Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4680 right-hear 1
/*
2
 * Copyright (c) 1997
3
 * Silicon Graphics Computer Systems, Inc.
4
 *
5
 * Permission to use, copy, modify, distribute and sell this software
6
 * and its documentation for any purpose is hereby granted without fee,
7
 * provided that the above copyright notice appear in all copies and
8
 * that both that copyright notice and this permission notice appear
9
 * in supporting documentation.  Silicon Graphics makes no
10
 * representations about the suitability of this software for any
11
 * purpose.  It is provided "as is" without express or implied warranty.
12
 *
13
 */
14
 
15
/* NOTE: This is an internal header file, included by other STL headers.
16
 *   You should not attempt to use it directly.
17
 */
18
 
19
#ifndef __SGI_STL_INTERNAL_SLIST_H
20
#define __SGI_STL_INTERNAL_SLIST_H
21
 
22
#include 
23
#include 
24
#include 
25
#include 
26
#include 
27
 
28
namespace std
29
{
30
 
31
struct _Slist_node_base
32
{
33
  _Slist_node_base* _M_next;
34
};
35
 
36
inline _Slist_node_base*
37
__slist_make_link(_Slist_node_base* __prev_node,
38
                  _Slist_node_base* __new_node)
39
{
40
  __new_node->_M_next = __prev_node->_M_next;
41
  __prev_node->_M_next = __new_node;
42
  return __new_node;
43
}
44
 
45
inline _Slist_node_base*
46
__slist_previous(_Slist_node_base* __head,
47
                 const _Slist_node_base* __node)
48
{
49
  while (__head && __head->_M_next != __node)
50
    __head = __head->_M_next;
51
  return __head;
52
}
53
 
54
inline const _Slist_node_base*
55
__slist_previous(const _Slist_node_base* __head,
56
                 const _Slist_node_base* __node)
57
{
58
  while (__head && __head->_M_next != __node)
59
    __head = __head->_M_next;
60
  return __head;
61
}
62
 
63
inline void __slist_splice_after(_Slist_node_base* __pos,
64
                                 _Slist_node_base* __before_first,
65
                                 _Slist_node_base* __before_last)
66
{
67
  if (__pos != __before_first && __pos != __before_last) {
68
    _Slist_node_base* __first = __before_first->_M_next;
69
    _Slist_node_base* __after = __pos->_M_next;
70
    __before_first->_M_next = __before_last->_M_next;
71
    __pos->_M_next = __first;
72
    __before_last->_M_next = __after;
73
  }
74
}
75
 
76
inline void
77
__slist_splice_after(_Slist_node_base* __pos, _Slist_node_base* __head)
78
{
79
  _Slist_node_base* __before_last = __slist_previous(__head, 0);
80
  if (__before_last != __head) {
81
    _Slist_node_base* __after = __pos->_M_next;
82
    __pos->_M_next = __head->_M_next;
83
    __head->_M_next = 0;
84
    __before_last->_M_next = __after;
85
  }
86
}
87
 
88
inline _Slist_node_base* __slist_reverse(_Slist_node_base* __node)
89
{
90
  _Slist_node_base* __result = __node;
91
  __node = __node->_M_next;
92
  __result->_M_next = 0;
93
  while(__node) {
94
    _Slist_node_base* __next = __node->_M_next;
95
    __node->_M_next = __result;
96
    __result = __node;
97
    __node = __next;
98
  }
99
  return __result;
100
}
101
 
102
inline size_t __slist_size(_Slist_node_base* __node)
103
{
104
  size_t __result = 0;
105
  for ( ; __node != 0; __node = __node->_M_next)
106
    ++__result;
107
  return __result;
108
}
109
 
110
template 
111
struct _Slist_node : public _Slist_node_base
112
{
113
  _Tp _M_data;
114
};
115
 
116
struct _Slist_iterator_base
117
{
118
  typedef size_t               size_type;
119
  typedef ptrdiff_t            difference_type;
120
  typedef forward_iterator_tag iterator_category;
121
 
122
  _Slist_node_base* _M_node;
123
 
124
  _Slist_iterator_base(_Slist_node_base* __x) : _M_node(__x) {}
125
  void _M_incr() { _M_node = _M_node->_M_next; }
126
 
