Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
6417 ashmew2 1
/*
2
 * jdhuff.c
3
 *
4
 * Copyright (C) 1991-1997, Thomas G. Lane.
5
 * This file is part of the Independent JPEG Group's software.
6
 * For conditions of distribution and use, see the accompanying README file.
7
 *
8
 * This file contains Huffman entropy decoding routines.
9
 *
10
 * Much of the complexity here has to do with supporting input suspension.
11
 * If the data source module demands suspension, we want to be able to back
12
 * up to the start of the current MCU.  To do this, we copy state variables
13
 * into local working storage, and update them back to the permanent
14
 * storage only upon successful completion of an MCU.
15
 */
16
 
17
#define JPEG_INTERNALS
18
#include "jinclude.h"
19
#include "jpeglib.h"
20
#include "jdhuff.h"		/* Declarations shared with jdphuff.c */
21
 
22
 
23
/*
24
 * Expanded entropy decoder object for Huffman decoding.
25
 *
26
 * The savable_state subrecord contains fields that change within an MCU,
27
 * but must not be updated permanently until we complete the MCU.
28
 */
29
 
30
typedef struct {
31
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
32
} savable_state;
33
 
34
/* This macro is to work around compilers with missing or broken
35
 * structure assignment.  You'll need to fix this code if you have
36
 * such a compiler and you change MAX_COMPS_IN_SCAN.
37
 */
38
 
39
#ifndef NO_STRUCT_ASSIGN
40
#define ASSIGN_STATE(dest,src)  ((dest) = (src))
41
#else
42
#if MAX_COMPS_IN_SCAN == 4
43
#define ASSIGN_STATE(dest,src)  \
44
	((dest).last_dc_val[0] = (src).last_dc_val[0], \
45
	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
46
	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
47
	 (dest).last_dc_val[3] = (src).last_dc_val[3])
48
#endif
49
#endif
50
 
51
 
52
typedef struct {
53
  struct jpeg_entropy_decoder pub; /* public fields */
54
 
55
  /* These fields are loaded into local variables at start of each MCU.
56
   * In case of suspension, we exit WITHOUT updating them.
57
   */
58
  bitread_perm_state bitstate;	/* Bit buffer at start of MCU */
59
  savable_state saved;		/* Other state at start of MCU */
60
 
61
  /* These fields are NOT loaded into local working state. */
62
  unsigned int restarts_to_go;	/* MCUs left in this restart interval */
63
 
64
  /* Pointers to derived tables (these workspaces have image lifespan) */
65
  d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
66
  d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
67
 
68
  /* Precalculated info set up by start_pass for use in decode_mcu: */
69
 
70
  /* Pointers to derived tables to be used for each block within an MCU */
71
  d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
72
  d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
73
  /* Whether we care about the DC and AC coefficient values for each block */
74
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
75
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
76
} huff_entropy_decoder;
77
 
78
typedef huff_entropy_decoder * huff_entropy_ptr;
79
 
80
 
81
/*
82
 * Initialize for a Huffman-compressed scan.
83
 */
84
 
85
METHODDEF(void)
86
start_pass_huff_decoder (j_decompress_ptr cinfo)
87
{
88
  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
89
  int ci, blkn, dctbl, actbl;
90
  jpeg_component_info * compptr;
91
 
92
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
93
   * This ought to be an error condition, but we make it a warning because
94
   * there are some baseline files out there with all zeroes in these bytes.
95
   */
96
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
97
      cinfo->Ah != 0 || cinfo->Al != 0)
98
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
99
 
100
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
101
    compptr = cinfo->cur_comp_info[ci];
102
    dctbl = compptr->dc_tbl_no;
103
    actbl = compptr->ac_tbl_no;
104
    /* Compute derived values for Huffman tables */
105
    /* We may do this more than once for a table, but it's not expensive */
106
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
107
			    & entropy->dc_derived_tbls[dctbl]);
108
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
109
			    & entropy->ac_derived_tbls[actbl]);
110
    /* Initialize DC predictions to 0 */
111
    entropy->saved.last_dc_val[ci] = 0;
112
  }
113
 
114
  /* Precalculate decoding info for each block in an MCU of this scan */
115
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
116
    ci = cinfo->MCU_membership[blkn];
117
    compptr = cinfo->cur_comp_info[ci];
118
    /* Precalculate which table to use for each block */
119
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
120
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
121
    /* Decide whether we really care about the coefficient values */
122
    if (compptr->component_needed) {
123
      entropy->dc_needed[blkn] = TRUE;
124
      /* we don't need the ACs if producing a 1/8th-size image */
125
      entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1);
126
    } else {
127
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
128
    }
129
  }
130
 
