Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4349 Serge 1
/*
2
 * TwinVQ decoder
3
 * Copyright (c) 2009 Vitor Sessak
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
 
22
#include 
23
#include 
24
 
25
#include "libavutil/channel_layout.h"
26
#include "libavutil/float_dsp.h"
27
#include "avcodec.h"
28
#include "fft.h"
29
#include "internal.h"
30
#include "lsp.h"
31
#include "sinewin.h"
32
#include "twinvq.h"
33
 
34
/**
35
 * Evaluate a single LPC amplitude spectrum envelope coefficient from the line
36
 * spectrum pairs.
37
 *
38
 * @param lsp a vector of the cosine of the LSP values
39
 * @param cos_val cos(PI*i/N) where i is the index of the LPC amplitude
40
 * @param order the order of the LSP (and the size of the *lsp buffer). Must
41
 *        be a multiple of four.
42
 * @return the LPC value
43
 *
44
 * @todo reuse code from Vorbis decoder: vorbis_floor0_decode
45
 */
46
static float eval_lpc_spectrum(const float *lsp, float cos_val, int order)
47
{
48
    int j;
49
    float p         = 0.5f;
50
    float q         = 0.5f;
51
    float two_cos_w = 2.0f * cos_val;
52
 
53
    for (j = 0; j + 1 < order; j += 2 * 2) {
54
        // Unroll the loop once since order is a multiple of four
55
        q *= lsp[j]     - two_cos_w;
56
        p *= lsp[j + 1] - two_cos_w;
57
 
58
        q *= lsp[j + 2] - two_cos_w;
59
        p *= lsp[j + 3] - two_cos_w;
60
    }
61
 
62
    p *= p * (2.0f - two_cos_w);
63
    q *= q * (2.0f + two_cos_w);
64
 
65
    return 0.5 / (p + q);
66
}
67
 
68
/**
69
 * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
70
 */
71
static void eval_lpcenv(TwinVQContext *tctx, const float *cos_vals, float *lpc)
72
{
73
    int i;
74
    const TwinVQModeTab *mtab = tctx->mtab;
75
    int size_s = mtab->size / mtab->fmode[TWINVQ_FT_SHORT].sub;
76
 
77
    for (i = 0; i < size_s / 2; i++) {
78
        float cos_i = tctx->cos_tabs[0][i];
79
        lpc[i]              = eval_lpc_spectrum(cos_vals,  cos_i, mtab->n_lsp);
80
        lpc[size_s - i - 1] = eval_lpc_spectrum(cos_vals, -cos_i, mtab->n_lsp);
81
    }
82
}
83
 
84
static void interpolate(float *out, float v1, float v2, int size)
85
{
86
    int i;
87
    float step = (v1 - v2) / (size + 1);
88
 
89
    for (i = 0; i < size; i++) {
90
        v2    += step;
91
        out[i] = v2;
92
    }
93
}
94
 
95
static inline float get_cos(int idx, int part, const float *cos_tab, int size)
96
{
97
    return part ? -cos_tab[size - idx - 1]
98
                :  cos_tab[idx];
99
}
100
 
101
/**
102
 * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
103
 * Probably for speed reasons, the coefficients are evaluated as
104
 * siiiibiiiisiiiibiiiisiiiibiiiisiiiibiiiis ...
105
 * where s is an evaluated value, i is a value interpolated from the others
106
 * and b might be either calculated or interpolated, depending on an
107
 * unexplained condition.
108
 *
109
 * @param step the size of a block "siiiibiiii"
110
 * @param in the cosine of the LSP data
111
 * @param part is 0 for 0...PI (positive cosine values) and 1 for PI...2PI
112
 *        (negative cosine values)
113
 * @param size the size of the whole output
114
 */
115
static inline void eval_lpcenv_or_interp(TwinVQContext *tctx,
116
                                         enum TwinVQFrameType ftype,
117
                                         float *out, const float *in,
118
                                         int size, int step, int part)
119
{
120
    int i;
121
    const TwinVQModeTab *mtab = tctx->mtab;
122
    const float *cos_tab      = tctx->cos_tabs[ftype];
123
 
124
    // Fill the 's'
125
    for (i = 0; i < size; i += step)
126
        out[i] =
127
            eval_lpc_spectrum(in,
128
                              get_cos(i, part, cos_tab, size),
129
                              mtab->n_lsp);
130
 