127
  bool operator==(const _Slist_iterator_base& __x) const {
128
    return _M_node == __x._M_node;
129
  }
130
  bool operator!=(const _Slist_iterator_base& __x) const {
131
    return _M_node != __x._M_node;
132
  }
133
};
134
 
135
template 
136
struct _Slist_iterator : public _Slist_iterator_base
137
{
138
  typedef _Slist_iterator<_Tp, _Tp&, _Tp*>             iterator;
139
  typedef _Slist_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
140
  typedef _Slist_iterator<_Tp, _Ref, _Ptr>             _Self;
141
 
142
  typedef _Tp              value_type;
143
  typedef _Ptr             pointer;
144
  typedef _Ref             reference;
145
  typedef _Slist_node<_Tp> _Node;
146
 
147
  _Slist_iterator(_Node* __x) : _Slist_iterator_base(__x) {}
148
  _Slist_iterator() : _Slist_iterator_base(0) {}
149
  _Slist_iterator(const iterator& __x) : _Slist_iterator_base(__x._M_node) {}
150
 
151
  reference operator*() const { return ((_Node*) _M_node)->_M_data; }
152
  pointer operator->() const { return &(operator*()); }
153
 
154
  _Self& operator++()
155
  {
156
    _M_incr();
157
    return *this;
158
  }
159
  _Self operator++(int)
160
  {
161
    _Self __tmp = *this;
162
    _M_incr();
163
    return __tmp;
164
  }
165
};
166
 
167
 
168
// Base class that encapsulates details of allocators.  Three cases:
169
// an ordinary standard-conforming allocator, a standard-conforming
170
// allocator with no non-static data, and an SGI-style allocator.
171
// This complexity is necessary only because we're worrying about backward
172
// compatibility and because we want to avoid wasting storage on an
173
// allocator instance if it isn't necessary.
174
 
175
// Base for general standard-conforming allocators.
176
template 
177
class _Slist_alloc_base {
178
public:
179
  typedef typename _Alloc_traits<_Tp,_Allocator>::allocator_type
180
          allocator_type;
181
  allocator_type get_allocator() const { return _M_node_allocator; }
182
 
183
  _Slist_alloc_base(const allocator_type& __a) : _M_node_allocator(__a) {}
184
 
185
protected:
186
  _Slist_node<_Tp>* _M_get_node()
187
    { return _M_node_allocator.allocate(1); }
188
  void _M_put_node(_Slist_node<_Tp>* __p)
189
    { _M_node_allocator.deallocate(__p, 1); }
190
 
191
protected:
192
  typename _Alloc_traits<_Slist_node<_Tp>,_Allocator>::allocator_type
193
           _M_node_allocator;
194
  _Slist_node_base _M_head;
195
};
196
 
197
// Specialization for instanceless allocators.
198
template 
199
class _Slist_alloc_base<_Tp,_Allocator, true> {
200
public:
201
  typedef typename _Alloc_traits<_Tp,_Allocator>::allocator_type
202
          allocator_type;
203
  allocator_type get_allocator() const { return allocator_type(); }
204
 
205
  _Slist_alloc_base(const allocator_type&) {}
206
 
207
protected:
208
  typedef typename _Alloc_traits<_Slist_node<_Tp>, _Allocator>::_Alloc_type
209
          _Alloc_type;
210
  _Slist_node<_Tp>* _M_get_node() { return _Alloc_type::allocate(1); }
211
  void _M_put_node(_Slist_node<_Tp>* __p) { _Alloc_type::deallocate(__p, 1); }
212
 
213
protected:
214
  _Slist_node_base _M_head;
215
};
216
 
217
 
218
template 
219
struct _Slist_base
220
  : public _Slist_alloc_base<_Tp, _Alloc,
221
                             _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
222
{
223
  typedef _Slist_alloc_base<_Tp, _Alloc,
224
                            _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
225
          _Base;
226
  typedef typename _Base::allocator_type allocator_type;
227
 
228
  _Slist_base(const allocator_type& __a)
229
    : _Base(__a) { this->_M_head._M_next = 0; }
230
  ~_Slist_base() { _M_erase_after(&this->_M_head, 0); }
231
 
