Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
5564 serge 1
/*
2
 * Copyright 2011 Christoph Bumiller
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice shall be included in
12
 * all copies or substantial portions of the Software.
13
 *
14
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20
 * OTHER DEALINGS IN THE SOFTWARE.
21
 */
22
 
23
#include "codegen/nv50_ir.h"
24
#include "codegen/nv50_ir_build_util.h"
25
 
26
#include "codegen/nv50_ir_target_nvc0.h"
27
#include "codegen/nv50_ir_lowering_nvc0.h"
28
 
29
#include 
30
 
31
namespace nv50_ir {
32
 
33
#define QOP_ADD  0
34
#define QOP_SUBR 1
35
#define QOP_SUB  2
36
#define QOP_MOV2 3
37
 
38
//             UL UR LL LR
39
#define QUADOP(q, r, s, t)                      \
40
   ((QOP_##q << 6) | (QOP_##r << 4) |           \
41
    (QOP_##s << 2) | (QOP_##t << 0))
42
 
43
void
44
NVC0LegalizeSSA::handleDIV(Instruction *i)
45
{
46
   FlowInstruction *call;
47
   int builtin;
48
   Value *def[2];
49
 
50
   bld.setPosition(i, false);
51
   def[0] = bld.mkMovToReg(0, i->getSrc(0))->getDef(0);
52
   def[1] = bld.mkMovToReg(1, i->getSrc(1))->getDef(0);
53
   switch (i->dType) {
54
   case TYPE_U32: builtin = NVC0_BUILTIN_DIV_U32; break;
55
   case TYPE_S32: builtin = NVC0_BUILTIN_DIV_S32; break;
56
   default:
57
      return;
58
   }
59
   call = bld.mkFlow(OP_CALL, NULL, CC_ALWAYS, NULL);
60
   bld.mkMov(i->getDef(0), def[(i->op == OP_DIV) ? 0 : 1]);
61
   bld.mkClobber(FILE_GPR, (i->op == OP_DIV) ? 0xe : 0xd, 2);
62
   bld.mkClobber(FILE_PREDICATE, (i->dType == TYPE_S32) ? 0xf : 0x3, 0);
63
 
64
   call->fixed = 1;
65
   call->absolute = call->builtin = 1;
66
   call->target.builtin = builtin;
67
   delete_Instruction(prog, i);
68
}
69
 
70
void
71
NVC0LegalizeSSA::handleRCPRSQ(Instruction *i)
72
{
73
   assert(i->dType == TYPE_F64);
74
   // There are instructions that will compute the high 32 bits of the 64-bit
75
   // float. We will just stick 0 in the bottom 32 bits.
76
 
77
   bld.setPosition(i, false);
78
 
79
   // 1. Take the source and it up.
80
   Value *src[2], *dst[2], *def = i->getDef(0);
81
   bld.mkSplit(src, 4, i->getSrc(0));
82
 
83
   // 2. We don't care about the low 32 bits of the destination. Stick a 0 in.
84
   dst[0] = bld.loadImm(NULL, 0);
85
   dst[1] = bld.getSSA();
86
 
87
   // 3. The new version of the instruction takes the high 32 bits of the
88
   // source and outputs the high 32 bits of the destination.
89
   i->setSrc(0, src[1]);
90
   i->setDef(0, dst[1]);
91
   i->setType(TYPE_F32);
92
   i->subOp = NV50_IR_SUBOP_RCPRSQ_64H;
93
 
94
   // 4. Recombine the two dst pieces back into the original destination.
95
   bld.setPosition(i, true);
96
   bld.mkOp2(OP_MERGE, TYPE_U64, def, dst[0], dst[1]);
97
}
98
 
99
void
100
NVC0LegalizeSSA::handleFTZ(Instruction *i)
101
{
102
   // Only want to flush float inputs
103
   assert(i->sType == TYPE_F32);
104
 
105
   // If we're already flushing denorms (and NaN's) to zero, no need for this.
106
   if (i->dnz)
107
      return;
108
 
109
   // Only certain classes of operations can flush
110
   OpClass cls = prog->getTarget()->getOpClass(i->op);
111
   if (cls != OPCLASS_ARITH && cls != OPCLASS_COMPARE &&
112
       cls != OPCLASS_CONVERT)
113
      return;
114
 
115
   i->ftz = true;
116
}
117
 
118
bool
119
NVC0LegalizeSSA::visit(Function *fn)
120
{
121
   bld.setProgram(fn->getProgram());
122
   return true;
123
}
124
 
125
bool
126
NVC0LegalizeSSA::visit(BasicBlock *bb)
127
{
128
   Instruction *next;
129
   for (Instruction *i = bb->getEntry(); i; i = next) {
130
      next = i->next;
131
      if (i->sType == TYPE_F32) {
132
         if (prog->getType() != Program::TYPE_COMPUTE)
133
            handleFTZ(i);
134
         continue;
135
      }
136
      switch (i->op) {
137
      case OP_DIV:
138
      case OP_MOD:
139
         handleDIV(i);
140
         break;
141
      case OP_RCP:
142
      case OP_RSQ:
143
         if (i->dType == TYPE_F64)
144
            handleRCPRSQ(i);
145
         break;
146
      default:
147
         break;
148
      }
149
   }
150
   return true;
151
}
152
 
153
NVC0LegalizePostRA::NVC0LegalizePostRA(const Program *prog)
154
   : rZero(NULL),
155
     carry(NULL),
156
     needTexBar(prog->getTarget()->getChipset() >= 0xe0)
157
{
158
}
159
 
160
bool
161
NVC0LegalizePostRA::insnDominatedBy(const Instruction *later,
162
                                    const Instruction *early) const
163
{
164
   if (early->bb == later->bb)
165
      return early->serial < later->serial;
166
   return later->bb->dominatedBy(early->bb);
167
}
168
 
169
void
170
NVC0LegalizePostRA::addTexUse(std::list &uses,
171
                              Instruction *usei, const Instruction *insn)
172
{
173
   bool add = true;
174
   for (std::list::iterator it = uses.begin();
175
        it != uses.end();) {
176
      if (insnDominatedBy(usei, it->insn)) {
177
         add = false;
178
         break;
179
      }
180
      if (insnDominatedBy(it->insn, usei))
181
         it = uses.erase(it);
182
      else
183
         ++it;
184
   }
185
   if (add)
186
      uses.push_back(TexUse(usei, insn));
187
}
188
 
189
void
190
NVC0LegalizePostRA::findOverwritingDefs(const Instruction *texi,
191
                                        Instruction *insn,
192
                                        const BasicBlock *term,
193
                                        std::list &uses)
194
{
195
   while (insn->op == OP_MOV && insn->getDef(0)->equals(insn->getSrc(0)))
196
      insn = insn->getSrc(0)->getUniqueInsn();
197
 
198
   if (!insn->bb->reachableBy(texi->bb, term))
199
      return;
200
 
201
   switch (insn->op) {
202
   /* Values not connected to the tex's definition through any of these should
203
    * not be conflicting.
204
    */
205
   case OP_SPLIT:
206
   case OP_MERGE:
207
   case OP_PHI:
208
   case OP_UNION:
209
      /* recurse again */
210
      for (int s = 0; insn->srcExists(s); ++s)
211
         findOverwritingDefs(texi, insn->getSrc(s)->getUniqueInsn(), term,
212
                             uses);
213
      break;
214
   default:
215
      // if (!isTextureOp(insn->op)) // TODO: are TEXes always ordered ?
216
      addTexUse(uses, insn, texi);
217
      break;
218
   }
219
}
220
 
221
void
222
NVC0LegalizePostRA::findFirstUses(
223
      const Instruction *texi,
224
      const Instruction *insn,
225
      std::list &uses,
226
      std::tr1::unordered_set& visited)
227
{
228
   for (int d = 0; insn->defExists(d); ++d) {
229
      Value *v = insn->getDef(d);
230
      for (Value::UseIterator u = v->uses.begin(); u != v->uses.end(); ++u) {
231
         Instruction *usei = (*u)->getInsn();
232
 
233
         // NOTE: In case of a loop that overwrites a value but never uses
234
         // it, it can happen that we have a cycle of uses that consists only
235
         // of phis and no-op moves and will thus cause an infinite loop here
236
         // since these are not considered actual uses.
237
         // The most obvious (and perhaps the only) way to prevent this is to
238
         // remember which instructions we've already visited.
239
 
240
         if (visited.find(usei) != visited.end())
241
            continue;
242
 
243
         visited.insert(usei);
244
 
245
         if (usei->op == OP_PHI || usei->op == OP_UNION) {
246
            // need a barrier before WAW cases
247
            for (int s = 0; usei->srcExists(s); ++s) {
248
               Instruction *defi = usei->getSrc(s)->getUniqueInsn();
249
               if (defi && &usei->src(s) != *u)
250
                  findOverwritingDefs(texi, defi, usei->bb, uses);
251
            }
252
         }
253
 
254
         if (usei->op == OP_SPLIT ||
255
             usei->op == OP_MERGE ||
256
             usei->op == OP_PHI ||
257
             usei->op == OP_UNION) {
258
            // these uses don't manifest in the machine code
259
            findFirstUses(texi, usei, uses, visited);
260
         } else
261
         if (usei->op == OP_MOV && usei->getDef(0)->equals(usei->getSrc(0)) &&
262
             usei->subOp != NV50_IR_SUBOP_MOV_FINAL) {
263
            findFirstUses(texi, usei, uses, visited);
264
         } else {
265
            addTexUse(uses, usei, insn);
266
         }
267
      }
268
   }
269
}
270
 
271
// Texture barriers:
272
// This pass is a bit long and ugly and can probably be optimized.
273
//
274
// 1. obtain a list of TEXes and their outputs' first use(s)
275
// 2. calculate the barrier level of each first use (minimal number of TEXes,
276
//    over all paths, between the TEX and the use in question)
277
// 3. for each barrier, if all paths from the source TEX to that barrier
278
//    contain a barrier of lesser level, it can be culled
279
bool
280
NVC0LegalizePostRA::insertTextureBarriers(Function *fn)
281
{
282
   std::list *uses;
283
   std::vector texes;
284
   std::vector bbFirstTex;
285
   std::vector bbFirstUse;
286
   std::vector texCounts;
287
   std::vector useVec;
288
   ArrayList insns;
289
 
