Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4349 Serge 1
/*
2
 * This is an OpenSSL-compatible implementation of the RSA Data Security, Inc.
3
 * MD5 Message-Digest Algorithm (RFC 1321).
4
 *
5
 * Homepage:
6
 * http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5
7
 *
8
 * Author:
9
 * Alexander Peslyak, better known as Solar Designer 
10
 *
11
 * This software was written by Alexander Peslyak in 2001.  No copyright is
12
 * claimed, and the software is hereby placed in the public domain.
13
 * In case this attempt to disclaim copyright and place the software in the
14
 * public domain is deemed null and void, then the software is
15
 * Copyright (c) 2001 Alexander Peslyak and it is hereby released to the
16
 * general public under the following terms:
17
 *
18
 * Redistribution and use in source and binary forms, with or without
19
 * modification, are permitted.
20
 *
21
 * There's ABSOLUTELY NO WARRANTY, express or implied.
22
 *
23
 * (This is a heavily cut-down "BSD license".)
24
 *
25
 * This differs from Colin Plumb's older public domain implementation in that
26
 * no exactly 32-bit integer data type is required (any 32-bit or wider
27
 * unsigned integer data type will do), there's no compile-time endianness
28
 * configuration, and the function prototypes match OpenSSL's.  No code from
29
 * Colin Plumb's implementation has been reused; this comment merely compares
30
 * the properties of the two independent implementations.
31
 *
32
 * The primary goals of this implementation are portability and ease of use.
33
 * It is meant to be fast, but not as fast as possible.  Some known
34
 * optimizations are not included to reduce source code size and avoid
35
 * compile-time configuration.
36
 */
37
 
38
#ifndef HAVE_OPENSSL
39
 
40
#include 
41
 
42
#include "md5.h"
43
 
44
/*
45
 * The basic MD5 functions.
46
 *
47
 * F and G are optimized compared to their RFC 1321 definitions for
48
 * architectures that lack an AND-NOT instruction, just like in Colin Plumb's
49
 * implementation.
50
 */
51
#define F(x, y, z)			((z) ^ ((x) & ((y) ^ (z))))
52
#define G(x, y, z)			((y) ^ ((z) & ((x) ^ (y))))
53
#define H(x, y, z)			((x) ^ (y) ^ (z))
54
#define I(x, y, z)			((y) ^ ((x) | ~(z)))
55
 
56
/*
57
 * The MD5 transformation for all four rounds.
58
 */
59
#define STEP(f, a, b, c, d, x, t, s) \
60
	(a) += f((b), (c), (d)) + (x) + (t); \
61
	(a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); \
62
	(a) += (b);
63
 
64
/*
65
 * SET reads 4 input bytes in little-endian byte order and stores them
66
 * in a properly aligned word in host byte order.
67
 *
68
 * The check for little-endian architectures that tolerate unaligned
69
 * memory accesses is just an optimization.  Nothing will break if it
70
 * doesn't work.
71
 */
72
#if defined(__i386__) || defined(__x86_64__) || defined(__vax__)
73
#define SET(n) \
74
	(*(MD5_u32plus *)&ptr[(n) * 4])
75
#define GET(n) \
76
	SET(n)
77
#else
78
#define SET(n) \
79
	(ctx->block[(n)] = \
80
	(MD5_u32plus)ptr[(n) * 4] | \
81
	((MD5_u32plus)ptr[(n) * 4 + 1] << 8) | \
82
	((MD5_u32plus)ptr[(n) * 4 + 2] << 16) | \
83
	((MD5_u32plus)ptr[(n) * 4 + 3] << 24))
84
#define GET(n) \
85
	(ctx->block[(n)])
86
#endif
87
 
88
/*
89
 * This processes one or more 64-byte data blocks, but does NOT update
90
 * the bit counters.  There are no alignment requirements.
91
 */
92
static void *body(MD5_CTX *ctx, void *data, unsigned long size)
93
{
94
	unsigned char *ptr;
95
	MD5_u32plus a, b, c, d;
96
	MD5_u32plus saved_a, saved_b, saved_c, saved_d;
97
 
98
	ptr = (unsigned char *)data;
99
 
100
	a = ctx->a;
101
	b = ctx->b;
102
	c = ctx->c;
103
	d = ctx->d;
104
 
105
	do {
106
		saved_a = a;
107
		saved_b = b;
108
		saved_c = c;
109
		saved_d = d;
110
 