131
  /* Initialize bitread state variables */
132
  entropy->bitstate.bits_left = 0;
133
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
134
  entropy->pub.insufficient_data = FALSE;
135
 
136
  /* Initialize restart counter */
137
  entropy->restarts_to_go = cinfo->restart_interval;
138
}
139
 
140
 
141
/*
142
 * Compute the derived values for a Huffman table.
143
 * This routine also performs some validation checks on the table.
144
 *
145
 * Note this is also used by jdphuff.c.
146
 */
147
 
148
GLOBAL(void)
149
jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
150
			 d_derived_tbl ** pdtbl)
151
{
152
  JHUFF_TBL *htbl;
153
  d_derived_tbl *dtbl;
154
  int p, i, l, si, numsymbols;
155
  int lookbits, ctr;
156
  char huffsize[257];
157
  unsigned int huffcode[257];
158
  unsigned int code;
159
 
160
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
161
   * paralleling the order of the symbols themselves in htbl->huffval[].
162
   */
163
 
164
  /* Find the input Huffman table */
165
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
166
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
167
  htbl =
168
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
169
  if (htbl == NULL)
170
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
171
 
172
  /* Allocate a workspace if we haven't already done so. */
173
  if (*pdtbl == NULL)
174
    *pdtbl = (d_derived_tbl *)
175
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
176
				  SIZEOF(d_derived_tbl));
177
  dtbl = *pdtbl;
178
  dtbl->pub = htbl;		/* fill in back link */
179
 
180
  /* Figure C.1: make table of Huffman code length for each symbol */
181
 
182
  p = 0;
183
  for (l = 1; l <= 16; l++) {
184
    i = (int) htbl->bits[l];
185
    if (i < 0 || p + i > 256)	/* protect against table overrun */
186
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
187
    while (i--)
188
      huffsize[p++] = (char) l;
189
  }
190
  huffsize[p] = 0;
191
  numsymbols = p;
192
 
193
  /* Figure C.2: generate the codes themselves */
194
  /* We also validate that the counts represent a legal Huffman code tree. */
195
 
196
  code = 0;
197
  si = huffsize[0];
198
  p = 0;
199
  while (huffsize[p]) {
200
    while (((int) huffsize[p]) == si) {
201
      huffcode[p++] = code;
202
      code++;
203
    }
204
    /* code is now 1 more than the last code used for codelength si; but
205
     * it must still fit in si bits, since no code is allowed to be all ones.
206
     */
207
    if (((INT32) code) >= (((INT32) 1) << si))
208
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
209
    code <<= 1;
210
    si++;
211
  }
212
 
213
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
214
 
215
  p = 0;
216
  for (l = 1; l <= 16; l++) {
217
    if (htbl->bits[l]) {
218
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
219
       * minus the minimum code of length l
220
       */
221
      dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
222
      p += htbl->bits[l];
223
      dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
224
    } else {
225
      dtbl->maxcode[l] = -1;	/* -1 if no codes of this length */
226
    }
227
  }
228
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
229
 
230
  /* Compute lookahead tables to speed up decoding.
231
   * First we set all the table entries to 0, indicating "too long";
232
   * then we iterate through the Huffman codes that are short enough and
233
   * fill in all the entries that correspond to bit sequences starting
234
   * with that code.
235
   */
236
 
237
  MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
238
 
239
  p = 0;
240
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
241
    for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
242
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
243
      /* Generate left-justified code followed by all possible bit sequences */
244
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
245
      for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
246
	dtbl->look_nbits[lookbits] = l;
247
	dtbl->look_sym[lookbits] = htbl->huffval[p];
248
	lookbits++;
249
      }
250
    }
251
  }
252
 
253
  /* Validate symbols as being reasonable.
254
   * For AC tables, we make no check, but accept all byte values 0..255.
255
   * For DC tables, we require the symbols to be in range 0..15.
256
   * (Tighter bounds could be applied depending on the data depth and mode,
257
   * but this is sufficient to ensure safe decoding.)
258
   */
259
  if (isDC) {
260
    for (i = 0; i < numsymbols; i++) {
261
      int sym = htbl->huffval[i];
262
      if (sym < 0 || sym > 15)
263
	ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
264
    }
265
  }
266
}
267
 