290
   fn->orderInstructions(insns);
291
 
292
   texCounts.resize(fn->allBBlocks.getSize(), 0);
293
   bbFirstTex.resize(fn->allBBlocks.getSize(), insns.getSize());
294
   bbFirstUse.resize(fn->allBBlocks.getSize(), insns.getSize());
295
 
296
   // tag BB CFG nodes by their id for later
297
   for (ArrayList::Iterator i = fn->allBBlocks.iterator(); !i.end(); i.next()) {
298
      BasicBlock *bb = reinterpret_cast(i.get());
299
      if (bb)
300
         bb->cfg.tag = bb->getId();
301
   }
302
 
303
   // gather the first uses for each TEX
304
   for (int i = 0; i < insns.getSize(); ++i) {
305
      Instruction *tex = reinterpret_cast(insns.get(i));
306
      if (isTextureOp(tex->op)) {
307
         texes.push_back(tex);
308
         if (!texCounts.at(tex->bb->getId()))
309
            bbFirstTex[tex->bb->getId()] = texes.size() - 1;
310
         texCounts[tex->bb->getId()]++;
311
      }
312
   }
313
   insns.clear();
314
   if (texes.empty())
315
      return false;
316
   uses = new std::list[texes.size()];
317
   if (!uses)
318
      return false;
319
   for (size_t i = 0; i < texes.size(); ++i) {
320
      std::tr1::unordered_set visited;
321
      findFirstUses(texes[i], texes[i], uses[i], visited);
322
   }
323
 
324
   // determine the barrier level at each use
325
   for (size_t i = 0; i < texes.size(); ++i) {
326
      for (std::list::iterator u = uses[i].begin(); u != uses[i].end();
327
           ++u) {
328
         BasicBlock *tb = texes[i]->bb;
329
         BasicBlock *ub = u->insn->bb;
330
         if (tb == ub) {
331
            u->level = 0;
332
            for (size_t j = i + 1; j < texes.size() &&
333
                    texes[j]->bb == tb && texes[j]->serial < u->insn->serial;
334
                 ++j)
335
               u->level++;
336
         } else {
337
            u->level = fn->cfg.findLightestPathWeight(&tb->cfg,
338
                                                      &ub->cfg, texCounts);
339
            if (u->level < 0) {
340
               WARN("Failed to find path TEX -> TEXBAR\n");
341
               u->level = 0;
342
               continue;
343
            }
344
            // this counted all TEXes in the origin block, correct that
345
            u->level -= i - bbFirstTex.at(tb->getId()) + 1 /* this TEX */;
346
            // and did not count the TEXes in the destination block, add those
347
            for (size_t j = bbFirstTex.at(ub->getId()); j < texes.size() &&
348
                    texes[j]->bb == ub && texes[j]->serial < u->insn->serial;
349
                 ++j)
350
               u->level++;
351
         }
352
         assert(u->level >= 0);
353
         useVec.push_back(*u);
354
      }
355
   }
356
   delete[] uses;
357
 
358
   // insert the barriers
359
   for (size_t i = 0; i < useVec.size(); ++i) {
360
      Instruction *prev = useVec[i].insn->prev;
361
      if (useVec[i].level < 0)
362
         continue;
363
      if (prev && prev->op == OP_TEXBAR) {
364
         if (prev->subOp > useVec[i].level)
365
            prev->subOp = useVec[i].level;
366
         prev->setSrc(prev->srcCount(), useVec[i].tex->getDef(0));
367
      } else {
368
         Instruction *bar = new_Instruction(func, OP_TEXBAR, TYPE_NONE);
369
         bar->fixed = 1;
370
         bar->subOp = useVec[i].level;
371
         // make use explicit to ease latency calculation
372
         bar->setSrc(bar->srcCount(), useVec[i].tex->getDef(0));
373
         useVec[i].insn->bb->insertBefore(useVec[i].insn, bar);
374
      }
375
   }
376
 
377
   if (fn->getProgram()->optLevel < 3)
378
      return true;
379
 
380
   std::vector limitT, limitB, limitS; // entry, exit, single
381
 
382
   limitT.resize(fn->allBBlocks.getSize(), Limits(0, 0));
383
   limitB.resize(fn->allBBlocks.getSize(), Limits(0, 0));
384
   limitS.resize(fn->allBBlocks.getSize());
385
 
386
   // cull unneeded barriers (should do that earlier, but for simplicity)
387
   IteratorRef bi = fn->cfg.iteratorCFG();
388
   // first calculate min/max outstanding TEXes for each BB
389
   for (bi->reset(); !bi->end(); bi->next()) {
390
      Graph::Node *n = reinterpret_cast(bi->get());
391
      BasicBlock *bb = BasicBlock::get(n);
392
      int min = 0;
393
      int max = std::numeric_limits::max();
394
      for (Instruction *i = bb->getFirst(); i; i = i->next) {
395
         if (isTextureOp(i->op)) {
396
            min++;
397
            if (max < std::numeric_limits::max())
398
               max++;
399
         } else
400
         if (i->op == OP_TEXBAR) {
401
            min = MIN2(min, i->subOp);
402
            max = MIN2(max, i->subOp);
403
         }
404
      }
405
      // limits when looking at an isolated block
406
      limitS[bb->getId()].min = min;
407
      limitS[bb->getId()].max = max;
408
   }
409
   // propagate the min/max values
410
   for (unsigned int l = 0; l <= fn->loopNestingBound; ++l) {
411
      for (bi->reset(); !bi->end(); bi->next()) {
412
         Graph::Node *n = reinterpret_cast(bi->get());
413
         BasicBlock *bb = BasicBlock::get(n);
414
         const int bbId = bb->getId();
415
         for (Graph::EdgeIterator ei = n->incident(); !ei.end(); ei.next()) {
416
            BasicBlock *in = BasicBlock::get(ei.getNode());
417
            const int inId = in->getId();
418
            limitT[bbId].min = MAX2(limitT[bbId].min, limitB[inId].min);
419
            limitT[bbId].max = MAX2(limitT[bbId].max, limitB[inId].max);
420
         }
421
         // I just hope this is correct ...
422
         if (limitS[bbId].max == std::numeric_limits::max()) {
423
            // no barrier
424
            limitB[bbId].min = limitT[bbId].min + limitS[bbId].min;
425
            limitB[bbId].max = limitT[bbId].max + limitS[bbId].min;
426
         } else {
427
            // block contained a barrier
428
            limitB[bbId].min = MIN2(limitS[bbId].max,
429
                                    limitT[bbId].min + limitS[bbId].min);
430
            limitB[bbId].max = MIN2(limitS[bbId].max,
431
                                    limitT[bbId].max + limitS[bbId].min);
432
         }
433
      }
434
   }
435
   // finally delete unnecessary barriers
436
   for (bi->reset(); !bi->end(); bi->next()) {
437
      Graph::Node *n = reinterpret_cast(bi->get());
438
      BasicBlock *bb = BasicBlock::get(n);
439
      Instruction *prev = NULL;
440
      Instruction *next;
441
      int max = limitT[bb->getId()].max;
442
      for (Instruction *i = bb->getFirst(); i; i = next) {
443
         next = i->next;
444
         if (i->op == OP_TEXBAR) {
445
            if (i->subOp >= max) {
446
               delete_Instruction(prog, i);
447
               i = NULL;
448
            } else {
449
               max = i->subOp;
450
               if (prev && prev->op == OP_TEXBAR && prev->subOp >= max) {
451
                  delete_Instruction(prog, prev);
452
                  prev = NULL;
453
               }
454
            }
455
         } else
456
         if (isTextureOp(i->op)) {
457
            max++;
458
         }
459
         if (i && !i->isNop())
460
            prev = i;
461
      }
462
   }
463
   return true;
464
}
465
 
466
bool
467
NVC0LegalizePostRA::visit(Function *fn)
468
{
469
   if (needTexBar)
470
      insertTextureBarriers(fn);
471
 
472
   rZero = new_LValue(fn, FILE_GPR);
473
   carry = new_LValue(fn, FILE_FLAGS);
474
 
475
   rZero->reg.data.id = prog->getTarget()->getFileSize(FILE_GPR);
476
   carry->reg.data.id = 0;
477
 
478
   return true;
479
}
480
 
481
void
482
NVC0LegalizePostRA::replaceZero(Instruction *i)
483
{
484
   for (int s = 0; i->srcExists(s); ++s) {
485
      if (s == 2 && i->op == OP_SUCLAMP)
486
         continue;
487
      ImmediateValue *imm = i->getSrc(s)->asImm();
488
      if (imm && imm->reg.data.u64 == 0)
489
         i->setSrc(s, rZero);
490
   }
491
}
492
 
493
// replace CONT with BRA for single unconditional continue
494
bool
495
NVC0LegalizePostRA::tryReplaceContWithBra(BasicBlock *bb)
496
{
497
   if (bb->cfg.incidentCount() != 2 || bb->getEntry()->op != OP_PRECONT)
498
      return false;
499
   Graph::EdgeIterator ei = bb->cfg.incident();
500
   if (ei.getType() != Graph::Edge::BACK)
501
      ei.next();
502
   if (ei.getType() != Graph::Edge::BACK)
503
      return false;
504
   BasicBlock *contBB = BasicBlock::get(ei.getNode());
505
 
506
   if (!contBB->getExit() || contBB->getExit()->op != OP_CONT ||
507
       contBB->getExit()->getPredicate())
508
      return false;
509
   contBB->getExit()->op = OP_BRA;
510
   bb->remove(bb->getEntry()); // delete PRECONT
511
 