232
protected:
233
 
234
  _Slist_node_base* _M_erase_after(_Slist_node_base* __pos)
235
  {
236
    _Slist_node<_Tp>* __next = (_Slist_node<_Tp>*) (__pos->_M_next);
237
    _Slist_node_base* __next_next = __next->_M_next;
238
    __pos->_M_next = __next_next;
239
    destroy(&__next->_M_data);
240
    _M_put_node(__next);
241
    return __next_next;
242
  }
243
  _Slist_node_base* _M_erase_after(_Slist_node_base*, _Slist_node_base*);
244
};
245
 
246
template 
247
_Slist_node_base*
248
_Slist_base<_Tp,_Alloc>::_M_erase_after(_Slist_node_base* __before_first,
249
                                        _Slist_node_base* __last_node) {
250
  _Slist_node<_Tp>* __cur = (_Slist_node<_Tp>*) (__before_first->_M_next);
251
  while (__cur != __last_node) {
252
    _Slist_node<_Tp>* __tmp = __cur;
253
    __cur = (_Slist_node<_Tp>*) __cur->_M_next;
254
    destroy(&__tmp->_M_data);
255
    _M_put_node(__tmp);
256
  }
257
  __before_first->_M_next = __last_node;
258
  return __last_node;
259
}
260
 
261
template  >
262
class slist : private _Slist_base<_Tp,_Alloc>
263
{
264
  // concept requirements
265
  __glibcpp_class_requires(_Tp, _SGIAssignableConcept);
266
 
267
private:
268
  typedef _Slist_base<_Tp,_Alloc> _Base;
269
public:
270
  typedef _Tp                value_type;
271
  typedef value_type*       pointer;
272
  typedef const value_type* const_pointer;
273
  typedef value_type&       reference;
274
  typedef const value_type& const_reference;
275
  typedef size_t            size_type;
276
  typedef ptrdiff_t         difference_type;
277
 
278
  typedef _Slist_iterator<_Tp, _Tp&, _Tp*>             iterator;
279
  typedef _Slist_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
280
 
281
  typedef typename _Base::allocator_type allocator_type;
282
  allocator_type get_allocator() const { return _Base::get_allocator(); }
283
 
284
private:
285
  typedef _Slist_node<_Tp>      _Node;
286
  typedef _Slist_node_base      _Node_base;
287
  typedef _Slist_iterator_base  _Iterator_base;
288
 
289
  _Node* _M_create_node(const value_type& __x) {
290
    _Node* __node = this->_M_get_node();
291
    __STL_TRY {
292
      construct(&__node->_M_data, __x);
293
      __node->_M_next = 0;
294
    }
295
    __STL_UNWIND(this->_M_put_node(__node));
296
    return __node;
297
  }
298
 
299
  _Node* _M_create_node() {
300
    _Node* __node = this->_M_get_node();
301
    __STL_TRY {
302
      construct(&__node->_M_data);
303
      __node->_M_next = 0;
304
    }
305
    __STL_UNWIND(this->_M_put_node(__node));
306
    return __node;
307
  }
308
 
309
public:
310
  explicit slist(const allocator_type& __a = allocator_type()) : _Base(__a) {}
311
 
312
  slist(size_type __n, const value_type& __x,
313
        const allocator_type& __a =  allocator_type()) : _Base(__a)
314
    { _M_insert_after_fill(&this->_M_head, __n, __x); }
315
 
316
  explicit slist(size_type __n) : _Base(allocator_type())
317
    { _M_insert_after_fill(&this->_M_head, __n, value_type()); }
318
 
319
  // We don't need any dispatching tricks here, because _M_insert_after_range
320
  // already does them.
321
  template 
322
  slist(_InputIterator __first, _InputIterator __last,
323
        const allocator_type& __a =  allocator_type()) : _Base(__a)
324
    { _M_insert_after_range(&this->_M_head, __first, __last); }
325
 
326
  slist(const slist& __x) : _Base(__x.get_allocator())
327
    { _M_insert_after_range(&this->_M_head, __x.begin(), __x.end()); }
328
 
329
  slist& operator= (const slist& __x);
330
 
331
  ~slist() {}
332
 
333
public:
334
  // assign(), a generalized assignment member function.  Two
335
  // versions: one that takes a count, and one that takes a range.
336
  // The range version is a member template, so we dispatch on whether
337
  // or not the type is an integer.
338
 