131
    // Fill the 'iiiibiiii'
132
    for (i = step; i <= size - 2 * step; i += step) {
133
        if (out[i + step] + out[i - step] > 1.95 * out[i] ||
134
            out[i + step]                 >= out[i - step]) {
135
            interpolate(out + i - step + 1, out[i], out[i - step], step - 1);
136
        } else {
137
            out[i - step / 2] =
138
                eval_lpc_spectrum(in,
139
                                  get_cos(i - step / 2, part, cos_tab, size),
140
                                  mtab->n_lsp);
141
            interpolate(out + i - step + 1, out[i - step / 2],
142
                        out[i - step], step / 2 - 1);
143
            interpolate(out + i - step / 2 + 1, out[i],
144
                        out[i - step / 2], step / 2 - 1);
145
        }
146
    }
147
 
148
    interpolate(out + size - 2 * step + 1, out[size - step],
149
                out[size - 2 * step], step - 1);
150
}
151
 
152
static void eval_lpcenv_2parts(TwinVQContext *tctx, enum TwinVQFrameType ftype,
153
                               const float *buf, float *lpc,
154
                               int size, int step)
155
{
156
    eval_lpcenv_or_interp(tctx, ftype, lpc, buf, size / 2, step, 0);
157
    eval_lpcenv_or_interp(tctx, ftype, lpc + size / 2, buf, size / 2,
158
                          2 * step, 1);
159
 
160
    interpolate(lpc + size / 2 - step + 1, lpc[size / 2],
161
                lpc[size / 2 - step], step);
162
 
163
    twinvq_memset_float(lpc + size - 2 * step + 1, lpc[size - 2 * step],
164
                        2 * step - 1);
165
}
166
 
167
/**
168
 * Inverse quantization. Read CB coefficients for cb1 and cb2 from the
169
 * bitstream, sum the corresponding vectors and write the result to *out
170
 * after permutation.
171
 */
172
static void dequant(TwinVQContext *tctx, const uint8_t *cb_bits, float *out,
173
                    enum TwinVQFrameType ftype,
174
                    const int16_t *cb0, const int16_t *cb1, int cb_len)
175
{
176
    int pos = 0;
177
    int i, j;
178
 
179
    for (i = 0; i < tctx->n_div[ftype]; i++) {
180
        int tmp0, tmp1;
181
        int sign0 = 1;
182
        int sign1 = 1;
183
        const int16_t *tab0, *tab1;
184
        int length = tctx->length[ftype][i >= tctx->length_change[ftype]];
185
        int bitstream_second_part = (i >= tctx->bits_main_spec_change[ftype]);
186
 
187
        int bits = tctx->bits_main_spec[0][ftype][bitstream_second_part];
188
        tmp0 = *cb_bits++;
189
        if (bits == 7) {
190
            if (tmp0 & 0x40)
191
                sign0 = -1;
192
            tmp0 &= 0x3F;
193
        }
194
 
195
        bits = tctx->bits_main_spec[1][ftype][bitstream_second_part];
196
        tmp1 = *cb_bits++;
197
        if (bits == 7) {
198
            if (tmp1 & 0x40)
199
                sign1 = -1;
200
            tmp1 &= 0x3F;
201
        }
202
 
203
        tab0 = cb0 + tmp0 * cb_len;
204
        tab1 = cb1 + tmp1 * cb_len;
205
 
206
        for (j = 0; j < length; j++)
207
            out[tctx->permut[ftype][pos + j]] = sign0 * tab0[j] +
208
                                                sign1 * tab1[j];
209
 
210
        pos += length;
211
    }
212
}
213
 
214
static void dec_gain(TwinVQContext *tctx,
215
                     enum TwinVQFrameType ftype, float *out)
216
{
217
    const TwinVQModeTab   *mtab =  tctx->mtab;
218
    const TwinVQFrameData *bits = &tctx->bits;
219
    int i, j;
220
    int sub        = mtab->fmode[ftype].sub;
221
    float step     = TWINVQ_AMP_MAX     / ((1 << TWINVQ_GAIN_BITS)     - 1);
222
    float sub_step = TWINVQ_SUB_AMP_MAX / ((1 << TWINVQ_SUB_GAIN_BITS) - 1);
223
 
