674
        else
2675
                dim = texture->texture->height0;
2676
 
2677
        return fui(1.0f / dim);
2678
}
2679
 
2680
static struct vc4_bo *
2681
vc4_upload_ubo(struct vc4_context *vc4, struct vc4_compiled_shader *shader,
2682
               const uint32_t *gallium_uniforms)
2683
{
2684
        if (!shader->ubo_size)
2685
                return NULL;
2686
 
2687
        struct vc4_bo *ubo = vc4_bo_alloc(vc4->screen, shader->ubo_size, "ubo");
2688
        uint32_t *data = vc4_bo_map(ubo);
2689
        for (uint32_t i = 0; i < shader->num_ubo_ranges; i++) {
2690
                memcpy(data + shader->ubo_ranges[i].dst_offset,
2691
                       gallium_uniforms + shader->ubo_ranges[i].src_offset,
2692
                       shader->ubo_ranges[i].size);
2693
        }
2694
 
2695
        return ubo;
2696
}
2697
 
2698
void
2699
vc4_write_uniforms(struct vc4_context *vc4, struct vc4_compiled_shader *shader,
2700
                   struct vc4_constbuf_stateobj *cb,
2701
                   struct vc4_texture_stateobj *texstate)
2702
{
2703
        struct vc4_shader_uniform_info *uinfo = &shader->uniforms;
2704
        const uint32_t *gallium_uniforms = cb->cb[0].user_buffer;
2705
        struct vc4_bo *ubo = vc4_upload_ubo(vc4, shader, gallium_uniforms);
2706
 
2707
        cl_ensure_space(&vc4->uniforms, (uinfo->count +
2708
                                         uinfo->num_texture_samples) * 4);
2709
 
2710
        cl_start_shader_reloc(&vc4->uniforms, uinfo->num_texture_samples);
2711
 
2712
        for (int i = 0; i < uinfo->count; i++) {
2713
 
2714
                switch (uinfo->contents[i]) {
2715
                case QUNIFORM_CONSTANT:
2716
                        cl_aligned_u32(&vc4->uniforms, uinfo->data[i]);
2717
                        break;
2718
                case QUNIFORM_UNIFORM:
2719
                        cl_aligned_u32(&vc4->uniforms,
2720
                                       gallium_uniforms[uinfo->data[i]]);
2721
                        break;
2722
                case QUNIFORM_VIEWPORT_X_SCALE:
2723
                        cl_aligned_f(&vc4->uniforms, vc4->viewport.scale[0] * 16.0f);
2724
                        break;
2725
                case QUNIFORM_VIEWPORT_Y_SCALE:
2726
                        cl_aligned_f(&vc4->uniforms, vc4->viewport.scale[1] * 16.0f);
2727
                        break;
2728
 
2729
                case QUNIFORM_VIEWPORT_Z_OFFSET:
2730
                        cl_aligned_f(&vc4->uniforms, vc4->viewport.translate[2]);
2731
                        break;
2732
                case QUNIFORM_VIEWPORT_Z_SCALE:
2733
                        cl_aligned_f(&vc4->uniforms, vc4->viewport.scale[2]);
2734
                        break;
2735
 
2736
                case QUNIFORM_USER_CLIP_PLANE:
2737
                        cl_aligned_f(&vc4->uniforms,
2738
                                     vc4->clip.ucp[uinfo->data[i] / 4][uinfo->data[i] % 4]);
2739
                        break;
2740
 
2741
                case QUNIFORM_TEXTURE_CONFIG_P0:
2742
                        write_texture_p0(vc4, texstate, uinfo->data[i]);
2743
                        break;
2744
 
2745
                case QUNIFORM_TEXTURE_CONFIG_P1:
2746
                        write_texture_p1(vc4, texstate, uinfo->data[i]);
2747
                        break;
2748
 
2749
                case QUNIFORM_TEXTURE_CONFIG_P2:
2750
                        write_texture_p2(vc4, texstate, uinfo->data[i]);
2751
                        break;
2752
 
2753
                case QUNIFORM_UBO_ADDR:
2754
                        cl_aligned_reloc(vc4, &vc4->uniforms, ubo, 0);
2755
                        break;
2756
 