512
   ei.next();
513
   assert(ei.end() || ei.getType() != Graph::Edge::BACK);
514
   return true;
515
}
516
 
517
// replace branches to join blocks with join ops
518
void
519
NVC0LegalizePostRA::propagateJoin(BasicBlock *bb)
520
{
521
   if (bb->getEntry()->op != OP_JOIN || bb->getEntry()->asFlow()->limit)
522
      return;
523
   for (Graph::EdgeIterator ei = bb->cfg.incident(); !ei.end(); ei.next()) {
524
      BasicBlock *in = BasicBlock::get(ei.getNode());
525
      Instruction *exit = in->getExit();
526
      if (!exit) {
527
         in->insertTail(new FlowInstruction(func, OP_JOIN, bb));
528
         // there should always be a terminator instruction
529
         WARN("inserted missing terminator in BB:%i\n", in->getId());
530
      } else
531
      if (exit->op == OP_BRA) {
532
         exit->op = OP_JOIN;
533
         exit->asFlow()->limit = 1; // must-not-propagate marker
534
      }
535
   }
536
   bb->remove(bb->getEntry());
537
}
538
 
539
bool
540
NVC0LegalizePostRA::visit(BasicBlock *bb)
541
{
542
   Instruction *i, *next;
543
 
544
   // remove pseudo operations and non-fixed no-ops, split 64 bit operations
545
   for (i = bb->getFirst(); i; i = next) {
546
      next = i->next;
547
      if (i->op == OP_EMIT || i->op == OP_RESTART) {
548
         if (!i->getDef(0)->refCount())
549
            i->setDef(0, NULL);
550
         if (i->src(0).getFile() == FILE_IMMEDIATE)
551
            i->setSrc(0, rZero); // initial value must be 0
552
         replaceZero(i);
553
      } else
554
      if (i->isNop()) {
555
         bb->remove(i);
556
      } else {
557
         // TODO: Move this to before register allocation for operations that
558
         // need the $c register !
559
         if (typeSizeof(i->dType) == 8) {
560
            Instruction *hi;
561
            hi = BuildUtil::split64BitOpPostRA(func, i, rZero, carry);
562
            if (hi)
563
               next = hi;
564
         }
565
 
566
         if (i->op != OP_MOV && i->op != OP_PFETCH)
567
            replaceZero(i);
568
      }
569
   }
570
   if (!bb->getEntry())
571
      return true;
572
 
573
   if (!tryReplaceContWithBra(bb))
574
      propagateJoin(bb);
575
 
576
   return true;
577
}
578
 
579
NVC0LoweringPass::NVC0LoweringPass(Program *prog) : targ(prog->getTarget())
580
{
581
   bld.setProgram(prog);
582
   gMemBase = NULL;
583
}
584
 
585
bool
586
NVC0LoweringPass::visit(Function *fn)
587
{
588
   if (prog->getType() == Program::TYPE_GEOMETRY) {
589
      assert(!strncmp(fn->getName(), "MAIN", 4));
590
      // TODO: when we generate actual functions pass this value along somehow
591
      bld.setPosition(BasicBlock::get(fn->cfg.getRoot()), false);
592
      gpEmitAddress = bld.loadImm(NULL, 0)->asLValue();
593
      if (fn->cfgExit) {
594
         bld.setPosition(BasicBlock::get(fn->cfgExit)->getExit(), false);
595
         bld.mkMovToReg(0, gpEmitAddress);
596
      }
597
   }
598
   return true;
599
}
600
 
601
bool
602
NVC0LoweringPass::visit(BasicBlock *bb)
603
{
604
   return true;
605
}
606
 
607
inline Value *
608
NVC0LoweringPass::loadTexHandle(Value *ptr, unsigned int slot)
609
{
610
   uint8_t b = prog->driver->io.resInfoCBSlot;
611
   uint32_t off = prog->driver->io.texBindBase + slot * 4;
612
   return bld.
613
      mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
614
}
615
 
616
// move array source to first slot, convert to u16, add indirections
617
bool
618
NVC0LoweringPass::handleTEX(TexInstruction *i)
619
{
620
   const int dim = i->tex.target.getDim() + i->tex.target.isCube();
621
   const int arg = i->tex.target.getArgCount();
622
   const int lyr = arg - (i->tex.target.isMS() ? 2 : 1);
623
   const int chipset = prog->getTarget()->getChipset();
624
 
625
   // Arguments to the TEX instruction are a little insane. Even though the
626
   // encoding is identical between SM20 and SM30, the arguments mean
627
   // different things between Fermi and Kepler+. A lot of arguments are
628
   // optional based on flags passed to the instruction. This summarizes the
629
   // order of things.
630
   //
631
   // Fermi:
632
   //  array/indirect
633
   //  coords
634
   //  sample
635
   //  lod bias
636
   //  depth compare
637
   //  offsets:
638
   //    - tg4: 8 bits each, either 2 (1 offset reg) or 8 (2 offset reg)
639
   //    - other: 4 bits each, single reg
640
   //
641
   // Kepler+:
642
   //  indirect handle
643
   //  array (+ offsets for txd in upper 16 bits)
644
   //  coords
645
   //  sample
646
   //  lod bias
647
   //  depth compare
648
   //  offsets (same as fermi, except txd which takes it with array)
649
   //
650
   // Maxwell (tex):
651
   //  array
652
   //  coords
653
   //  indirect handle
654
   //  sample
655
   //  lod bias
656
   //  depth compare
657
   //  offsets
658
   //
659
   // Maxwell (txd):
660
   //  indirect handle
661
   //  coords
662
   //  array + offsets
663
   //  derivatives
664
 
665
   if (chipset >= NVISA_GK104_CHIPSET) {
666
      if (i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) {
667
         // XXX this ignores tsc, and assumes a 1:1 mapping
668
         assert(i->tex.rIndirectSrc >= 0);
669
         Value *hnd = loadTexHandle(
670
               bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
671
                          i->getIndirectR(), bld.mkImm(2)),
672
               i->tex.r);
673
         i->tex.r = 0xff;
674
         i->tex.s = 0x1f;
675
         i->setIndirectR(hnd);
676
         i->setIndirectS(NULL);
677
      } else if (i->tex.r == i->tex.s) {
678
         i->tex.r += prog->driver->io.texBindBase / 4;
679
         i->tex.s  = 0; // only a single cX[] value possible here
680
      } else {
681
         Value *hnd = bld.getScratch();
682
         Value *rHnd = loadTexHandle(NULL, i->tex.r);
683
         Value *sHnd = loadTexHandle(NULL, i->tex.s);
684
 
685
         bld.mkOp3(OP_INSBF, TYPE_U32, hnd, rHnd, bld.mkImm(0x1400), sHnd);
686
 
687
         i->tex.r = 0; // not used for indirect tex
688
         i->tex.s = 0;
689
         i->setIndirectR(hnd);
690
      }
691
      if (i->tex.target.isArray()) {
692
         LValue *layer = new_LValue(func, FILE_GPR);
693
         Value *src = i->getSrc(lyr);
694
         const int sat = (i->op == OP_TXF) ? 1 : 0;
695
         DataType sTy = (i->op == OP_TXF) ? TYPE_U32 : TYPE_F32;
696
         bld.mkCvt(OP_CVT, TYPE_U16, layer, sTy, src)->saturate = sat;
697
         if (i->op != OP_TXD || chipset < NVISA_GM107_CHIPSET) {
698
            for (int s = dim; s >= 1; --s)
699
               i->setSrc(s, i->getSrc(s - 1));
700
            i->setSrc(0, layer);
701
         } else {
702
            i->setSrc(dim, layer);
703
         }
704
      }
705
      // Move the indirect reference to the first place
706
      if (i->tex.rIndirectSrc >= 0 && (
707
                i->op == OP_TXD || chipset < NVISA_GM107_CHIPSET)) {
708
         Value *hnd = i->getIndirectR();
709
 
710
         i->setIndirectR(NULL);
711
         i->moveSources(0, 1);
712
         i->setSrc(0, hnd);
713
         i->tex.rIndirectSrc = 0;
714
         i->tex.sIndirectSrc = -1;
715
      }
716
   } else
717
   // (nvc0) generate and move the tsc/tic/array source to the front
718
   if (i->tex.target.isArray() || i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) {
719
      LValue *src = new_LValue(func, FILE_GPR); // 0xttxsaaaa
720
 
721
      Value *ticRel = i->getIndirectR();
722
      Value *tscRel = i->getIndirectS();
723
 
724
      if (ticRel) {
725
         i->setSrc(i->tex.rIndirectSrc, NULL);
726
         if (i->tex.r)
727
            ticRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
728
                                ticRel, bld.mkImm(i->tex.r));
729
      }
730
      if (tscRel) {
731
         i->setSrc(i->tex.sIndirectSrc, NULL);
732
         if (i->tex.s)
733
            tscRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
734
                                tscRel, bld.mkImm(i->tex.s));
735
      }
736
 
737
      Value *arrayIndex = i->tex.target.isArray() ? i->getSrc(lyr) : NULL;
738
      for (int s = dim; s >= 1; --s)
739
         i->setSrc(s, i->getSrc(s - 1));
740
      i->setSrc(0, arrayIndex);
741
 
742
      if (arrayIndex) {
743
         int sat = (i->op == OP_TXF) ? 1 : 0;
744
         DataType sTy = (i->op == OP_TXF) ? TYPE_U32 : TYPE_F32;
745
         bld.mkCvt(OP_CVT, TYPE_U16, src, sTy, arrayIndex)->saturate = sat;
746
      } else {
747
         bld.loadImm(src, 0);
748
      }
749
 
750
      if (ticRel)
751
         bld.mkOp3(OP_INSBF, TYPE_U32, src, ticRel, bld.mkImm(0x0917), src);
752
      if (tscRel)
753
         bld.mkOp3(OP_INSBF, TYPE_U32, src, tscRel, bld.mkImm(0x0710), src);
754
 