224
    if (ftype == TWINVQ_FT_LONG) {
225
        for (i = 0; i < tctx->avctx->channels; i++)
226
            out[i] = (1.0 / (1 << 13)) *
227
                     twinvq_mulawinv(step * 0.5 + step * bits->gain_bits[i],
228
                                     TWINVQ_AMP_MAX, TWINVQ_MULAW_MU);
229
    } else {
230
        for (i = 0; i < tctx->avctx->channels; i++) {
231
            float val = (1.0 / (1 << 23)) *
232
                        twinvq_mulawinv(step * 0.5 + step * bits->gain_bits[i],
233
                                        TWINVQ_AMP_MAX, TWINVQ_MULAW_MU);
234
 
235
            for (j = 0; j < sub; j++)
236
                out[i * sub + j] =
237
                    val * twinvq_mulawinv(sub_step * 0.5 +
238
                                          sub_step * bits->sub_gain_bits[i * sub + j],
239
                                          TWINVQ_SUB_AMP_MAX, TWINVQ_MULAW_MU);
240
        }
241
    }
242
}
243
 
244
/**
245
 * Rearrange the LSP coefficients so that they have a minimum distance of
246
 * min_dist. This function does it exactly as described in section of 3.2.4
247
 * of the G.729 specification (but interestingly is different from what the
248
 * reference decoder actually does).
249
 */
250
static void rearrange_lsp(int order, float *lsp, float min_dist)
251
{
252
    int i;
253
    float min_dist2 = min_dist * 0.5;
254
    for (i = 1; i < order; i++)
255
        if (lsp[i] - lsp[i - 1] < min_dist) {
256
            float avg = (lsp[i] + lsp[i - 1]) * 0.5;
257
 
258
            lsp[i - 1] = avg - min_dist2;
259
            lsp[i]     = avg + min_dist2;
260
        }
261
}
262
 
263
static void decode_lsp(TwinVQContext *tctx, int lpc_idx1, uint8_t *lpc_idx2,
264
                       int lpc_hist_idx, float *lsp, float *hist)
265
{
266
    const TwinVQModeTab *mtab = tctx->mtab;
267
    int i, j;
268
 
269
    const float *cb  = mtab->lspcodebook;
270
    const float *cb2 = cb  + (1 << mtab->lsp_bit1) * mtab->n_lsp;
271
    const float *cb3 = cb2 + (1 << mtab->lsp_bit2) * mtab->n_lsp;
272
 
273
    const int8_t funny_rounding[4] = {
274
        -2,
275
        mtab->lsp_split == 4 ? -2 : 1,
276
        mtab->lsp_split == 4 ? -2 : 1,
277
 
278
    };
279
 
280
    j = 0;
281
    for (i = 0; i < mtab->lsp_split; i++) {
282
        int chunk_end = ((i + 1) * mtab->n_lsp + funny_rounding[i]) /
283
                        mtab->lsp_split;
284
        for (; j < chunk_end; j++)
285
            lsp[j] = cb[lpc_idx1     * mtab->n_lsp + j] +
286
                     cb2[lpc_idx2[i] * mtab->n_lsp + j];
287
    }
288
 
289
    rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
290
 
291
    for (i = 0; i < mtab->n_lsp; i++) {
292
        float tmp1 = 1.0     - cb3[lpc_hist_idx * mtab->n_lsp + i];
293
        float tmp2 = hist[i] * cb3[lpc_hist_idx * mtab->n_lsp + i];
294
        hist[i] = lsp[i];
295
        lsp[i]  = lsp[i] * tmp1 + tmp2;
296
    }
297
 
298
    rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
299
    rearrange_lsp(mtab->n_lsp, lsp, 0.000095);
300
    ff_sort_nearly_sorted_floats(lsp, mtab->n_lsp);
301
}
302
 
303
static void dec_lpc_spectrum_inv(TwinVQContext *tctx, float *lsp,
304
                                 enum TwinVQFrameType ftype, float *lpc)
305
{
306
    int i;
307
    int size = tctx->mtab->size / tctx->mtab->fmode[ftype].sub;
308
 
309
    for (i = 0; i < tctx->mtab->n_lsp; i++)
310
        lsp[i] = 2 * cos(lsp[i]);
311
 
312
    switch (ftype) {
313
    case TWINVQ_FT_LONG:
314
        eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 8);
315
        break;
316
    case TWINVQ_FT_MEDIUM:
317
        eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 2);
318
        break;
319
    case TWINVQ_FT_SHORT:
320
        eval_lpcenv(tctx, lsp, lpc);
321
        break;
322
    }
323
}
324
 