339
  void assign(size_type __n, const _Tp& __val)
340
    { _M_fill_assign(__n, __val); }
341
 
342
  void _M_fill_assign(size_type __n, const _Tp& __val);
343
 
344
  template 
345
  void assign(_InputIterator __first, _InputIterator __last) {
346
    typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
347
    _M_assign_dispatch(__first, __last, _Integral());
348
  }
349
 
350
  template 
351
  void _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
352
    { _M_fill_assign((size_type) __n, (_Tp) __val); }
353
 
354
  template 
355
  void _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
356
                          __false_type);
357
 
358
public:
359
 
360
  iterator begin() { return iterator((_Node*)this->_M_head._M_next); }
361
  const_iterator begin() const
362
    { return const_iterator((_Node*)this->_M_head._M_next);}
363
 
364
  iterator end() { return iterator(0); }
365
  const_iterator end() const { return const_iterator(0); }
366
 
367
  // Experimental new feature: before_begin() returns a
368
  // non-dereferenceable iterator that, when incremented, yields
369
  // begin().  This iterator may be used as the argument to
370
  // insert_after, erase_after, etc.  Note that even for an empty
371
  // slist, before_begin() is not the same iterator as end().  It
372
  // is always necessary to increment before_begin() at least once to
373
  // obtain end().
374
  iterator before_begin() { return iterator((_Node*) &this->_M_head); }
375
  const_iterator before_begin() const
376
    { return const_iterator((_Node*) &this->_M_head); }
377
 
378
  size_type size() const { return __slist_size(this->_M_head._M_next); }
379
 
380
  size_type max_size() const { return size_type(-1); }
381
 
382
  bool empty() const { return this->_M_head._M_next == 0; }
383
 
384
  void swap(slist& __x)
385
    { std::swap(this->_M_head._M_next, __x._M_head._M_next); }
386
 
387
public:
388
 
389
  reference front() { return ((_Node*) this->_M_head._M_next)->_M_data; }
390
  const_reference front() const
391
    { return ((_Node*) this->_M_head._M_next)->_M_data; }
392
  void push_front(const value_type& __x)   {
393
    __slist_make_link(&this->_M_head, _M_create_node(__x));
394
  }
395
  void push_front() { __slist_make_link(&this->_M_head, _M_create_node()); }
396
  void pop_front() {
397
    _Node* __node = (_Node*) this->_M_head._M_next;
398
    this->_M_head._M_next = __node->_M_next;
399
    destroy(&__node->_M_data);
400
    this->_M_put_node(__node);
401
  }
402
 
403
  iterator previous(const_iterator __pos) {
404
    return iterator((_Node*) __slist_previous(&this->_M_head, __pos._M_node));
405
  }
406
  const_iterator previous(const_iterator __pos) const {
407
    return const_iterator((_Node*) __slist_previous(&this->_M_head,
408
                                                    __pos._M_node));
409
  }
410
 
411
private:
412
  _Node* _M_insert_after(_Node_base* __pos, const value_type& __x) {
413
    return (_Node*) (__slist_make_link(__pos, _M_create_node(__x)));
414
  }
415
 
416
  _Node* _M_insert_after(_Node_base* __pos) {
417
    return (_Node*) (__slist_make_link(__pos, _M_create_node()));
418
  }
419
 
420
  void _M_insert_after_fill(_Node_base* __pos,
421
                            size_type __n, const value_type& __x) {
422
    for (size_type __i = 0; __i < __n; ++__i)
423
      __pos = __slist_make_link(__pos, _M_create_node(__x));
424
  }
425
 
426
  // Check whether it's an integral type.  If so, it's not an iterator.
427
  template 
428
  void _M_insert_after_range(_Node_base* __pos,
429
                             _InIter __first, _InIter __last) {
430
    typedef typename _Is_integer<_InIter>::_Integral _Integral;
431
    _M_insert_after_range(__pos, __first, __last, _Integral());
432
  }
433
 
434
  template 
435
  void _M_insert_after_range(_Node_base* __pos, _Integer __n, _Integer __x,
436
                             __true_type) {
437
    _M_insert_after_fill(__pos, __n, __x);
438
  }
439
 