755
      i->setSrc(0, src);
756
   }
757
 
758
   // For nvc0, the sample id has to be in the second operand, as the offset
759
   // does. Right now we don't know how to pass both in, and this case can't
760
   // happen with OpenGL. On nve0, the sample id is part of the texture
761
   // coordinate argument.
762
   assert(chipset >= NVISA_GK104_CHIPSET ||
763
          !i->tex.useOffsets || !i->tex.target.isMS());
764
 
765
   // offset is between lod and dc
766
   if (i->tex.useOffsets) {
767
      int n, c;
768
      int s = i->srcCount(0xff, true);
769
      if (i->op != OP_TXD || chipset < NVISA_GK104_CHIPSET) {
770
         if (i->tex.target.isShadow())
771
            s--;
772
         if (i->srcExists(s)) // move potential predicate out of the way
773
            i->moveSources(s, 1);
774
         if (i->tex.useOffsets == 4 && i->srcExists(s + 1))
775
            i->moveSources(s + 1, 1);
776
      }
777
      if (i->op == OP_TXG) {
778
         // Either there is 1 offset, which goes into the 2 low bytes of the
779
         // first source, or there are 4 offsets, which go into 2 sources (8
780
         // values, 1 byte each).
781
         Value *offs[2] = {NULL, NULL};
782
         for (n = 0; n < i->tex.useOffsets; n++) {
783
            for (c = 0; c < 2; ++c) {
784
               if ((n % 2) == 0 && c == 0)
785
                  offs[n / 2] = i->offset[n][c].get();
786
               else
787
                  bld.mkOp3(OP_INSBF, TYPE_U32,
788
                            offs[n / 2],
789
                            i->offset[n][c].get(),
790
                            bld.mkImm(0x800 | ((n * 16 + c * 8) % 32)),
791
                            offs[n / 2]);
792
            }
793
         }
794
         i->setSrc(s, offs[0]);
795
         if (offs[1])
796
            i->setSrc(s + 1, offs[1]);
797
      } else {
798
         unsigned imm = 0;
799
         assert(i->tex.useOffsets == 1);
800
         for (c = 0; c < 3; ++c) {
801
            ImmediateValue val;
802
            if (!i->offset[0][c].getImmediate(val))
803
               assert(!"non-immediate offset passed to non-TXG");
804
            imm |= (val.reg.data.u32 & 0xf) << (c * 4);
805
         }
806
         if (i->op == OP_TXD && chipset >= NVISA_GK104_CHIPSET) {
807
            // The offset goes into the upper 16 bits of the array index. So
808
            // create it if it's not already there, and INSBF it if it already
809
            // is.
810
            s = (i->tex.rIndirectSrc >= 0) ? 1 : 0;
811
            if (chipset >= NVISA_GM107_CHIPSET)
812
               s += dim;
813
            if (i->tex.target.isArray()) {
814
               bld.mkOp3(OP_INSBF, TYPE_U32, i->getSrc(s),
815
                         bld.loadImm(NULL, imm), bld.mkImm(0xc10),
816
                         i->getSrc(s));
817
            } else {
818
               i->moveSources(s, 1);
819
               i->setSrc(s, bld.loadImm(NULL, imm << 16));
820
            }
821
         } else {
822
            i->setSrc(s, bld.loadImm(NULL, imm));
823
         }
824
      }
825
   }
826
 
827
   if (chipset >= NVISA_GK104_CHIPSET) {
828
      //
829
      // If TEX requires more than 4 sources, the 2nd register tuple must be
830
      // aligned to 4, even if it consists of just a single 4-byte register.
831
      //
832
      // XXX HACK: We insert 0 sources to avoid the 5 or 6 regs case.
833
      //
834
      int s = i->srcCount(0xff, true);
835
      if (s > 4 && s < 7) {
836
         if (i->srcExists(s)) // move potential predicate out of the way
837
            i->moveSources(s, 7 - s);
838
         while (s < 7)
839
            i->setSrc(s++, bld.loadImm(NULL, 0));
840
      }
841
   }
842
 
843
   return true;
844
}
845
 
846
bool
847
NVC0LoweringPass::handleManualTXD(TexInstruction *i)
848
{
849
   static const uint8_t qOps[4][2] =
850
   {
851
      { QUADOP(MOV2, ADD,  MOV2, ADD),  QUADOP(MOV2, MOV2, ADD,  ADD) }, // l0
852
      { QUADOP(SUBR, MOV2, SUBR, MOV2), QUADOP(MOV2, MOV2, ADD,  ADD) }, // l1
853
      { QUADOP(MOV2, ADD,  MOV2, ADD),  QUADOP(SUBR, SUBR, MOV2, MOV2) }, // l2
854
      { QUADOP(SUBR, MOV2, SUBR, MOV2), QUADOP(SUBR, SUBR, MOV2, MOV2) }, // l3
855
   };
856
   Value *def[4][4];
857
   Value *crd[3];
858
   Instruction *tex;
859
   Value *zero = bld.loadImm(bld.getSSA(), 0);
860
   int l, c;
861
   const int dim = i->tex.target.getDim();
862
   const int array = i->tex.target.isArray();
863
 
864
   i->op = OP_TEX; // no need to clone dPdx/dPdy later
865
 
866
   for (c = 0; c < dim; ++c)
867
      crd[c] = bld.getScratch();
868
 
869
   bld.mkOp(OP_QUADON, TYPE_NONE, NULL);
870
   for (l = 0; l < 4; ++l) {
871
      // mov coordinates from lane l to all lanes
872
      for (c = 0; c < dim; ++c)
873
         bld.mkQuadop(0x00, crd[c], l, i->getSrc(c + array), zero);
874
      // add dPdx from lane l to lanes dx
875
      for (c = 0; c < dim; ++c)
876
         bld.mkQuadop(qOps[l][0], crd[c], l, i->dPdx[c].get(), crd[c]);
877
      // add dPdy from lane l to lanes dy
878
      for (c = 0; c < dim; ++c)
879
         bld.mkQuadop(qOps[l][1], crd[c], l, i->dPdy[c].get(), crd[c]);
880
      // texture
881
      bld.insert(tex = cloneForward(func, i));
882
      for (c = 0; c < dim; ++c)
883
         tex->setSrc(c + array, crd[c]);
884
      // save results
885
      for (c = 0; i->defExists(c); ++c) {
886
         Instruction *mov;
887
         def[c][l] = bld.getSSA();
888
         mov = bld.mkMov(def[c][l], tex->getDef(c));
889
         mov->fixed = 1;
890
         mov->lanes = 1 << l;
891
      }
892
   }
893
   bld.mkOp(OP_QUADPOP, TYPE_NONE, NULL);
894
 
895
   for (c = 0; i->defExists(c); ++c) {
896
      Instruction *u = bld.mkOp(OP_UNION, TYPE_U32, i->getDef(c));
897
      for (l = 0; l < 4; ++l)
898
         u->setSrc(l, def[c][l]);
899
   }
900
 
901
   i->bb->remove(i);
902
   return true;
903
}
904
 
905
bool
906
NVC0LoweringPass::handleTXD(TexInstruction *txd)
907
{
908
   int dim = txd->tex.target.getDim();
909
   unsigned arg = txd->tex.target.getArgCount();
910
   unsigned expected_args = arg;
911
   const int chipset = prog->getTarget()->getChipset();
912
 
913
   if (chipset >= NVISA_GK104_CHIPSET) {
914
      if (!txd->tex.target.isArray() && txd->tex.useOffsets)
915
         expected_args++;
916
      if (txd->tex.rIndirectSrc >= 0 || txd->tex.sIndirectSrc >= 0)
917
         expected_args++;
918
   } else {
919
      if (txd->tex.useOffsets)
920
         expected_args++;
921
      if (!txd->tex.target.isArray() && (
922
                txd->tex.rIndirectSrc >= 0 || txd->tex.sIndirectSrc >= 0))
923
         expected_args++;
924
   }
925
 
926
   if (expected_args > 4 ||
927
       dim > 2 ||
928
       txd->tex.target.isShadow() ||
929
       txd->tex.target.isCube())
930
      txd->op = OP_TEX;
931
 
932
   handleTEX(txd);
933
   while (txd->srcExists(arg))
934
      ++arg;
935
 
936
   txd->tex.derivAll = true;
937
   if (txd->op == OP_TEX)
938
      return handleManualTXD(txd);
939
 
940
   assert(arg == expected_args);
941
   for (int c = 0; c < dim; ++c) {
942
      txd->setSrc(arg + c * 2 + 0, txd->dPdx[c]);
943
      txd->setSrc(arg + c * 2 + 1, txd->dPdy[c]);
944
      txd->dPdx[c].set(NULL);
945
      txd->dPdy[c].set(NULL);
946
   }
947
   return true;
948
}
949
 
950
bool
951
NVC0LoweringPass::handleTXQ(TexInstruction *txq)
952
{
953
   // TODO: indirect resource/sampler index
954
   return true;
955
}
956
 
957
bool
958
NVC0LoweringPass::handleTXLQ(TexInstruction *i)
959
{
960
   /* The outputs are inverted compared to what the TGSI instruction
961
    * expects. Take that into account in the mask.
962
    */
963
   assert((i->tex.mask & ~3) == 0);
964
   if (i->tex.mask == 1)
965
      i->tex.mask = 2;
966
   else if (i->tex.mask == 2)
967
      i->tex.mask = 1;
968
   handleTEX(i);
969
   bld.setPosition(i, true);
970
 
971
   /* The returned values are not quite what we want:
972
    * (a) convert from s16/u16 to f32
973
    * (b) multiply by 1/256
974
    */
975
   for (int def = 0; def < 2; ++def) {
976
      if (!i->defExists(def))
977
         continue;
978
      enum DataType type = TYPE_S16;
979
      if (i->tex.mask == 2 || def > 0)
980
         type = TYPE_U16;
981
      bld.mkCvt(OP_CVT, TYPE_F32, i->getDef(def), type, i->getDef(def));
982
      bld.mkOp2(OP_MUL, TYPE_F32, i->getDef(def),
983
                i->getDef(def), bld.loadImm(NULL, 1.0f / 256));
984
   }
985
   if (i->tex.mask == 3) {
986
      LValue *t = new_LValue(func, FILE_GPR);
987
      bld.mkMov(t, i->getDef(0));
988
      bld.mkMov(i->getDef(0), i->getDef(1));
989
      bld.mkMov(i->getDef(1), t);
990
   }
991
   return true;
992
}
993
 
