Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4349 Serge 1
/*
2
 * Generate a synthetic stereo sound.
3
 * NOTE: No floats are used to guarantee bitexact output.
4
 *
5
 * Copyright (c) 2002 Fabrice Bellard
6
 *
7
 * This file is part of FFmpeg.
8
 *
9
 * FFmpeg is free software; you can redistribute it and/or
10
 * modify it under the terms of the GNU Lesser General Public
11
 * License as published by the Free Software Foundation; either
12
 * version 2.1 of the License, or (at your option) any later version.
13
 *
14
 * FFmpeg is distributed in the hope that it will be useful,
15
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17
 * Lesser General Public License for more details.
18
 *
19
 * You should have received a copy of the GNU Lesser General Public
20
 * License along with FFmpeg; if not, write to the Free Software
21
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22
 */
23
 
24
#include 
25
#include 
26
#include 
27
#include 
28
 
29
#define MAX_CHANNELS 8
30
 
31
static unsigned int myrnd(unsigned int *seed_ptr, int n)
32
{
33
    unsigned int seed, val;
34
 
35
    seed = *seed_ptr;
36
    seed = (seed * 314159) + 1;
37
    if (n == 256) {
38
        val = seed >> 24;
39
    } else {
40
        val = seed % n;
41
    }
42
    *seed_ptr = seed;
43
    return val;
44
}
45
 
46
#define FRAC_BITS 16
47
#define FRAC_ONE (1 << FRAC_BITS)
48
 
49
#define COS_TABLE_BITS 7
50
 
51
/* integer cosine */
52
static const unsigned short cos_table[(1 << COS_TABLE_BITS) + 2] = {
53
    0x8000, 0x7ffe, 0x7ff6, 0x7fea, 0x7fd9, 0x7fc2, 0x7fa7, 0x7f87,
54
    0x7f62, 0x7f38, 0x7f0a, 0x7ed6, 0x7e9d, 0x7e60, 0x7e1e, 0x7dd6,
55
    0x7d8a, 0x7d3a, 0x7ce4, 0x7c89, 0x7c2a, 0x7bc6, 0x7b5d, 0x7aef,
56
    0x7a7d, 0x7a06, 0x798a, 0x790a, 0x7885, 0x77fb, 0x776c, 0x76d9,
57
    0x7642, 0x75a6, 0x7505, 0x7460, 0x73b6, 0x7308, 0x7255, 0x719e,
58
    0x70e3, 0x7023, 0x6f5f, 0x6e97, 0x6dca, 0x6cf9, 0x6c24, 0x6b4b,
59
    0x6a6e, 0x698c, 0x68a7, 0x67bd, 0x66d0, 0x65de, 0x64e9, 0x63ef,
60
    0x62f2, 0x61f1, 0x60ec, 0x5fe4, 0x5ed7, 0x5dc8, 0x5cb4, 0x5b9d,
61
    0x5a82, 0x5964, 0x5843, 0x571e, 0x55f6, 0x54ca, 0x539b, 0x5269,
62
    0x5134, 0x4ffb, 0x4ec0, 0x4d81, 0x4c40, 0x4afb, 0x49b4, 0x486a,
63
    0x471d, 0x45cd, 0x447b, 0x4326, 0x41ce, 0x4074, 0x3f17, 0x3db8,
64
    0x3c57, 0x3af3, 0x398d, 0x3825, 0x36ba, 0x354e, 0x33df, 0x326e,
65
    0x30fc, 0x2f87, 0x2e11, 0x2c99, 0x2b1f, 0x29a4, 0x2827, 0x26a8,
66
    0x2528, 0x23a7, 0x2224, 0x209f, 0x1f1a, 0x1d93, 0x1c0c, 0x1a83,
67
    0x18f9, 0x176e, 0x15e2, 0x1455, 0x12c8, 0x113a, 0x0fab, 0x0e1c,
68
    0x0c8c, 0x0afb, 0x096b, 0x07d9, 0x0648, 0x04b6, 0x0324, 0x0192,
69
    0x0000, 0x0000,
70
};
71
 
72
#define CSHIFT (FRAC_BITS - COS_TABLE_BITS - 2)
73
 
74
static int int_cos(int a)
75
{
76
    int neg, v, f;
77
    const unsigned short *p;
78
 
79
    a = a & (FRAC_ONE - 1); /* modulo 2 * pi */
80
    if (a >= (FRAC_ONE / 2))
81
        a = FRAC_ONE - a;
82
    neg = 0;
83
    if (a > (FRAC_ONE / 4)) {
84
        neg = -1;
85
        a   = (FRAC_ONE / 2) - a;
86
    }
87
    p = cos_table + (a >> CSHIFT);
88
    /* linear interpolation */
89
    f = a & ((1 << CSHIFT) - 1);
90
    v = p[0] + (((p[1] - p[0]) * f + (1 << (CSHIFT - 1))) >> CSHIFT);
91
    v = (v ^ neg) - neg;
92
    v = v << (FRAC_BITS - 15);
93
    return v;
94
}
95
 
96
FILE *outfile;
97
 
98
static void put16(int16_t v)
99
{
100
    fputc( v       & 0xff, outfile);
101
    fputc((v >> 8) & 0xff, outfile);
102
}
103
 
104
static void put32(uint32_t v)
105
{
106
    fputc( v        & 0xff, outfile);
107
    fputc((v >>  8) & 0xff, outfile);
108
    fputc((v >> 16) & 0xff, outfile);
109
    fputc((v >> 24) & 0xff, outfile);
110
}
111
 