440
  template 
441
  void _M_insert_after_range(_Node_base* __pos,
442
                             _InIter __first, _InIter __last,
443
                             __false_type) {
444
    while (__first != __last) {
445
      __pos = __slist_make_link(__pos, _M_create_node(*__first));
446
      ++__first;
447
    }
448
  }
449
 
450
public:
451
 
452
  iterator insert_after(iterator __pos, const value_type& __x) {
453
    return iterator(_M_insert_after(__pos._M_node, __x));
454
  }
455
 
456
  iterator insert_after(iterator __pos) {
457
    return insert_after(__pos, value_type());
458
  }
459
 
460
  void insert_after(iterator __pos, size_type __n, const value_type& __x) {
461
    _M_insert_after_fill(__pos._M_node, __n, __x);
462
  }
463
 
464
  // We don't need any dispatching tricks here, because _M_insert_after_range
465
  // already does them.
466
  template 
467
  void insert_after(iterator __pos, _InIter __first, _InIter __last) {
468
    _M_insert_after_range(__pos._M_node, __first, __last);
469
  }
470
 
471
  iterator insert(iterator __pos, const value_type& __x) {
472
    return iterator(_M_insert_after(__slist_previous(&this->_M_head,
473
                                                     __pos._M_node),
474
                    __x));
475
  }
476
 
477
  iterator insert(iterator __pos) {
478
    return iterator(_M_insert_after(__slist_previous(&this->_M_head,
479
                                                     __pos._M_node),
480
                                    value_type()));
481
  }
482
 
483
  void insert(iterator __pos, size_type __n, const value_type& __x) {
484
    _M_insert_after_fill(__slist_previous(&this->_M_head, __pos._M_node),
485
                         __n, __x);
486
  }
487
 
488
  // We don't need any dispatching tricks here, because _M_insert_after_range
489
  // already does them.
490
  template 
491
  void insert(iterator __pos, _InIter __first, _InIter __last) {
492
    _M_insert_after_range(__slist_previous(&this->_M_head, __pos._M_node),
493
                          __first, __last);
494
  }
495
 
496
public:
497
  iterator erase_after(iterator __pos) {
498
    return iterator((_Node*) this->_M_erase_after(__pos._M_node));
499
  }
500
  iterator erase_after(iterator __before_first, iterator __last) {
501
    return iterator((_Node*) this->_M_erase_after(__before_first._M_node,
502
                                                  __last._M_node));
503
  }
504
 
505
  iterator erase(iterator __pos) {
506
    return (_Node*) this->_M_erase_after(__slist_previous(&this->_M_head,
507
                                                          __pos._M_node));
508
  }
509
  iterator erase(iterator __first, iterator __last) {
510
    return (_Node*) this->_M_erase_after(
511
      __slist_previous(&this->_M_head, __first._M_node), __last._M_node);
512
  }
513
 
514
  void resize(size_type new_size, const _Tp& __x);
515
  void resize(size_type new_size) { resize(new_size, _Tp()); }
516
  void clear() { this->_M_erase_after(&this->_M_head, 0); }
517
 
518
public:
519
  // Moves the range [__before_first + 1, __before_last + 1) to *this,
520
  //  inserting it immediately after __pos.  This is constant time.
521
  void splice_after(iterator __pos,
522
                    iterator __before_first, iterator __before_last)
523
  {
524
    if (__before_first != __before_last)
525
      __slist_splice_after(__pos._M_node, __before_first._M_node,
526
                           __before_last._M_node);
527
  }
528
 
529
  // Moves the element that follows __prev to *this, inserting it immediately
530
  //  after __pos.  This is constant time.
531
  void splice_after(iterator __pos, iterator __prev)
532
  {
533
    __slist_splice_after(__pos._M_node,
534
                         __prev._M_node, __prev._M_node->_M_next);
535
  }
536
 
537
 
538
  // Removes all of the elements from the list __x to *this, inserting
539
  // them immediately after __pos.  __x must not be *this.  Complexity:
540
  // linear in __x.size().
541
  void splice_after(iterator __pos, slist& __x)
542
  {
543
    __slist_splice_after(__pos._M_node, &__x._M_head);
544
  }
545
 