994
 
995
bool
996
NVC0LoweringPass::handleATOM(Instruction *atom)
997
{
998
   SVSemantic sv;
999
 
1000
   switch (atom->src(0).getFile()) {
1001
   case FILE_MEMORY_LOCAL:
1002
      sv = SV_LBASE;
1003
      break;
1004
   case FILE_MEMORY_SHARED:
1005
      sv = SV_SBASE;
1006
      break;
1007
   default:
1008
      assert(atom->src(0).getFile() == FILE_MEMORY_GLOBAL);
1009
      return true;
1010
   }
1011
   Value *base =
1012
      bld.mkOp1v(OP_RDSV, TYPE_U32, bld.getScratch(), bld.mkSysVal(sv, 0));
1013
   Value *ptr = atom->getIndirect(0, 0);
1014
 
1015
   atom->setSrc(0, cloneShallow(func, atom->getSrc(0)));
1016
   atom->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
1017
   if (ptr)
1018
      base = bld.mkOp2v(OP_ADD, TYPE_U32, base, base, ptr);
1019
   atom->setIndirect(0, 0, base);
1020
 
1021
   return true;
1022
}
1023
 
1024
bool
1025
NVC0LoweringPass::handleCasExch(Instruction *cas, bool needCctl)
1026
{
1027
   if (cas->subOp != NV50_IR_SUBOP_ATOM_CAS &&
1028
       cas->subOp != NV50_IR_SUBOP_ATOM_EXCH)
1029
      return false;
1030
   bld.setPosition(cas, true);
1031
 
1032
   if (needCctl) {
1033
      Instruction *cctl = bld.mkOp1(OP_CCTL, TYPE_NONE, NULL, cas->getSrc(0));
1034
      cctl->setIndirect(0, 0, cas->getIndirect(0, 0));
1035
      cctl->fixed = 1;
1036
      cctl->subOp = NV50_IR_SUBOP_CCTL_IV;
1037
      if (cas->isPredicated())
1038
         cctl->setPredicate(cas->cc, cas->getPredicate());
1039
   }
1040
 
1041
   if (cas->defExists(0) && cas->subOp == NV50_IR_SUBOP_ATOM_CAS) {
1042
      // CAS is crazy. It's 2nd source is a double reg, and the 3rd source
1043
      // should be set to the high part of the double reg or bad things will
1044
      // happen elsewhere in the universe.
1045
      // Also, it sometimes returns the new value instead of the old one
1046
      // under mysterious circumstances.
1047
      Value *dreg = bld.getSSA(8);
1048
      bld.setPosition(cas, false);
1049
      bld.mkOp2(OP_MERGE, TYPE_U64, dreg, cas->getSrc(1), cas->getSrc(2));
1050
      cas->setSrc(1, dreg);
1051
   }
1052
 
1053
   return true;
1054
}
1055
 
1056
inline Value *
1057
NVC0LoweringPass::loadResInfo32(Value *ptr, uint32_t off)
1058
{
1059
   uint8_t b = prog->driver->io.resInfoCBSlot;
1060
   off += prog->driver->io.suInfoBase;
1061
   return bld.
1062
      mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
1063
}
1064
 
1065
inline Value *
1066
NVC0LoweringPass::loadMsInfo32(Value *ptr, uint32_t off)
1067
{
1068
   uint8_t b = prog->driver->io.msInfoCBSlot;
1069
   off += prog->driver->io.msInfoBase;
1070
   return bld.
1071
      mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
1072
}
1073
 
1074
/* On nvc0, surface info is obtained via the surface binding points passed
1075
 * to the SULD/SUST instructions.
1076
 * On nve4, surface info is stored in c[] and is used by various special
1077
 * instructions, e.g. for clamping coordiantes or generating an address.
1078
 * They couldn't just have added an equivalent to TIC now, couldn't they ?
1079
 */
1080
#define NVE4_SU_INFO_ADDR   0x00
1081
#define NVE4_SU_INFO_FMT    0x04
1082
#define NVE4_SU_INFO_DIM_X  0x08
1083
#define NVE4_SU_INFO_PITCH  0x0c
1084
#define NVE4_SU_INFO_DIM_Y  0x10
1085
#define NVE4_SU_INFO_ARRAY  0x14
1086
#define NVE4_SU_INFO_DIM_Z  0x18
1087
#define NVE4_SU_INFO_UNK1C  0x1c
1088
#define NVE4_SU_INFO_WIDTH  0x20
1089
#define NVE4_SU_INFO_HEIGHT 0x24
1090
#define NVE4_SU_INFO_DEPTH  0x28
1091
#define NVE4_SU_INFO_TARGET 0x2c
1092
#define NVE4_SU_INFO_CALL   0x30
1093
#define NVE4_SU_INFO_RAW_X  0x34
1094
#define NVE4_SU_INFO_MS_X   0x38
1095
#define NVE4_SU_INFO_MS_Y   0x3c
1096
 
1097
#define NVE4_SU_INFO__STRIDE 0x40
1098
 
1099
#define NVE4_SU_INFO_DIM(i)  (0x08 + (i) * 8)
1100
#define NVE4_SU_INFO_SIZE(i) (0x20 + (i) * 4)
1101
#define NVE4_SU_INFO_MS(i)   (0x38 + (i) * 4)
1102
 
1103
static inline uint16_t getSuClampSubOp(const TexInstruction *su, int c)
1104
{
1105
   switch (su->tex.target.getEnum()) {
1106
   case TEX_TARGET_BUFFER:      return NV50_IR_SUBOP_SUCLAMP_PL(0, 1);
1107
   case TEX_TARGET_RECT:        return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1108
   case TEX_TARGET_1D:          return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1109
   case TEX_TARGET_1D_ARRAY:    return (c == 1) ?
1110
                                   NV50_IR_SUBOP_SUCLAMP_PL(0, 2) :
1111
                                   NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1112
   case TEX_TARGET_2D:          return NV50_IR_SUBOP_SUCLAMP_BL(0, 2);
1113
   case TEX_TARGET_2D_MS:       return NV50_IR_SUBOP_SUCLAMP_BL(0, 2);
1114
   case TEX_TARGET_2D_ARRAY:    return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1115
   case TEX_TARGET_2D_MS_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1116
   case TEX_TARGET_3D:          return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1117
   case TEX_TARGET_CUBE:        return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1118
   case TEX_TARGET_CUBE_ARRAY:  return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1119
   default:
1120
      assert(0);
1121
      return 0;
1122
   }
1123
}
1124
 
1125
void
1126
NVC0LoweringPass::adjustCoordinatesMS(TexInstruction *tex)
1127
{
1128
   const uint16_t base = tex->tex.r * NVE4_SU_INFO__STRIDE;
1129
   const int arg = tex->tex.target.getArgCount();
1130
 
1131
   if (tex->tex.target == TEX_TARGET_2D_MS)
1132
      tex->tex.target = TEX_TARGET_2D;
1133
   else
1134
   if (tex->tex.target == TEX_TARGET_2D_MS_ARRAY)
1135
      tex->tex.target = TEX_TARGET_2D_ARRAY;
1136
   else
1137
      return;
1138
 
1139
   Value *x = tex->getSrc(0);
1140
   Value *y = tex->getSrc(1);
1141
   Value *s = tex->getSrc(arg - 1);
1142
 
1143
   Value *tx = bld.getSSA(), *ty = bld.getSSA(), *ts = bld.getSSA();
1144
 
1145
   Value *ms_x = loadResInfo32(NULL, base + NVE4_SU_INFO_MS(0));
1146
   Value *ms_y = loadResInfo32(NULL, base + NVE4_SU_INFO_MS(1));
1147
 
1148
   bld.mkOp2(OP_SHL, TYPE_U32, tx, x, ms_x);
1149
   bld.mkOp2(OP_SHL, TYPE_U32, ty, y, ms_y);
1150
 
1151
   s = bld.mkOp2v(OP_AND, TYPE_U32, ts, s, bld.loadImm(NULL, 0x7));
1152
   s = bld.mkOp2v(OP_SHL, TYPE_U32, ts, ts, bld.mkImm(3));
1153
 
1154
   Value *dx = loadMsInfo32(ts, 0x0);
1155
   Value *dy = loadMsInfo32(ts, 0x4);
1156
 
1157
   bld.mkOp2(OP_ADD, TYPE_U32, tx, tx, dx);
1158
   bld.mkOp2(OP_ADD, TYPE_U32, ty, ty, dy);
1159
 
1160
   tex->setSrc(0, tx);
1161
   tex->setSrc(1, ty);
1162
   tex->moveSources(arg, -1);
1163
}
1164
 
1165
// Sets 64-bit "generic address", predicate and format sources for SULD/SUST.
1166
// They're computed from the coordinates using the surface info in c[] space.
1167
void
1168
NVC0LoweringPass::processSurfaceCoordsNVE4(TexInstruction *su)
1169
{
1170
   Instruction *insn;
1171
   const bool atom = su->op == OP_SUREDB || su->op == OP_SUREDP;
1172
   const bool raw =
1173
      su->op == OP_SULDB || su->op == OP_SUSTB || su->op == OP_SUREDB;
1174
   const int idx = su->tex.r;
1175
   const int dim = su->tex.target.getDim();
1176
   const int arg = dim + (su->tex.target.isArray() ? 1 : 0);
1177
   const uint16_t base = idx * NVE4_SU_INFO__STRIDE;
1178
   int c;
1179
   Value *zero = bld.mkImm(0);
1180
   Value *p1 = NULL;
1181
   Value *v;
1182
   Value *src[3];
1183
   Value *bf, *eau, *off;
1184
   Value *addr, *pred;
1185
 