325
static const uint8_t wtype_to_wsize[] = { 0, 0, 2, 2, 2, 1, 0, 1, 1 };
326
 
327
static void imdct_and_window(TwinVQContext *tctx, enum TwinVQFrameType ftype,
328
                             int wtype, float *in, float *prev, int ch)
329
{
330
    FFTContext *mdct = &tctx->mdct_ctx[ftype];
331
    const TwinVQModeTab *mtab = tctx->mtab;
332
    int bsize = mtab->size / mtab->fmode[ftype].sub;
333
    int size  = mtab->size;
334
    float *buf1 = tctx->tmp_buf;
335
    int j, first_wsize, wsize; // Window size
336
    float *out  = tctx->curr_frame + 2 * ch * mtab->size;
337
    float *out2 = out;
338
    float *prev_buf;
339
    int types_sizes[] = {
340
        mtab->size /  mtab->fmode[TWINVQ_FT_LONG].sub,
341
        mtab->size /  mtab->fmode[TWINVQ_FT_MEDIUM].sub,
342
        mtab->size / (mtab->fmode[TWINVQ_FT_SHORT].sub * 2),
343
    };
344
 
345
    wsize       = types_sizes[wtype_to_wsize[wtype]];
346
    first_wsize = wsize;
347
    prev_buf    = prev + (size - bsize) / 2;
348
 
349
    for (j = 0; j < mtab->fmode[ftype].sub; j++) {
350
        int sub_wtype = ftype == TWINVQ_FT_MEDIUM ? 8 : wtype;
351
 
352
        if (!j && wtype == 4)
353
            sub_wtype = 4;
354
        else if (j == mtab->fmode[ftype].sub - 1 && wtype == 7)
355
            sub_wtype = 7;
356
 
357
        wsize = types_sizes[wtype_to_wsize[sub_wtype]];
358
 
359
        mdct->imdct_half(mdct, buf1 + bsize * j, in + bsize * j);
360
 
361
        tctx->fdsp.vector_fmul_window(out2, prev_buf + (bsize - wsize) / 2,
362
                                      buf1 + bsize * j,
363
                                      ff_sine_windows[av_log2(wsize)],
364
                                      wsize / 2);
365
        out2 += wsize;
366
 
367
        memcpy(out2, buf1 + bsize * j + wsize / 2,
368
               (bsize - wsize / 2) * sizeof(float));
369
 
370
        out2 += ftype == TWINVQ_FT_MEDIUM ? (bsize - wsize) / 2 : bsize - wsize;
371
 
372
        prev_buf = buf1 + bsize * j + bsize / 2;
373
    }
374
 
375
    tctx->last_block_pos[ch] = (size + first_wsize) / 2;
376
}
377
 
378
static void imdct_output(TwinVQContext *tctx, enum TwinVQFrameType ftype,
379
                         int wtype, float **out)
380
{
381
    const TwinVQModeTab *mtab = tctx->mtab;
382
    float *prev_buf           = tctx->prev_frame + tctx->last_block_pos[0];
383
    int size1, size2, i;
384
 
385
    for (i = 0; i < tctx->avctx->channels; i++)
386
        imdct_and_window(tctx, ftype, wtype,
387
                         tctx->spectrum + i * mtab->size,
388
                         prev_buf + 2 * i * mtab->size,
389
                         i);
390
 
391
    if (!out)
392
        return;
393
 
394
    size2 = tctx->last_block_pos[0];
395
    size1 = mtab->size - size2;
396
 
397
    memcpy(&out[0][0],     prev_buf,         size1 * sizeof(out[0][0]));
398
    memcpy(&out[0][size1], tctx->curr_frame, size2 * sizeof(out[0][0]));
399
 
400
    if (tctx->avctx->channels == 2) {
401
        memcpy(&out[1][0], &prev_buf[2 * mtab->size],
402
               size1 * sizeof(out[1][0]));
403
        memcpy(&out[1][size1], &tctx->curr_frame[2 * mtab->size],
404
               size2 * sizeof(out[1][0]));
405
        tctx->fdsp.butterflies_float(out[0], out[1], mtab->size);
406
    }
407
}
408
 
409
static void read_and_decode_spectrum(TwinVQContext *tctx, float *out,
410
                                     enum TwinVQFrameType ftype)
411
{
412
    const TwinVQModeTab *mtab = tctx->mtab;
413
    TwinVQFrameData *bits     = &tctx->bits;
414
    int channels              = tctx->avctx->channels;
415
    int sub        = mtab->fmode[ftype].sub;
416
    int block_size = mtab->size / sub;
417
    float gain[TWINVQ_CHANNELS_MAX * TWINVQ_SUBBLOCKS_MAX];
418
    float ppc_shape[TWINVQ_PPC_SHAPE_LEN_MAX * TWINVQ_CHANNELS_MAX * 4];
419
 