546
  // Linear in distance(begin(), __pos), and linear in __x.size().
547
  void splice(iterator __pos, slist& __x) {
548
    if (__x._M_head._M_next)
549
      __slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node),
550
                           &__x._M_head, __slist_previous(&__x._M_head, 0));
551
  }
552
 
553
  // Linear in distance(begin(), __pos), and in distance(__x.begin(), __i).
554
  void splice(iterator __pos, slist& __x, iterator __i) {
555
    __slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node),
556
                         __slist_previous(&__x._M_head, __i._M_node),
557
                         __i._M_node);
558
  }
559
 
560
  // Linear in distance(begin(), __pos), in distance(__x.begin(), __first),
561
  // and in distance(__first, __last).
562
  void splice(iterator __pos, slist& __x, iterator __first, iterator __last)
563
  {
564
    if (__first != __last)
565
      __slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node),
566
                           __slist_previous(&__x._M_head, __first._M_node),
567
                           __slist_previous(__first._M_node, __last._M_node));
568
  }
569
 
570
public:
571
  void reverse() {
572
    if (this->_M_head._M_next)
573
      this->_M_head._M_next = __slist_reverse(this->_M_head._M_next);
574
  }
575
 
576
  void remove(const _Tp& __val);
577
  void unique();
578
  void merge(slist& __x);
579
  void sort();
580
 
581
  template 
582
  void remove_if(_Predicate __pred);
583
 
584
  template 
585
  void unique(_BinaryPredicate __pred);
586
 
587
  template 
588
  void merge(slist&, _StrictWeakOrdering);
589
 
590
  template 
591
  void sort(_StrictWeakOrdering __comp);
592
};
593
 
594
template 
595
slist<_Tp,_Alloc>& slist<_Tp,_Alloc>::operator=(const slist<_Tp,_Alloc>& __x)
596
{
597
  if (&__x != this) {
598
    _Node_base* __p1 = &this->_M_head;
599
    _Node* __n1 = (_Node*) this->_M_head._M_next;
600
    const _Node* __n2 = (const _Node*) __x._M_head._M_next;
601
    while (__n1 && __n2) {
602
      __n1->_M_data = __n2->_M_data;
603
      __p1 = __n1;
604
      __n1 = (_Node*) __n1->_M_next;
605
      __n2 = (const _Node*) __n2->_M_next;
606
    }
607
    if (__n2 == 0)
608
      this->_M_erase_after(__p1, 0);
609
    else
610
      _M_insert_after_range(__p1, const_iterator((_Node*)__n2),
611
                                  const_iterator(0));
612
  }
613
  return *this;
614
}
615
 
616
template 
617
void slist<_Tp, _Alloc>::_M_fill_assign(size_type __n, const _Tp& __val) {
618
  _Node_base* __prev = &this->_M_head;
619
  _Node* __node = (_Node*) this->_M_head._M_next;
620
  for ( ; __node != 0 && __n > 0 ; --__n) {
621
    __node->_M_data = __val;
622
    __prev = __node;
623
    __node = (_Node*) __node->_M_next;
624
  }
625
  if (__n > 0)
626
    _M_insert_after_fill(__prev, __n, __val);
627
  else
628
    this->_M_erase_after(__prev, 0);
629
}
630
 
631
template  template 
632
void
633
slist<_Tp, _Alloc>::_M_assign_dispatch(_InputIter __first, _InputIter __last,
634
                                       __false_type)
635
{
636
  _Node_base* __prev = &this->_M_head;
637
  _Node* __node = (_Node*) this->_M_head._M_next;
638
  while (__node != 0 && __first != __last) {
639
    __node->_M_data = *__first;
640
    __prev = __node;
641
    __node = (_Node*) __node->_M_next;
642
    ++__first;
643
  }
644
  if (__first != __last)
645
    _M_insert_after_range(__prev, __first, __last);
646
  else
647
    this->_M_erase_after(__prev, 0);
648
}
649
 
650
template 
651
inline bool
652
operator==(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2)
653
{
654
  typedef typename slist<_Tp,_Alloc>::const_iterator const_iterator;
655
  const_iterator __end1 = _SL1.end();
656
  const_iterator __end2 = _SL2.end();
657
 