268
 
269
/*
270
 * Out-of-line code for bit fetching (shared with jdphuff.c).
271
 * See jdhuff.h for info about usage.
272
 * Note: current values of get_buffer and bits_left are passed as parameters,
273
 * but are returned in the corresponding fields of the state struct.
274
 *
275
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
276
 * of get_buffer to be used.  (On machines with wider words, an even larger
277
 * buffer could be used.)  However, on some machines 32-bit shifts are
278
 * quite slow and take time proportional to the number of places shifted.
279
 * (This is true with most PC compilers, for instance.)  In this case it may
280
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
281
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
282
 */
283
 
284
#ifdef SLOW_SHIFT_32
285
#define MIN_GET_BITS  15	/* minimum allowable value */
286
#else
287
#define MIN_GET_BITS  (BIT_BUF_SIZE-7)
288
#endif
289
 
290
 
291
GLOBAL(boolean)
292
jpeg_fill_bit_buffer (bitread_working_state * state,
293
		      register bit_buf_type get_buffer, register int bits_left,
294
		      int nbits)
295
/* Load up the bit buffer to a depth of at least nbits */
296
{
297
  /* Copy heavily used state fields into locals (hopefully registers) */
298
  register const JOCTET * next_input_byte = state->next_input_byte;
299
  register size_t bytes_in_buffer = state->bytes_in_buffer;
300
  j_decompress_ptr cinfo = state->cinfo;
301
 
302
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
303
  /* (It is assumed that no request will be for more than that many bits.) */
304
  /* We fail to do so only if we hit a marker or are forced to suspend. */
305
 
306
  if (cinfo->unread_marker == 0) {	/* cannot advance past a marker */
307
    while (bits_left < MIN_GET_BITS) {
308
      register int c;
309
 
310
      /* Attempt to read a byte */
311
      if (bytes_in_buffer == 0) {
312
	if (! (*cinfo->src->fill_input_buffer) (cinfo))
313
	  return FALSE;
314
	next_input_byte = cinfo->src->next_input_byte;
315
	bytes_in_buffer = cinfo->src->bytes_in_buffer;
316
      }
317
      bytes_in_buffer--;
318
      c = GETJOCTET(*next_input_byte++);
319
 
320
      /* If it's 0xFF, check and discard stuffed zero byte */
321
      if (c == 0xFF) {
322
	/* Loop here to discard any padding FF's on terminating marker,
323
	 * so that we can save a valid unread_marker value.  NOTE: we will
324
	 * accept multiple FF's followed by a 0 as meaning a single FF data
325
	 * byte.  This data pattern is not valid according to the standard.
326
	 */
327
	do {
328
	  if (bytes_in_buffer == 0) {
329
	    if (! (*cinfo->src->fill_input_buffer) (cinfo))
330
	      return FALSE;
331
	    next_input_byte = cinfo->src->next_input_byte;
332
	    bytes_in_buffer = cinfo->src->bytes_in_buffer;
333
	  }
334
	  bytes_in_buffer--;
335
	  c = GETJOCTET(*next_input_byte++);
336
	} while (c == 0xFF);
337
 
338
	if (c == 0) {
339
	  /* Found FF/00, which represents an FF data byte */
340
	  c = 0xFF;
341
	} else {
342
	  /* Oops, it's actually a marker indicating end of compressed data.
343
	   * Save the marker code for later use.
344
	   * Fine point: it might appear that we should save the marker into
345
	   * bitread working state, not straight into permanent state.  But
346
	   * once we have hit a marker, we cannot need to suspend within the
347
	   * current MCU, because we will read no more bytes from the data
348
	   * source.  So it is OK to update permanent state right away.
349
	   */
350
	  cinfo->unread_marker = c;
351
	  /* See if we need to insert some fake zero bits. */
352
	  goto no_more_bytes;
353
	}
354
      }
355
 
356
      /* OK, load c into get_buffer */
357
      get_buffer = (get_buffer << 8) | c;
358
      bits_left += 8;
359
    } /* end while */
360
  } else {
361
  no_more_bytes:
362
    /* We get here if we've read the marker that terminates the compressed
363
     * data segment.  There should be enough bits in the buffer register
364
     * to satisfy the request; if so, no problem.
365
     */
366
    if (nbits > bits_left) {
367
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
368
       * the data stream, so that we can produce some kind of image.
369
       * We use a nonvolatile flag to ensure that only one warning message
370
       * appears per data segment.
371
       */
372
      if (! cinfo->entropy->insufficient_data) {
373
	WARNMS(cinfo, JWRN_HIT_MARKER);
374
	cinfo->entropy->insufficient_data = TRUE;
375
      }
376
      /* Fill the buffer with zero bits */
377
      get_buffer <<= MIN_GET_BITS - bits_left;
378
      bits_left = MIN_GET_BITS;
379
    }
380
  }
381
 