1186
   off = bld.getScratch(4);
1187
   bf = bld.getScratch(4);
1188
   addr = bld.getSSA(8);
1189
   pred = bld.getScratch(1, FILE_PREDICATE);
1190
 
1191
   bld.setPosition(su, false);
1192
 
1193
   adjustCoordinatesMS(su);
1194
 
1195
   // calculate clamped coordinates
1196
   for (c = 0; c < arg; ++c) {
1197
      src[c] = bld.getScratch();
1198
      if (c == 0 && raw)
1199
         v = loadResInfo32(NULL, base + NVE4_SU_INFO_RAW_X);
1200
      else
1201
         v = loadResInfo32(NULL, base + NVE4_SU_INFO_DIM(c));
1202
      bld.mkOp3(OP_SUCLAMP, TYPE_S32, src[c], su->getSrc(c), v, zero)
1203
         ->subOp = getSuClampSubOp(su, c);
1204
   }
1205
   for (; c < 3; ++c)
1206
      src[c] = zero;
1207
 
1208
   // set predicate output
1209
   if (su->tex.target == TEX_TARGET_BUFFER) {
1210
      src[0]->getInsn()->setFlagsDef(1, pred);
1211
   } else
1212
   if (su->tex.target.isArray()) {
1213
      p1 = bld.getSSA(1, FILE_PREDICATE);
1214
      src[dim]->getInsn()->setFlagsDef(1, p1);
1215
   }
1216
 
1217
   // calculate pixel offset
1218
   if (dim == 1) {
1219
      if (su->tex.target != TEX_TARGET_BUFFER)
1220
         bld.mkOp2(OP_AND, TYPE_U32, off, src[0], bld.loadImm(NULL, 0xffff));
1221
   } else
1222
   if (dim == 3) {
1223
      v = loadResInfo32(NULL, base + NVE4_SU_INFO_UNK1C);
1224
      bld.mkOp3(OP_MADSP, TYPE_U32, off, src[2], v, src[1])
1225
         ->subOp = NV50_IR_SUBOP_MADSP(4,2,8); // u16l u16l u16l
1226
 
1227
      v = loadResInfo32(NULL, base + NVE4_SU_INFO_PITCH);
1228
      bld.mkOp3(OP_MADSP, TYPE_U32, off, off, v, src[0])
1229
         ->subOp = NV50_IR_SUBOP_MADSP(0,2,8); // u32 u16l u16l
1230
   } else {
1231
      assert(dim == 2);
1232
      v = loadResInfo32(NULL, base + NVE4_SU_INFO_PITCH);
1233
      bld.mkOp3(OP_MADSP, TYPE_U32, off, src[1], v, src[0])
1234
         ->subOp = su->tex.target.isArray() ?
1235
         NV50_IR_SUBOP_MADSP_SD : NV50_IR_SUBOP_MADSP(4,2,8); // u16l u16l u16l
1236
   }
1237
 
1238
   // calculate effective address part 1
1239
   if (su->tex.target == TEX_TARGET_BUFFER) {
1240
      if (raw) {
1241
         bf = src[0];
1242
      } else {
1243
         v = loadResInfo32(NULL, base + NVE4_SU_INFO_FMT);
1244
         bld.mkOp3(OP_VSHL, TYPE_U32, bf, src[0], v, zero)
1245
            ->subOp = NV50_IR_SUBOP_V1(7,6,8|2);
1246
      }
1247
   } else {
1248
      Value *y = src[1];
1249
      Value *z = src[2];
1250
      uint16_t subOp = 0;
1251
 
1252
      switch (dim) {
1253
      case 1:
1254
         y = zero;
1255
         z = zero;
1256
         break;
1257
      case 2:
1258
         z = off;
1259
         if (!su->tex.target.isArray()) {
1260
            z = loadResInfo32(NULL, base + NVE4_SU_INFO_UNK1C);
1261
            subOp = NV50_IR_SUBOP_SUBFM_3D;
1262
         }
1263
         break;
1264
      default:
1265
         subOp = NV50_IR_SUBOP_SUBFM_3D;
1266
         assert(dim == 3);
1267
         break;
1268
      }
1269
      insn = bld.mkOp3(OP_SUBFM, TYPE_U32, bf, src[0], y, z);
1270
      insn->subOp = subOp;
1271
      insn->setFlagsDef(1, pred);
1272
   }
1273
 
1274
   // part 2
1275
   v = loadResInfo32(NULL, base + NVE4_SU_INFO_ADDR);
1276
 
1277
   if (su->tex.target == TEX_TARGET_BUFFER) {
1278
      eau = v;
1279
   } else {
1280
      eau = bld.mkOp3v(OP_SUEAU, TYPE_U32, bld.getScratch(4), off, bf, v);
1281
   }
1282
   // add array layer offset
1283
   if (su->tex.target.isArray()) {
1284
      v = loadResInfo32(NULL, base + NVE4_SU_INFO_ARRAY);
1285
      if (dim == 1)
1286
         bld.mkOp3(OP_MADSP, TYPE_U32, eau, src[1], v, eau)
1287
            ->subOp = NV50_IR_SUBOP_MADSP(4,0,0); // u16 u24 u32
1288
      else
1289
         bld.mkOp3(OP_MADSP, TYPE_U32, eau, v, src[2], eau)
1290
            ->subOp = NV50_IR_SUBOP_MADSP(0,0,0); // u32 u24 u32
1291
      // combine predicates
1292
      assert(p1);
1293
      bld.mkOp2(OP_OR, TYPE_U8, pred, pred, p1);
1294
   }
1295
 
1296
   if (atom) {
1297
      Value *lo = bf;
1298
      if (su->tex.target == TEX_TARGET_BUFFER) {
1299
         lo = zero;
1300
         bld.mkMov(off, bf);
1301
      }
1302
      //  bf == g[] address & 0xff
1303
      // eau == g[] address >> 8
1304
      bld.mkOp3(OP_PERMT, TYPE_U32,  bf,   lo, bld.loadImm(NULL, 0x6540), eau);
1305
      bld.mkOp3(OP_PERMT, TYPE_U32, eau, zero, bld.loadImm(NULL, 0x0007), eau);
1306
   } else
1307
   if (su->op == OP_SULDP && su->tex.target == TEX_TARGET_BUFFER) {
1308
      // Convert from u32 to u8 address format, which is what the library code
1309
      // doing SULDP currently uses.
1310
      // XXX: can SUEAU do this ?
1311
      // XXX: does it matter that we don't mask high bytes in bf ?
1312
      // Grrr.
1313
      bld.mkOp2(OP_SHR, TYPE_U32, off, bf, bld.mkImm(8));
1314
      bld.mkOp2(OP_ADD, TYPE_U32, eau, eau, off);
1315
   }
1316
 
1317
   bld.mkOp2(OP_MERGE, TYPE_U64, addr, bf, eau);
1318
 
1319
   if (atom && su->tex.target == TEX_TARGET_BUFFER)
1320
      bld.mkOp2(OP_ADD, TYPE_U64, addr, addr, off);
1321
 
1322
   // let's just set it 0 for raw access and hope it works
1323
   v = raw ?
1324
      bld.mkImm(0) : loadResInfo32(NULL, base + NVE4_SU_INFO_FMT);
1325
 
1326
   // get rid of old coordinate sources, make space for fmt info and predicate
1327
   su->moveSources(arg, 3 - arg);
1328
   // set 64 bit address and 32-bit format sources
1329
   su->setSrc(0, addr);
1330
   su->setSrc(1, v);
1331
   su->setSrc(2, pred);
1332
}
1333
 
1334
void
1335
NVC0LoweringPass::handleSurfaceOpNVE4(TexInstruction *su)
1336
{
1337
   processSurfaceCoordsNVE4(su);
1338
 
1339
   // Who do we hate more ? The person who decided that nvc0's SULD doesn't
1340
   // have to support conversion or the person who decided that, in OpenCL,
1341
   // you don't have to specify the format here like you do in OpenGL ?
1342
 
1343
   if (su->op == OP_SULDP) {
1344
      // We don't patch shaders. Ever.
1345
      // You get an indirect call to our library blob here.
1346
      // But at least it's uniform.
1347
      FlowInstruction *call;
1348
      LValue *p[3];
1349
      LValue *r[5];
1350
      uint16_t base = su->tex.r * NVE4_SU_INFO__STRIDE + NVE4_SU_INFO_CALL;
1351
 
1352
      for (int i = 0; i < 4; ++i)
1353
         (r[i] = bld.getScratch(4, FILE_GPR))->reg.data.id = i;
1354
      for (int i = 0; i < 3; ++i)
1355
         (p[i] = bld.getScratch(1, FILE_PREDICATE))->reg.data.id = i;
1356
      (r[4] = bld.getScratch(8, FILE_GPR))->reg.data.id = 4;
1357
 
1358
      bld.mkMov(p[1], bld.mkImm((su->cache == CACHE_CA) ? 1 : 0), TYPE_U8);
1359
      bld.mkMov(p[2], bld.mkImm((su->cache == CACHE_CG) ? 1 : 0), TYPE_U8);
1360
      bld.mkMov(p[0], su->getSrc(2), TYPE_U8);
1361
      bld.mkMov(r[4], su->getSrc(0), TYPE_U64);
1362
      bld.mkMov(r[2], su->getSrc(1), TYPE_U32);
1363
 
1364
      call = bld.mkFlow(OP_CALL, NULL, su->cc, su->getPredicate());
1365
 
1366
      call->indirect = 1;
1367
      call->absolute = 1;
1368
      call->setSrc(0, bld.mkSymbol(FILE_MEMORY_CONST,
1369
                                   prog->driver->io.resInfoCBSlot, TYPE_U32,
1370
                                   prog->driver->io.suInfoBase + base));
1371
      call->setSrc(1, r[2]);
1372
      call->setSrc(2, r[4]);
1373
      for (int i = 0; i < 3; ++i)
1374
         call->setSrc(3 + i, p[i]);
1375
      for (int i = 0; i < 4; ++i) {
1376
         call->setDef(i, r[i]);
1377
         bld.mkMov(su->getDef(i), r[i]);
1378
      }
1379
      call->setDef(4, p[1]);
1380
      delete_Instruction(bld.getProgram(), su);
1381
   }
1382
 