658
  const_iterator __i1 = _SL1.begin();
659
  const_iterator __i2 = _SL2.begin();
660
  while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2) {
661
    ++__i1;
662
    ++__i2;
663
  }
664
  return __i1 == __end1 && __i2 == __end2;
665
}
666
 
667
 
668
template 
669
inline bool
670
operator<(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2)
671
{
672
  return lexicographical_compare(_SL1.begin(), _SL1.end(),
673
                                 _SL2.begin(), _SL2.end());
674
}
675
 
676
template 
677
inline bool
678
operator!=(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2) {
679
  return !(_SL1 == _SL2);
680
}
681
 
682
template 
683
inline bool
684
operator>(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2) {
685
  return _SL2 < _SL1;
686
}
687
 
688
template 
689
inline bool
690
operator<=(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2) {
691
  return !(_SL2 < _SL1);
692
}
693
 
694
template 
695
inline bool
696
operator>=(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2) {
697
  return !(_SL1 < _SL2);
698
}
699
 
700
template 
701
inline void swap(slist<_Tp,_Alloc>& __x, slist<_Tp,_Alloc>& __y) {
702
  __x.swap(__y);
703
}
704
 
705
 
706
template 
707
void slist<_Tp,_Alloc>::resize(size_type __len, const _Tp& __x)
708
{
709
  _Node_base* __cur = &this->_M_head;
710
  while (__cur->_M_next != 0 && __len > 0) {
711
    --__len;
712
    __cur = __cur->_M_next;
713
  }
714
  if (__cur->_M_next)
715
    this->_M_erase_after(__cur, 0);
716
  else
717
    _M_insert_after_fill(__cur, __len, __x);
718
}
719
 
720
template 
721
void slist<_Tp,_Alloc>::remove(const _Tp& __val)
722
{
723
  _Node_base* __cur = &this->_M_head;
724
  while (__cur && __cur->_M_next) {
725
    if (((_Node*) __cur->_M_next)->_M_data == __val)
726
      this->_M_erase_after(__cur);
727
    else
728
      __cur = __cur->_M_next;
729
  }
730
}
731
 
732
template 
733
void slist<_Tp,_Alloc>::unique()
734
{
735
  _Node_base* __cur = this->_M_head._M_next;
736
  if (__cur) {
737
    while (__cur->_M_next) {
738
      if (((_Node*)__cur)->_M_data ==
739
          ((_Node*)(__cur->_M_next))->_M_data)
740
        this->_M_erase_after(__cur);
741
      else
742
        __cur = __cur->_M_next;
743
    }
744
  }
745
}
746
 
747
template 
748
void slist<_Tp,_Alloc>::merge(slist<_Tp,_Alloc>& __x)
749
{
750
  _Node_base* __n1 = &this->_M_head;
751
  while (__n1->_M_next && __x._M_head._M_next) {
752
    if (((_Node*) __x._M_head._M_next)->_M_data <
753
        ((_Node*)       __n1->_M_next)->_M_data)
754
      __slist_splice_after(__n1, &__x._M_head, __x._M_head._M_next);
755
    __n1 = __n1->_M_next;
756
  }
757
  if (__x._M_head._M_next) {
758
    __n1->_M_next = __x._M_head._M_next;
759
    __x._M_head._M_next = 0;
760
  }
761
}
762
 
763
template 
764
void slist<_Tp,_Alloc>::sort()
765
{
766
  if (this->_M_head._M_next && this->_M_head._M_next->_M_next) {
767
    slist __carry;
768
    slist __counter[64];
769
    int __fill = 0;
770
    while (!empty()) {
771
      __slist_splice_after(&__carry._M_head,
772
                           &this->_M_head, this->_M_head._M_next);
773
      int __i = 0;
774
      while (__i < __fill && !__counter[__i].empty()) {
775
        __counter[__i].merge(__carry);
776
        __carry.swap(__counter[__i]);
777
        ++__i;
778
      }
779
      __carry.swap(__counter[__i]);
780
      if (__i == __fill)
781
        ++__fill;
782
    }
783
 
784
    for (int __i = 1; __i < __fill; ++__i)
785
      __counter[__i].merge(__counter[__i-1]);
786
    this->swap(__counter[__fill-1]);
787
  }
788
}
789
 