382
  /* Unload the local registers */
383
  state->next_input_byte = next_input_byte;
384
  state->bytes_in_buffer = bytes_in_buffer;
385
  state->get_buffer = get_buffer;
386
  state->bits_left = bits_left;
387
 
388
  return TRUE;
389
}
390
 
391
 
392
/*
393
 * Out-of-line code for Huffman code decoding.
394
 * See jdhuff.h for info about usage.
395
 */
396
 
397
GLOBAL(int)
398
jpeg_huff_decode (bitread_working_state * state,
399
		  register bit_buf_type get_buffer, register int bits_left,
400
		  d_derived_tbl * htbl, int min_bits)
401
{
402
  register int l = min_bits;
403
  register INT32 code;
404
 
405
  /* HUFF_DECODE has determined that the code is at least min_bits */
406
  /* bits long, so fetch that many bits in one swoop. */
407
 
408
  CHECK_BIT_BUFFER(*state, l, return -1);
409
  code = GET_BITS(l);
410
 
411
  /* Collect the rest of the Huffman code one bit at a time. */
412
  /* This is per Figure F.16 in the JPEG spec. */
413
 
414
  while (code > htbl->maxcode[l]) {
415
    code <<= 1;
416
    CHECK_BIT_BUFFER(*state, 1, return -1);
417
    code |= GET_BITS(1);
418
    l++;
419
  }
420
 
421
  /* Unload the local registers */
422
  state->get_buffer = get_buffer;
423
  state->bits_left = bits_left;
424
 
425
  /* With garbage input we may reach the sentinel value l = 17. */
426
 
427
  if (l > 16) {
428
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
429
    return 0;			/* fake a zero as the safest result */
430
  }
431
 
432
  return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
433
}
434
 
435
 
436
/*
437
 * Figure F.12: extend sign bit.
438
 * On some machines, a shift and add will be faster than a table lookup.
439
 */
440
 
441
#ifdef AVOID_TABLES
442
 
443
#define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
444
 
445
#else
446
 
447
#define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
448
 
449
static const int extend_test[16] =   /* entry n is 2**(n-1) */
450
  { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
451
    0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
452
 
453
static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
454
  { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
455
    ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
456
    ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
457
    ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
458
 
459
#endif /* AVOID_TABLES */
460
 
461
 
462
/*
463
 * Check for a restart marker & resynchronize decoder.
464
 * Returns FALSE if must suspend.
465
 */
466
 
467
LOCAL(boolean)
468
process_restart (j_decompress_ptr cinfo)
469
{
470
  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
471
  int ci;
472
 
473
  /* Throw away any unused bits remaining in bit buffer; */
474
  /* include any full bytes in next_marker's count of discarded bytes */
475
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
476
  entropy->bitstate.bits_left = 0;
477
 
478
  /* Advance past the RSTn marker */
479
  if (! (*cinfo->marker->read_restart_marker) (cinfo))
480
    return FALSE;
481
 
482
  /* Re-initialize DC predictions to 0 */
483
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
484
    entropy->saved.last_dc_val[ci] = 0;
485
 
486
  /* Reset restart counter */
487
  entropy->restarts_to_go = cinfo->restart_interval;
488
 
489
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
490
   * against a marker.  In that case we will end up treating the next data
491
   * segment as empty, and we can avoid producing bogus output pixels by
492
   * leaving the flag set.
493
   */
494
  if (cinfo->unread_marker == 0)
495
    entropy->pub.insufficient_data = FALSE;
496
 
497
  return TRUE;
498
}
499
 
500
 
501
/*
502
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
503
 * The coefficients are reordered from zigzag order into natural array order,
504
 * but are not dequantized.
505
 *
506
 * The i'th block of the MCU is stored into the block pointed to by
507
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
508
 * (Wholesale zeroing is usually a little faster than retail...)
509
 *
510
 * Returns FALSE if data source requested suspension.  In that case no
511
 * changes have been made to permanent state.  (Exception: some output
512
 * coefficients may already have been assigned.  This is harmless for
513
 * this module, since we'll just re-assign them on the next call.)
514
 */
515
 
516
METHODDEF(boolean)
517
decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
518
{
519
  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
520
  int blkn;
521
  BITREAD_STATE_VARS;
522
  savable_state state;
523
 
524
  /* Process restart marker if needed; may have to suspend */
525
  if (cinfo->restart_interval) {
526
    if (entropy->restarts_to_go == 0)
527
      if (! process_restart(cinfo))
528
	return FALSE;
529
  }
530
 
531
  /* If we've run out of data, just leave the MCU set to zeroes.
532
   * This way, we return uniform gray for the remainder of the segment.
533
   */
534
  if (! entropy->pub.insufficient_data) {
535
 
536
    /* Load up working state */
537
    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
538
    ASSIGN_STATE(state, entropy->saved);
539
 
540
    /* Outer loop handles each block in the MCU */
541
 
542
    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
543
      JBLOCKROW block = MCU_data[blkn];
544
      d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
545
      d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
546
      register int s, k, r;
547
 
548
      /* Decode a single block's worth of coefficients */
549
 
550
      /* Section F.2.2.1: decode the DC coefficient difference */
551
      HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
552
      if (s) {
553
	CHECK_BIT_BUFFER(br_state, s, return FALSE);
554
	r = GET_BITS(s);
555
	s = HUFF_EXTEND(r, s);
556
      }
557
 
558
      if (entropy->dc_needed[blkn]) {
559
	/* Convert DC difference to actual value, update last_dc_val */
560
	int ci = cinfo->MCU_membership[blkn];
561
	s += state.last_dc_val[ci];
562
	state.last_dc_val[ci] = s;
563
	/* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
564
	(*block)[0] = (JCOEF) s;
565
      }
566
 
567
      if (entropy->ac_needed[blkn]) {
568
 
569
	/* Section F.2.2.2: decode the AC coefficients */
570
	/* Since zeroes are skipped, output area must be cleared beforehand */
571
	for (k = 1; k < DCTSIZE2; k++) {
572
	  HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
573
 
574
	  r = s >> 4;
575
	  s &= 15;
576
 
577
	  if (s) {
578
	    k += r;
579
	    CHECK_BIT_BUFFER(br_state, s, return FALSE);
580
	    r = GET_BITS(s);
581
	    s = HUFF_EXTEND(r, s);
582
	    /* Output coefficient in natural (dezigzagged) order.
583
	     * Note: the extra entries in jpeg_natural_order[] will save us
584
	     * if k >= DCTSIZE2, which could happen if the data is corrupted.
585
	     */
586
	    (*block)[jpeg_natural_order[k]] = (JCOEF) s;
587
	  } else {
588
	    if (r != 15)
589
	      break;
590
	    k += 15;
591
	  }
592
	}
593
 
594
      } else {
595
 
596
	/* Section F.2.2.2: decode the AC coefficients */
597
	/* In this path we just discard the values */
598
	for (k = 1; k < DCTSIZE2; k++) {
599
	  HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
600
 
601
	  r = s >> 4;
602
	  s &= 15;
603
 
604
	  if (s) {
605
	    k += r;
606
	    CHECK_BIT_BUFFER(br_state, s, return FALSE);
607
	    DROP_BITS(s);
608
	  } else {
609
	    if (r != 15)
610
	      break;
611
	    k += 15;
612
	  }
613
	}
614
 
615
      }
616
    }
617
 
618
    /* Completed MCU, so update state */
619
    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
620
    ASSIGN_STATE(entropy->saved, state);
621
  }
622
 
623
  /* Account for restart interval (no-op if not using restarts) */
624
  entropy->restarts_to_go--;
625
 
626
  return TRUE;
627
}
628
 
629
 
630
/*
631
 * Module initialization routine for Huffman entropy decoding.
632
 */
633
 
634
GLOBAL(void)
635
jinit_huff_decoder (j_decompress_ptr cinfo)
636
{
637
  huff_entropy_ptr entropy;
638
  int i;
639
 
640
  entropy = (huff_entropy_ptr)
641
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
642
				SIZEOF(huff_entropy_decoder));
643
  cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
644
  entropy->pub.start_pass = start_pass_huff_decoder;
645
  entropy->pub.decode_mcu = decode_mcu;
646
 
647
  /* Mark tables unallocated */
648
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
649
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
650
  }
651
}