1383
   if (su->op == OP_SUREDB || su->op == OP_SUREDP) {
1384
      // FIXME: for out of bounds access, destination value will be undefined !
1385
      Value *pred = su->getSrc(2);
1386
      CondCode cc = CC_NOT_P;
1387
      if (su->getPredicate()) {
1388
         pred = bld.getScratch(1, FILE_PREDICATE);
1389
         cc = su->cc;
1390
         if (cc == CC_NOT_P) {
1391
            bld.mkOp2(OP_OR, TYPE_U8, pred, su->getPredicate(), su->getSrc(2));
1392
         } else {
1393
            bld.mkOp2(OP_AND, TYPE_U8, pred, su->getPredicate(), su->getSrc(2));
1394
            pred->getInsn()->src(1).mod = Modifier(NV50_IR_MOD_NOT);
1395
         }
1396
      }
1397
      Instruction *red = bld.mkOp(OP_ATOM, su->dType, su->getDef(0));
1398
      red->subOp = su->subOp;
1399
      if (!gMemBase)
1400
         gMemBase = bld.mkSymbol(FILE_MEMORY_GLOBAL, 0, TYPE_U32, 0);
1401
      red->setSrc(0, gMemBase);
1402
      red->setSrc(1, su->getSrc(3));
1403
      if (su->subOp == NV50_IR_SUBOP_ATOM_CAS)
1404
         red->setSrc(2, su->getSrc(4));
1405
      red->setIndirect(0, 0, su->getSrc(0));
1406
      red->setPredicate(cc, pred);
1407
      delete_Instruction(bld.getProgram(), su);
1408
      handleCasExch(red, true);
1409
   } else {
1410
      su->sType = (su->tex.target == TEX_TARGET_BUFFER) ? TYPE_U32 : TYPE_U8;
1411
   }
1412
}
1413
 
1414
bool
1415
NVC0LoweringPass::handleWRSV(Instruction *i)
1416
{
1417
   Instruction *st;
1418
   Symbol *sym;
1419
   uint32_t addr;
1420
 
1421
   // must replace, $sreg are not writeable
1422
   addr = targ->getSVAddress(FILE_SHADER_OUTPUT, i->getSrc(0)->asSym());
1423
   if (addr >= 0x400)
1424
      return false;
1425
   sym = bld.mkSymbol(FILE_SHADER_OUTPUT, 0, i->sType, addr);
1426
 
1427
   st = bld.mkStore(OP_EXPORT, i->dType, sym, i->getIndirect(0, 0),
1428
                    i->getSrc(1));
1429
   st->perPatch = i->perPatch;
1430
 
1431
   bld.getBB()->remove(i);
1432
   return true;
1433
}
1434
 
1435
void
1436
NVC0LoweringPass::readTessCoord(LValue *dst, int c)
1437
{
1438
   Value *laneid = bld.getSSA();
1439
   Value *x, *y;
1440
 
1441
   bld.mkOp1(OP_RDSV, TYPE_U32, laneid, bld.mkSysVal(SV_LANEID, 0));
1442
 
1443
   if (c == 0) {
1444
      x = dst;
1445
      y = NULL;
1446
   } else
1447
   if (c == 1) {
1448
      x = NULL;
1449
      y = dst;
1450
   } else {
1451
      assert(c == 2);
1452
      x = bld.getSSA();
1453
      y = bld.getSSA();
1454
   }
1455
   if (x)
1456
      bld.mkFetch(x, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f0, NULL, laneid);
1457
   if (y)
1458
      bld.mkFetch(y, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f4, NULL, laneid);
1459
 
1460
   if (c == 2) {
1461
      bld.mkOp2(OP_ADD, TYPE_F32, dst, x, y);
1462
      bld.mkOp2(OP_SUB, TYPE_F32, dst, bld.loadImm(NULL, 1.0f), dst);
1463
   }
1464
}
1465
 
1466
bool
1467
NVC0LoweringPass::handleRDSV(Instruction *i)
1468
{
1469
   Symbol *sym = i->getSrc(0)->asSym();
1470
   const SVSemantic sv = sym->reg.data.sv.sv;
1471
   Value *vtx = NULL;
1472
   Instruction *ld;
1473
   uint32_t addr = targ->getSVAddress(FILE_SHADER_INPUT, sym);
1474
 
1475
   if (addr >= 0x400) {
1476
      // mov $sreg
1477
      if (sym->reg.data.sv.index == 3) {
1478
         // TGSI backend may use 4th component of TID,NTID,CTAID,NCTAID
1479
         i->op = OP_MOV;
1480
         i->setSrc(0, bld.mkImm((sv == SV_NTID || sv == SV_NCTAID) ? 1 : 0));
1481
      }
1482
      return true;
1483
   }
1484
 
1485
   switch (sv) {
1486
   case SV_POSITION:
1487
      assert(prog->getType() == Program::TYPE_FRAGMENT);
1488
      if (i->srcExists(1)) {
1489
         // Pass offset through to the interpolation logic
1490
         ld = bld.mkInterp(NV50_IR_INTERP_LINEAR | NV50_IR_INTERP_OFFSET,
1491
                           i->getDef(0), addr, NULL);
1492
         ld->setSrc(1, i->getSrc(1));
1493
      } else {
1494
         bld.mkInterp(NV50_IR_INTERP_LINEAR, i->getDef(0), addr, NULL);
1495
      }
1496
      break;
1497
   case SV_FACE:
1498
   {
1499
      Value *face = i->getDef(0);
1500
      bld.mkInterp(NV50_IR_INTERP_FLAT, face, addr, NULL);
1501
      if (i->dType == TYPE_F32) {
1502
         bld.mkOp2(OP_OR, TYPE_U32, face, face, bld.mkImm(0x00000001));
1503
         bld.mkOp1(OP_NEG, TYPE_S32, face, face);
1504
         bld.mkCvt(OP_CVT, TYPE_F32, face, TYPE_S32, face);
1505
      }
1506
   }
1507
      break;
1508
   case SV_TESS_COORD:
1509
      assert(prog->getType() == Program::TYPE_TESSELLATION_EVAL);
1510
      readTessCoord(i->getDef(0)->asLValue(), i->getSrc(0)->reg.data.sv.index);
1511
      break;
1512
   case SV_NTID:
1513
   case SV_NCTAID:
1514
   case SV_GRIDID:
1515
      assert(targ->getChipset() >= NVISA_GK104_CHIPSET); // mov $sreg otherwise
1516
      if (sym->reg.data.sv.index == 3) {
1517
         i->op = OP_MOV;
1518
         i->setSrc(0, bld.mkImm(sv == SV_GRIDID ? 0 : 1));
1519
         return true;
1520
      }
1521
      addr += prog->driver->prop.cp.gridInfoBase;
1522
      bld.mkLoad(TYPE_U32, i->getDef(0),
1523
                 bld.mkSymbol(FILE_MEMORY_CONST, 0, TYPE_U32, addr), NULL);
1524
      break;
1525
   case SV_SAMPLE_INDEX:
1526
      // TODO: Properly pass source as an address in the PIX address space
1527
      // (which can be of the form [r0+offset]). But this is currently
1528
      // unnecessary.
1529
      ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
1530
      ld->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
1531
      break;
1532
   case SV_SAMPLE_POS: {
1533
      Value *off = new_LValue(func, FILE_GPR);
1534
      ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
1535
      ld->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
1536
      bld.mkOp2(OP_SHL, TYPE_U32, off, i->getDef(0), bld.mkImm(3));
1537
      bld.mkLoad(TYPE_F32,
1538
                 i->getDef(0),
1539
                 bld.mkSymbol(
1540
                       FILE_MEMORY_CONST, prog->driver->io.resInfoCBSlot,
1541
                       TYPE_U32, prog->driver->io.sampleInfoBase +
1542
                       4 * sym->reg.data.sv.index),
1543
                 off);
1544
      break;
1545
   }
1546
   case SV_SAMPLE_MASK:
1547
      ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
1548
      ld->subOp = NV50_IR_SUBOP_PIXLD_COVMASK;
1549
      break;
1550
   default:
1551
      if (prog->getType() == Program::TYPE_TESSELLATION_EVAL)
1552
         vtx = bld.mkOp1v(OP_PFETCH, TYPE_U32, bld.getSSA(), bld.mkImm(0));
1553
      ld = bld.mkFetch(i->getDef(0), i->dType,
1554
                       FILE_SHADER_INPUT, addr, i->getIndirect(0, 0), vtx);
1555
      ld->perPatch = i->perPatch;
1556
      break;
1557
   }
1558
   bld.getBB()->remove(i);
1559
   return true;
1560
}
1561
 
1562
bool
1563
NVC0LoweringPass::handleDIV(Instruction *i)
1564
{
1565
   if (!isFloatType(i->dType))
1566
      return true;
1567
   bld.setPosition(i, false);
1568
   Instruction *rcp = bld.mkOp1(OP_RCP, i->dType, bld.getSSA(typeSizeof(i->dType)), i->getSrc(1));
1569
   i->op = OP_MUL;
1570
   i->setSrc(1, rcp->getDef(0));
1571
   return true;
1572
}
1573
 
1574
bool
1575
NVC0LoweringPass::handleMOD(Instruction *i)
1576
{
1577
   if (!isFloatType(i->dType))
1578
      return true;
1579
   LValue *value = bld.getScratch(typeSizeof(i->dType));
1580
   bld.mkOp1(OP_RCP, i->dType, value, i->getSrc(1));
1581
   bld.mkOp2(OP_MUL, i->dType, value, i->getSrc(0), value);
1582
   bld.mkOp1(OP_TRUNC, i->dType, value, value);
1583
   bld.mkOp2(OP_MUL, i->dType, value, i->getSrc(1), value);
1584
   i->op = OP_SUB;
1585
   i->setSrc(1, value);
1586
   return true;
1587
}
1588
 