790
template 
791
template 
792
void slist<_Tp,_Alloc>::remove_if(_Predicate __pred)
793
{
794
  _Node_base* __cur = &this->_M_head;
795
  while (__cur->_M_next) {
796
    if (__pred(((_Node*) __cur->_M_next)->_M_data))
797
      this->_M_erase_after(__cur);
798
    else
799
      __cur = __cur->_M_next;
800
  }
801
}
802
 
803
template  template 
804
void slist<_Tp,_Alloc>::unique(_BinaryPredicate __pred)
805
{
806
  _Node* __cur = (_Node*) this->_M_head._M_next;
807
  if (__cur) {
808
    while (__cur->_M_next) {
809
      if (__pred(((_Node*)__cur)->_M_data,
810
                 ((_Node*)(__cur->_M_next))->_M_data))
811
        this->_M_erase_after(__cur);
812
      else
813
        __cur = (_Node*) __cur->_M_next;
814
    }
815
  }
816
}
817
 
818
template  template 
819
void slist<_Tp,_Alloc>::merge(slist<_Tp,_Alloc>& __x,
820
                              _StrictWeakOrdering __comp)
821
{
822
  _Node_base* __n1 = &this->_M_head;
823
  while (__n1->_M_next && __x._M_head._M_next) {
824
    if (__comp(((_Node*) __x._M_head._M_next)->_M_data,
825
               ((_Node*)       __n1->_M_next)->_M_data))
826
      __slist_splice_after(__n1, &__x._M_head, __x._M_head._M_next);
827
    __n1 = __n1->_M_next;
828
  }
829
  if (__x._M_head._M_next) {
830
    __n1->_M_next = __x._M_head._M_next;
831
    __x._M_head._M_next = 0;
832
  }
833
}
834
 
835
template  template 
836
void slist<_Tp,_Alloc>::sort(_StrictWeakOrdering __comp)
837
{
838
  if (this->_M_head._M_next && this->_M_head._M_next->_M_next) {
839
    slist __carry;
840
    slist __counter[64];
841
    int __fill = 0;
842
    while (!empty()) {
843
      __slist_splice_after(&__carry._M_head,
844
                           &this->_M_head, this->_M_head._M_next);
845
      int __i = 0;
846
      while (__i < __fill && !__counter[__i].empty()) {
847
        __counter[__i].merge(__carry, __comp);
848
        __carry.swap(__counter[__i]);
849
        ++__i;
850
      }
851
      __carry.swap(__counter[__i]);
852
      if (__i == __fill)
853
        ++__fill;
854
    }
855
 
856
    for (int __i = 1; __i < __fill; ++__i)
857
      __counter[__i].merge(__counter[__i-1], __comp);
858
    this->swap(__counter[__fill-1]);
859
  }
860
}
861
 
862
// Specialization of insert_iterator so that insertions will be constant
863
// time rather than linear time.
864
 
865
template 
866
class insert_iterator > {
867
protected:
868
  typedef slist<_Tp, _Alloc> _Container;
869
  _Container* container;
870
  typename _Container::iterator iter;
871
public:
872
  typedef _Container          container_type;
873
  typedef output_iterator_tag iterator_category;
874
  typedef void                value_type;
875
  typedef void                difference_type;
876
  typedef void                pointer;
877
  typedef void                reference;
878
 
879
  insert_iterator(_Container& __x, typename _Container::iterator __i)
880
    : container(&__x) {
881
    if (__i == __x.begin())
882
      iter = __x.before_begin();
883
    else
884
      iter = __x.previous(__i);
885
  }
886
 
887
  insert_iterator<_Container>&
888
  operator=(const typename _Container::value_type& __value) {
889
    iter = container->insert_after(iter, __value);
890
    return *this;
891
  }
892
  insert_iterator<_Container>& operator*() { return *this; }
893
  insert_iterator<_Container>& operator++() { return *this; }
894
  insert_iterator<_Container>& operator++(int) { return *this; }
895
};
896
 
897
} // namespace std
898
 
899
#endif /* __SGI_STL_INTERNAL_SLIST_H */
900
 
901
// Local Variables:
902
// mode:C++
903
// End: