Subversion Repositories Kolibri OS

Rev

Rev 4872 | Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4349 Serge 1
 
2
/*
3
 * ====================================================
4
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5
 *
6
 * Developed at SunPro, a Sun Microsystems, Inc. business.
7
 * Permission to use, copy, modify, and distribute this
8
 * software is freely granted, provided that this notice
9
 * is preserved.
10
 * ====================================================
11
 */
12
13
 
14
 * Method :
15
 *	Since  asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
16
 *	we approximate asin(x) on [0,0.5] by
17
 *		asin(x) = x + x*x^2*R(x^2)
18
 *	where
19
 *		R(x^2) is a rational approximation of (asin(x)-x)/x^3
20
 *	and its remez error is bounded by
21
 *		|(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
22
 *
23
 *	For x in [0.5,1]
24
 *		asin(x) = pi/2-2*asin(sqrt((1-x)/2))
25
 *	Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
26
 *	then for x>0.98
27
 *		asin(x) = pi/2 - 2*(s+s*z*R(z))
28
 *			= pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
29
 *	For x<=0.98, let pio4_hi = pio2_hi/2, then
30
 *		f = hi part of s;
31
 *		c = sqrt(z) - f = (z-f*f)/(s+f) 	...f+c=sqrt(z)
32
 *	and
33
 *		asin(x) = pi/2 - 2*(s+s*z*R(z))
34
 *			= pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
35
 *			= pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
36
 *
37
 * Special cases:
38
 *	if x is NaN, return x itself;
39
 *	if |x|>1, return NaN with invalid signal.
40
 *
41
 */
42
43
 
44
 
45
46
 
47
48
 
49
static const double
50
#else
51
static double
52
#endif
53
one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
54
huge =  1.000e+300,
55
pio2_hi =  1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
56
pio2_lo =  6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
57
pio4_hi =  7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
58
	/* coefficient for R(x^2) */
59
pS0 =  1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
60
pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
61
pS2 =  2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
62
pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
63
pS4 =  7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
64
pS5 =  3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
65
qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
66
qS2 =  2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
67
qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
68
qS4 =  7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
69
70
 
71
	double __ieee754_asin(double x)
72
#else
73
	double __ieee754_asin(x)
74
	double x;
75
#endif
76
{
77
	double t,w,p,q,c,r,s;
78
	__int32_t hx,ix;
79
	GET_HIGH_WORD(hx,x);
80
	ix = hx&0x7fffffff;
81
	if(ix>= 0x3ff00000) {		/* |x|>= 1 */
82
	    __uint32_t lx;
83
	    GET_LOW_WORD(lx,x);
84
	    if(((ix-0x3ff00000)|lx)==0)
85
		    /* asin(1)=+-pi/2 with inexact */
86
		return x*pio2_hi+x*pio2_lo;
87
	    return (x-x)/(x-x);		/* asin(|x|>1) is NaN */
88
	} else if (ix<0x3fe00000) {	/* |x|<0.5 */
89
	    if(ix<0x3e400000) {		/* if |x| < 2**-27 */
90
		if(huge+x>one) return x;/* return x with inexact if x!=0*/
91
          } else {
92
		t = x*x;
93
		p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
94
		q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
95
		w = p/q;
96
		return x+x*w;
97
          }
98
	}
99
	/* 1> |x|>= 0.5 */
100
	w = one-fabs(x);
101
	t = w*0.5;
102
	p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
103
	q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
104
	s = __ieee754_sqrt(t);
105
	if(ix>=0x3FEF3333) { 	/* if |x| > 0.975 */
106
	    w = p/q;
107
	    t = pio2_hi-(2.0*(s+s*w)-pio2_lo);
108
	} else {
109
	    w  = s;
110
	    SET_LOW_WORD(w,0);
111
	    c  = (t-w*w)/(s+w);
112
	    r  = p/q;
113
	    p  = 2.0*s*r-(pio2_lo-2.0*c);
114
	    q  = pio4_hi-2.0*w;
115
	    t  = pio4_hi-(p-q);
116
	}
117
	if(hx>0) return t; else return -t;
118
}
119
120
 
121