2757
                case QUNIFORM_TEXTURE_BORDER_COLOR:
2758
                        write_texture_border_color(vc4, texstate, uinfo->data[i]);
2759
                        break;
2760
 
2761
                case QUNIFORM_TEXRECT_SCALE_X:
2762
                case QUNIFORM_TEXRECT_SCALE_Y:
2763
                        cl_aligned_u32(&vc4->uniforms,
2764
                                       get_texrect_scale(texstate,
2765
                                                         uinfo->contents[i],
2766
                                                         uinfo->data[i]));
2767
                        break;
2768
 
2769
                case QUNIFORM_BLEND_CONST_COLOR:
2770
                        cl_aligned_f(&vc4->uniforms,
2771
                                     CLAMP(vc4->blend_color.color[uinfo->data[i]], 0, 1));
2772
                        break;
2773
 
2774
                case QUNIFORM_STENCIL:
2775
                        cl_aligned_u32(&vc4->uniforms,
2776
                                       vc4->zsa->stencil_uniforms[uinfo->data[i]] |
2777
                                       (uinfo->data[i] <= 1 ?
2778
                                        (vc4->stencil_ref.ref_value[uinfo->data[i]] << 8) :
2779
                                        0));
2780
                        break;
2781
 
2782
                case QUNIFORM_ALPHA_REF:
2783
                        cl_aligned_f(&vc4->uniforms,
2784
                                     vc4->zsa->base.alpha.ref_value);
2785
                        break;
2786
                }
2787
#if 0
2788
                uint32_t written_val = *(uint32_t *)(vc4->uniforms.next - 4);
2789
                fprintf(stderr, "%p: %d / 0x%08x (%f)\n",
2790
                        shader, i, written_val, uif(written_val));
2791
#endif
2792
        }
2793
}
2794
 
2795
static void
2796
vc4_fp_state_bind(struct pipe_context *pctx, void *hwcso)
2797
{
2798
        struct vc4_context *vc4 = vc4_context(pctx);
2799
        vc4->prog.bind_fs = hwcso;
2800
        vc4->dirty |= VC4_DIRTY_UNCOMPILED_FS;
2801
}
2802
 
2803
static void
2804
vc4_vp_state_bind(struct pipe_context *pctx, void *hwcso)
2805
{
2806
        struct vc4_context *vc4 = vc4_context(pctx);
2807
        vc4->prog.bind_vs = hwcso;
2808
        vc4->dirty |= VC4_DIRTY_UNCOMPILED_VS;
2809
}
2810
 
2811
void
2812
vc4_program_init(struct pipe_context *pctx)
2813
{
2814
        struct vc4_context *vc4 = vc4_context(pctx);
2815
 
2816
        pctx->create_vs_state = vc4_shader_state_create;
2817
        pctx->delete_vs_state = vc4_shader_state_delete;
2818
 
2819
        pctx->create_fs_state = vc4_shader_state_create;
2820
        pctx->delete_fs_state = vc4_shader_state_delete;
2821
 
2822
        pctx->bind_fs_state = vc4_fp_state_bind;
2823
        pctx->bind_vs_state = vc4_vp_state_bind;
2824
 
2825
        vc4->fs_cache = _mesa_hash_table_create(pctx, fs_cache_hash,
2826
                                                fs_cache_compare);
2827
        vc4->vs_cache = _mesa_hash_table_create(pctx, vs_cache_hash,
2828
                                                vs_cache_compare);
2829
}
2830
 
2831
void
2832
vc4_program_fini(struct pipe_context *pctx)
2833
{
2834
        struct vc4_context *vc4 = vc4_context(pctx);
2835
 
2836
        struct hash_entry *entry;
2837
        hash_table_foreach(vc4->fs_cache, entry) {
2838
                struct vc4_compiled_shader *shader = entry->data;
2839
                vc4_bo_unreference(&shader->bo);
2840
                ralloc_free(shader);
2841
                _mesa_hash_table_remove(vc4->fs_cache, entry);
2842
        }
2843
 
2844
        hash_table_foreach(vc4->vs_cache, entry) {
2845
                struct vc4_compiled_shader *shader = entry->data;
2846
                vc4_bo_unreference(&shader->bo);
2847
                ralloc_free(shader);
2848
                _mesa_hash_table_remove(vc4->vs_cache, entry);
2849
        }
2850
}