112
#define HEADER_SIZE      46
113
#define FMT_SIZE         18
114
#define SAMPLE_SIZE       2
115
#define WFORMAT_PCM  0x0001
116
 
117
static void put_wav_header(int sample_rate, int channels, int nb_samples)
118
{
119
    int block_align = SAMPLE_SIZE * channels;
120
    int data_size   = block_align * nb_samples;
121
 
122
    fputs("RIFF", outfile);
123
    put32(HEADER_SIZE + data_size);
124
    fputs("WAVEfmt ", outfile);
125
    put32(FMT_SIZE);
126
    put16(WFORMAT_PCM);
127
    put16(channels);
128
    put32(sample_rate);
129
    put32(block_align * sample_rate);
130
    put16(block_align);
131
    put16(SAMPLE_SIZE * 8);
132
    put16(0);
133
    fputs("data", outfile);
134
    put32(data_size);
135
}
136
 
137
int main(int argc, char **argv)
138
{
139
    int i, a, v, j, f, amp, ampa;
140
    unsigned int seed = 1;
141
    int tabf1[MAX_CHANNELS], tabf2[MAX_CHANNELS];
142
    int taba[MAX_CHANNELS];
143
    int sample_rate = 44100;
144
    int nb_channels = 2;
145
    char *ext;
146
 
147
    if (argc < 2 || argc > 5) {
148
        printf("usage: %s file [ [] []]\n"
149
               "generate a test raw 16 bit audio stream\n"
150
               "If the file extension is .wav a WAVE header will be added.\n"
151
               "default: 44100 Hz stereo\n", argv[0]);
152
        exit(1);
153
    }
154
 
155
    if (argc > 2) {
156
        sample_rate = atoi(argv[2]);
157
        if (sample_rate <= 0) {
158
            fprintf(stderr, "invalid sample rate: %d\n", sample_rate);
159
            return 1;
160
        }
161
    }
162
 
163
    if (argc > 3) {
164
        nb_channels = atoi(argv[3]);
165
        if (nb_channels < 1 || nb_channels > MAX_CHANNELS) {
166
            fprintf(stderr, "invalid number of channels: %d\n", nb_channels);
167
            return 1;
168
        }
169
    }
170
 
171
    if (argc > 4)
172
        seed = atoi(argv[4]);
173
 
174
    outfile = fopen(argv[1], "wb");
175
    if (!outfile) {
176
        perror(argv[1]);
177
        return 1;
178
    }
179
 
180
    if ((ext = strrchr(argv[1], '.')) != NULL && !strcmp(ext, ".wav"))
181
        put_wav_header(sample_rate, nb_channels, 6 * sample_rate);
182
 
183
    /* 1 second of single freq sine at 1000 Hz */
184
    a = 0;
185
    for (i = 0; i < 1 * sample_rate; i++) {
186
        v = (int_cos(a) * 10000) >> FRAC_BITS;
187
        for (j = 0; j < nb_channels; j++)
188
            put16(v);
189
        a += (1000 * FRAC_ONE) / sample_rate;
190
    }
191
 
192
    /* 1 second of varying frequency between 100 and 10000 Hz */
193
    a = 0;
194
    for (i = 0; i < 1 * sample_rate; i++) {
195
        v = (int_cos(a) * 10000) >> FRAC_BITS;
196
        for (j = 0; j < nb_channels; j++)
197
            put16(v);
198
        f  = 100 + (((10000 - 100) * i) / sample_rate);
199
        a += (f * FRAC_ONE) / sample_rate;
200
    }
201
 
202
    /* 0.5 second of low amplitude white noise */
203
    for (i = 0; i < sample_rate / 2; i++) {
204
        v = myrnd(&seed, 20000) - 10000;
205
        for (j = 0; j < nb_channels; j++)
206
            put16(v);
207
    }
208
 
209
    /* 0.5 second of high amplitude white noise */
210
    for (i = 0; i < sample_rate / 2; i++) {
211
        v = myrnd(&seed, 65535) - 32768;
212
        for (j = 0; j < nb_channels; j++)
213
            put16(v);
214
    }
215
 
216
    /* 1 second of unrelated ramps for each channel */
217
    for (j = 0; j < nb_channels; j++) {
218
        taba[j]  = 0;
219
        tabf1[j] = 100 + myrnd(&seed, 5000);
220
        tabf2[j] = 100 + myrnd(&seed, 5000);
221
    }
222
    for (i = 0; i < 1 * sample_rate; i++) {
223
        for (j = 0; j < nb_channels; j++) {
224
            v = (int_cos(taba[j]) * 10000) >> FRAC_BITS;
225
            put16(v);
226
            f        = tabf1[j] + (((tabf2[j] - tabf1[j]) * i) / sample_rate);
227
            taba[j] += (f * FRAC_ONE) / sample_rate;
228
        }
229
    }
230
 
231
    /* 2 seconds of 500 Hz with varying volume */
232
    a    = 0;
233
    ampa = 0;
234
    for (i = 0; i < 2 * sample_rate; i++) {
235
        for (j = 0; j < nb_channels; j++) {
236
            amp = ((FRAC_ONE + int_cos(ampa)) * 5000) >> FRAC_BITS;
237
            if (j & 1)
238
                amp = 10000 - amp;
239
            v = (int_cos(a) * amp) >> FRAC_BITS;
240
            put16(v);
241
            a    += (500 * FRAC_ONE) / sample_rate;
242
            ampa += (2 * FRAC_ONE) / sample_rate;
243
        }
244
    }
245
 
246
    fclose(outfile);
247
    return 0;
248
}