1589
bool
1590
NVC0LoweringPass::handleSQRT(Instruction *i)
1591
{
1592
   Value *pred = bld.getSSA(1, FILE_PREDICATE);
1593
   Value *zero = bld.getSSA();
1594
   Instruction *rsq;
1595
 
1596
   bld.mkOp1(OP_MOV, TYPE_U32, zero, bld.mkImm(0));
1597
   if (i->dType == TYPE_F64)
1598
      zero = bld.mkOp2v(OP_MERGE, TYPE_U64, bld.getSSA(8), zero, zero);
1599
   bld.mkCmp(OP_SET, CC_LE, i->dType, pred, i->dType, i->getSrc(0), zero);
1600
   bld.mkOp1(OP_MOV, i->dType, i->getDef(0), zero)->setPredicate(CC_P, pred);
1601
   rsq = bld.mkOp1(OP_RSQ, i->dType,
1602
                   bld.getSSA(typeSizeof(i->dType)), i->getSrc(0));
1603
   rsq->setPredicate(CC_NOT_P, pred);
1604
   i->op = OP_MUL;
1605
   i->setSrc(1, rsq->getDef(0));
1606
   i->setPredicate(CC_NOT_P, pred);
1607
 
1608
 
1609
   return true;
1610
}
1611
 
1612
bool
1613
NVC0LoweringPass::handlePOW(Instruction *i)
1614
{
1615
   LValue *val = bld.getScratch();
1616
 
1617
   bld.mkOp1(OP_LG2, TYPE_F32, val, i->getSrc(0));
1618
   bld.mkOp2(OP_MUL, TYPE_F32, val, i->getSrc(1), val)->dnz = 1;
1619
   bld.mkOp1(OP_PREEX2, TYPE_F32, val, val);
1620
 
1621
   i->op = OP_EX2;
1622
   i->setSrc(0, val);
1623
   i->setSrc(1, NULL);
1624
 
1625
   return true;
1626
}
1627
 
1628
bool
1629
NVC0LoweringPass::handleEXPORT(Instruction *i)
1630
{
1631
   if (prog->getType() == Program::TYPE_FRAGMENT) {
1632
      int id = i->getSrc(0)->reg.data.offset / 4;
1633
 
1634
      if (i->src(0).isIndirect(0)) // TODO, ugly
1635
         return false;
1636
      i->op = OP_MOV;
1637
      i->subOp = NV50_IR_SUBOP_MOV_FINAL;
1638
      i->src(0).set(i->src(1));
1639
      i->setSrc(1, NULL);
1640
      i->setDef(0, new_LValue(func, FILE_GPR));
1641
      i->getDef(0)->reg.data.id = id;
1642
 
1643
      prog->maxGPR = MAX2(prog->maxGPR, id);
1644
   } else
1645
   if (prog->getType() == Program::TYPE_GEOMETRY) {
1646
      i->setIndirect(0, 1, gpEmitAddress);
1647
   }
1648
   return true;
1649
}
1650
 
1651
bool
1652
NVC0LoweringPass::handleOUT(Instruction *i)
1653
{
1654
   Instruction *prev = i->prev;
1655
   ImmediateValue stream, prevStream;
1656
 
1657
   // Only merge if the stream ids match. Also, note that the previous
1658
   // instruction would have already been lowered, so we take arg1 from it.
1659
   if (i->op == OP_RESTART && prev && prev->op == OP_EMIT &&
1660
       i->src(0).getImmediate(stream) &&
1661
       prev->src(1).getImmediate(prevStream) &&
1662
       stream.reg.data.u32 == prevStream.reg.data.u32) {
1663
      i->prev->subOp = NV50_IR_SUBOP_EMIT_RESTART;
1664
      delete_Instruction(prog, i);
1665
   } else {
1666
      assert(gpEmitAddress);
1667
      i->setDef(0, gpEmitAddress);
1668
      i->setSrc(1, i->getSrc(0));
1669
      i->setSrc(0, gpEmitAddress);
1670
   }
1671
   return true;
1672
}
1673
 
1674
// Generate a binary predicate if an instruction is predicated by
1675
// e.g. an f32 value.
1676
void
1677
NVC0LoweringPass::checkPredicate(Instruction *insn)
1678
{
1679
   Value *pred = insn->getPredicate();
1680
   Value *pdst;
1681
 
1682
   if (!pred || pred->reg.file == FILE_PREDICATE)
1683
      return;
1684
   pdst = new_LValue(func, FILE_PREDICATE);
1685
 
1686
   // CAUTION: don't use pdst->getInsn, the definition might not be unique,
1687
   //  delay turning PSET(FSET(x,y),0) into PSET(x,y) to a later pass
1688
 
1689
   bld.mkCmp(OP_SET, CC_NEU, insn->dType, pdst, insn->dType, bld.mkImm(0), pred);
1690
 
1691
   insn->setPredicate(insn->cc, pdst);
1692
}
1693
 
1694
//
1695
// - add quadop dance for texturing
1696
// - put FP outputs in GPRs
1697
// - convert instruction sequences
1698
//
1699
bool
1700
NVC0LoweringPass::visit(Instruction *i)
1701
{
1702
   bld.setPosition(i, false);
1703
 
1704
   if (i->cc != CC_ALWAYS)
1705
      checkPredicate(i);
1706
 
1707
   switch (i->op) {
1708
   case OP_TEX:
1709
   case OP_TXB:
1710
   case OP_TXL:
1711
   case OP_TXF:
1712
   case OP_TXG:
1713
      return handleTEX(i->asTex());
1714
   case OP_TXD:
1715
      return handleTXD(i->asTex());
1716
   case OP_TXLQ:
1717
      return handleTXLQ(i->asTex());
1718
   case OP_TXQ:
1719
     return handleTXQ(i->asTex());
1720
   case OP_EX2:
1721
      bld.mkOp1(OP_PREEX2, TYPE_F32, i->getDef(0), i->getSrc(0));
1722
      i->setSrc(0, i->getDef(0));
1723
      break;
1724
   case OP_POW:
1725
      return handlePOW(i);
1726
   case OP_DIV:
1727
      return handleDIV(i);
1728
   case OP_MOD:
1729
      return handleMOD(i);
1730
   case OP_SQRT:
1731
      return handleSQRT(i);
1732
   case OP_EXPORT:
1733
      return handleEXPORT(i);
1734
   case OP_EMIT:
1735
   case OP_RESTART:
1736
      return handleOUT(i);
1737
   case OP_RDSV:
1738
      return handleRDSV(i);
1739
   case OP_WRSV:
1740
      return handleWRSV(i);
1741
   case OP_LOAD:
1742
      if (i->src(0).getFile() == FILE_SHADER_INPUT) {
1743
         if (prog->getType() == Program::TYPE_COMPUTE) {
1744
            i->getSrc(0)->reg.file = FILE_MEMORY_CONST;
1745
            i->getSrc(0)->reg.fileIndex = 0;
1746
         } else
1747
         if (prog->getType() == Program::TYPE_GEOMETRY &&
1748
             i->src(0).isIndirect(0)) {
1749
            // XXX: this assumes vec4 units
1750
            Value *ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
1751
                                    i->getIndirect(0, 0), bld.mkImm(4));
1752
            i->setIndirect(0, 0, ptr);
1753
            i->op = OP_VFETCH;
1754
         } else {
1755
            i->op = OP_VFETCH;
1756
            assert(prog->getType() != Program::TYPE_FRAGMENT); // INTERP
1757
         }
1758
      } else if (i->src(0).getFile() == FILE_MEMORY_CONST) {
1759
         if (i->src(0).isIndirect(1)) {
1760
            Value *ptr;
1761
            if (i->src(0).isIndirect(0))
1762
               ptr = bld.mkOp3v(OP_INSBF, TYPE_U32, bld.getSSA(),
1763
                                i->getIndirect(0, 1), bld.mkImm(0x1010),
1764
                                i->getIndirect(0, 0));
1765
            else
1766
               ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
1767
                                i->getIndirect(0, 1), bld.mkImm(16));
1768
            i->setIndirect(0, 1, NULL);
1769
            i->setIndirect(0, 0, ptr);
1770
            i->subOp = NV50_IR_SUBOP_LDC_IS;
1771
         }
1772
      }
1773
      break;
1774
   case OP_ATOM:
1775
   {
1776
      const bool cctl = i->src(0).getFile() == FILE_MEMORY_GLOBAL;
1777
      handleATOM(i);
1778
      handleCasExch(i, cctl);
1779
   }
1780
      break;
1781
   case OP_SULDB:
1782
   case OP_SULDP:
1783
   case OP_SUSTB:
1784
   case OP_SUSTP:
1785
   case OP_SUREDB:
1786
   case OP_SUREDP:
1787
      if (targ->getChipset() >= NVISA_GK104_CHIPSET)
1788
         handleSurfaceOpNVE4(i->asTex());
1789
      break;
1790
   default:
1791
      break;
1792
   }
1793
   return true;
1794
}
1795
 
1796
bool
1797
TargetNVC0::runLegalizePass(Program *prog, CGStage stage) const
1798
{
1799
   if (stage == CG_STAGE_PRE_SSA) {
1800
      NVC0LoweringPass pass(prog);
1801
      return pass.run(prog, false, true);
1802
   } else
1803
   if (stage == CG_STAGE_POST_RA) {
1804
      NVC0LegalizePostRA pass(prog);
1805
      return pass.run(prog, false, true);
1806
   } else
1807
   if (stage == CG_STAGE_SSA) {
1808
      NVC0LegalizeSSA pass;
1809
      return pass.run(prog, false, true);
1810
   }
1811
   return false;
1812
}
1813
 
1814
} // namespace nv50_ir