111
/* Round 1 */
112
		STEP(F, a, b, c, d, SET(0), 0xd76aa478, 7)
113
		STEP(F, d, a, b, c, SET(1), 0xe8c7b756, 12)
114
		STEP(F, c, d, a, b, SET(2), 0x242070db, 17)
115
		STEP(F, b, c, d, a, SET(3), 0xc1bdceee, 22)
116
		STEP(F, a, b, c, d, SET(4), 0xf57c0faf, 7)
117
		STEP(F, d, a, b, c, SET(5), 0x4787c62a, 12)
118
		STEP(F, c, d, a, b, SET(6), 0xa8304613, 17)
119
		STEP(F, b, c, d, a, SET(7), 0xfd469501, 22)
120
		STEP(F, a, b, c, d, SET(8), 0x698098d8, 7)
121
		STEP(F, d, a, b, c, SET(9), 0x8b44f7af, 12)
122
		STEP(F, c, d, a, b, SET(10), 0xffff5bb1, 17)
123
		STEP(F, b, c, d, a, SET(11), 0x895cd7be, 22)
124
		STEP(F, a, b, c, d, SET(12), 0x6b901122, 7)
125
		STEP(F, d, a, b, c, SET(13), 0xfd987193, 12)
126
		STEP(F, c, d, a, b, SET(14), 0xa679438e, 17)
127
		STEP(F, b, c, d, a, SET(15), 0x49b40821, 22)
128
 
129
/* Round 2 */
130
		STEP(G, a, b, c, d, GET(1), 0xf61e2562, 5)
131
		STEP(G, d, a, b, c, GET(6), 0xc040b340, 9)
132
		STEP(G, c, d, a, b, GET(11), 0x265e5a51, 14)
133
		STEP(G, b, c, d, a, GET(0), 0xe9b6c7aa, 20)
134
		STEP(G, a, b, c, d, GET(5), 0xd62f105d, 5)
135
		STEP(G, d, a, b, c, GET(10), 0x02441453, 9)
136
		STEP(G, c, d, a, b, GET(15), 0xd8a1e681, 14)
137
		STEP(G, b, c, d, a, GET(4), 0xe7d3fbc8, 20)
138
		STEP(G, a, b, c, d, GET(9), 0x21e1cde6, 5)
139
		STEP(G, d, a, b, c, GET(14), 0xc33707d6, 9)
140
		STEP(G, c, d, a, b, GET(3), 0xf4d50d87, 14)
141
		STEP(G, b, c, d, a, GET(8), 0x455a14ed, 20)
142
		STEP(G, a, b, c, d, GET(13), 0xa9e3e905, 5)
143
		STEP(G, d, a, b, c, GET(2), 0xfcefa3f8, 9)
144
		STEP(G, c, d, a, b, GET(7), 0x676f02d9, 14)
145
		STEP(G, b, c, d, a, GET(12), 0x8d2a4c8a, 20)
146
 
147
/* Round 3 */
148
		STEP(H, a, b, c, d, GET(5), 0xfffa3942, 4)
149
		STEP(H, d, a, b, c, GET(8), 0x8771f681, 11)
150
		STEP(H, c, d, a, b, GET(11), 0x6d9d6122, 16)
151
		STEP(H, b, c, d, a, GET(14), 0xfde5380c, 23)
152
		STEP(H, a, b, c, d, GET(1), 0xa4beea44, 4)
153
		STEP(H, d, a, b, c, GET(4), 0x4bdecfa9, 11)
154
		STEP(H, c, d, a, b, GET(7), 0xf6bb4b60, 16)
155
		STEP(H, b, c, d, a, GET(10), 0xbebfbc70, 23)
156
		STEP(H, a, b, c, d, GET(13), 0x289b7ec6, 4)
157
		STEP(H, d, a, b, c, GET(0), 0xeaa127fa, 11)
158
		STEP(H, c, d, a, b, GET(3), 0xd4ef3085, 16)
159
		STEP(H, b, c, d, a, GET(6), 0x04881d05, 23)
160
		STEP(H, a, b, c, d, GET(9), 0xd9d4d039, 4)
161
		STEP(H, d, a, b, c, GET(12), 0xe6db99e5, 11)
162
		STEP(H, c, d, a, b, GET(15), 0x1fa27cf8, 16)
163
		STEP(H, b, c, d, a, GET(2), 0xc4ac5665, 23)
164
 
165
/* Round 4 */
166
		STEP(I, a, b, c, d, GET(0), 0xf4292244, 6)
167
		STEP(I, d, a, b, c, GET(7), 0x432aff97, 10)
168
		STEP(I, c, d, a, b, GET(14), 0xab9423a7, 15)
169
		STEP(I, b, c, d, a, GET(5), 0xfc93a039, 21)
170
		STEP(I, a, b, c, d, GET(12), 0x655b59c3, 6)
171
		STEP(I, d, a, b, c, GET(3), 0x8f0ccc92, 10)
172
		STEP(I, c, d, a, b, GET(10), 0xffeff47d, 15)
173
		STEP(I, b, c, d, a, GET(1), 0x85845dd1, 21)
174
		STEP(I, a, b, c, d, GET(8), 0x6fa87e4f, 6)
175
		STEP(I, d, a, b, c, GET(15), 0xfe2ce6e0, 10)
176
		STEP(I, c, d, a, b, GET(6), 0xa3014314, 15)
177
		STEP(I, b, c, d, a, GET(13), 0x4e0811a1, 21)
178
		STEP(I, a, b, c, d, GET(4), 0xf7537e82, 6)
179
		STEP(I, d, a, b, c, GET(11), 0xbd3af235, 10)
180
		STEP(I, c, d, a, b, GET(2), 0x2ad7d2bb, 15)
181
		STEP(I, b, c, d, a, GET(9), 0xeb86d391, 21)
182
 
183
		a += saved_a;
184
		b += saved_b;
185
		c += saved_c;
186
		d += saved_d;
187
 
188
		ptr += 64;
189
	} while (size -= 64);
190
 
191
	ctx->a = a;
192
	ctx->b = b;
193
	ctx->c = c;
194
	ctx->d = d;
195
 
196
	return ptr;
197
}
198
 
199
void MD5_Init(MD5_CTX *ctx)
200
{
201
	ctx->a = 0x67452301;
202
	ctx->b = 0xefcdab89;
203
	ctx->c = 0x98badcfe;
204
	ctx->d = 0x10325476;
205
 
206
	ctx->lo = 0;
207
	ctx->hi = 0;
208
}
209
 
210
void MD5_Update(MD5_CTX *ctx, void *data, unsigned long size)
211
{
212
	MD5_u32plus saved_lo;
213
	unsigned long used, free;
214
 
215
	saved_lo = ctx->lo;
216
	if ((ctx->lo = (saved_lo + size) & 0x1fffffff) < saved_lo)
217
		ctx->hi++;
218
	ctx->hi += size >> 29;
219
 
220
	used = saved_lo & 0x3f;
221
 
222
	if (used) {
223
		free = 64 - used;
224
 
225
		if (size < free) {
226
			memcpy(&ctx->buffer[used], data, size);
227
			return;
228
		}
229
 
230
		memcpy(&ctx->buffer[used], data, free);
231
		data = (unsigned char *)data + free;
232
		size -= free;
233
		body(ctx, ctx->buffer, 64);
234
	}
235
 
236
	if (size >= 64) {
237
		data = body(ctx, data, size & ~(unsigned long)0x3f);
238
		size &= 0x3f;
239
	}
240
 
241
	memcpy(ctx->buffer, data, size);
242
}
243
 
244
void MD5_Final(unsigned char *result, MD5_CTX *ctx)
245
{
246
	unsigned long used, free;
247
 
248
	used = ctx->lo & 0x3f;
249
 
250
	ctx->buffer[used++] = 0x80;
251
 
252
	free = 64 - used;
253
 
254
	if (free < 8) {
255
		memset(&ctx->buffer[used], 0, free);
256
		body(ctx, ctx->buffer, 64);
257
		used = 0;
258
		free = 64;
259
	}
260
 
261
	memset(&ctx->buffer[used], 0, free - 8);
262
 
263
	ctx->lo <<= 3;
264
	ctx->buffer[56] = ctx->lo;
265
	ctx->buffer[57] = ctx->lo >> 8;
266
	ctx->buffer[58] = ctx->lo >> 16;
267
	ctx->buffer[59] = ctx->lo >> 24;
268
	ctx->buffer[60] = ctx->hi;
269
	ctx->buffer[61] = ctx->hi >> 8;
270
	ctx->buffer[62] = ctx->hi >> 16;
271
	ctx->buffer[63] = ctx->hi >> 24;
272
 
273
	body(ctx, ctx->buffer, 64);
274
 
275
	result[0] = ctx->a;
276
	result[1] = ctx->a >> 8;
277
	result[2] = ctx->a >> 16;
278
	result[3] = ctx->a >> 24;
279
	result[4] = ctx->b;
280
	result[5] = ctx->b >> 8;
281
	result[6] = ctx->b >> 16;
282
	result[7] = ctx->b >> 24;
283
	result[8] = ctx->c;
284
	result[9] = ctx->c >> 8;
285
	result[10] = ctx->c >> 16;
286
	result[11] = ctx->c >> 24;
287
	result[12] = ctx->d;
288
	result[13] = ctx->d >> 8;
289
	result[14] = ctx->d >> 16;
290
	result[15] = ctx->d >> 24;
291
 
292
	memset(ctx, 0, sizeof(*ctx));
293
}
294
 
295
#endif