420
    int i, j;
421
 
422
    dequant(tctx, bits->main_coeffs, out, ftype,
423
            mtab->fmode[ftype].cb0, mtab->fmode[ftype].cb1,
424
            mtab->fmode[ftype].cb_len_read);
425
 
426
    dec_gain(tctx, ftype, gain);
427
 
428
    if (ftype == TWINVQ_FT_LONG) {
429
        int cb_len_p = (tctx->n_div[3] + mtab->ppc_shape_len * channels - 1) /
430
                       tctx->n_div[3];
431
        dequant(tctx, bits->ppc_coeffs, ppc_shape,
432
                TWINVQ_FT_PPC, mtab->ppc_shape_cb,
433
                mtab->ppc_shape_cb + cb_len_p * TWINVQ_PPC_SHAPE_CB_SIZE,
434
                cb_len_p);
435
    }
436
 
437
    for (i = 0; i < channels; i++) {
438
        float *chunk = out + mtab->size * i;
439
        float lsp[TWINVQ_LSP_COEFS_MAX];
440
 
441
        for (j = 0; j < sub; j++) {
442
            tctx->dec_bark_env(tctx, bits->bark1[i][j],
443
                               bits->bark_use_hist[i][j], i,
444
                               tctx->tmp_buf, gain[sub * i + j], ftype);
445
 
446
            tctx->fdsp.vector_fmul(chunk + block_size * j,
447
                                   chunk + block_size * j,
448
                                   tctx->tmp_buf, block_size);
449
        }
450
 
451
        if (ftype == TWINVQ_FT_LONG)
452
            tctx->decode_ppc(tctx, bits->p_coef[i], bits->g_coef[i],
453
                             ppc_shape + i * mtab->ppc_shape_len, chunk);
454
 
455
        decode_lsp(tctx, bits->lpc_idx1[i], bits->lpc_idx2[i],
456
                   bits->lpc_hist_idx[i], lsp, tctx->lsp_hist[i]);
457
 
458
        dec_lpc_spectrum_inv(tctx, lsp, ftype, tctx->tmp_buf);
459
 
460
        for (j = 0; j < mtab->fmode[ftype].sub; j++) {
461
            tctx->fdsp.vector_fmul(chunk, chunk, tctx->tmp_buf, block_size);
462
            chunk += block_size;
463
        }
464
    }
465
}
466
 
467
const enum TwinVQFrameType ff_twinvq_wtype_to_ftype_table[] = {
468
    TWINVQ_FT_LONG,   TWINVQ_FT_LONG, TWINVQ_FT_SHORT, TWINVQ_FT_LONG,
469
    TWINVQ_FT_MEDIUM, TWINVQ_FT_LONG, TWINVQ_FT_LONG,  TWINVQ_FT_MEDIUM,
470
    TWINVQ_FT_MEDIUM
471
};
472
 
473
int ff_twinvq_decode_frame(AVCodecContext *avctx, void *data,
474
                           int *got_frame_ptr, AVPacket *avpkt)
475
{
476
    AVFrame *frame     = data;
477
    const uint8_t *buf = avpkt->data;
478
    int buf_size       = avpkt->size;
479
    TwinVQContext *tctx = avctx->priv_data;
480
    const TwinVQModeTab *mtab = tctx->mtab;
481
    float **out = NULL;
482
    int ret;
483
 
484
    /* get output buffer */
485
    if (tctx->discarded_packets >= 2) {
486
        frame->nb_samples = mtab->size;
487
        if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
488
            return ret;
489
        out = (float **)frame->extended_data;
490
    }
491
 
492
    if (buf_size < avctx->block_align) {
493
        av_log(avctx, AV_LOG_ERROR,
494
               "Frame too small (%d bytes). Truncated file?\n", buf_size);
495
        return AVERROR(EINVAL);
496
    }
497
 
498
    if ((ret = tctx->read_bitstream(avctx, tctx, buf, buf_size)) < 0)
499
        return ret;
500
 
501
    read_and_decode_spectrum(tctx, tctx->spectrum, tctx->bits.ftype);
502
 
503
    imdct_output(tctx, tctx->bits.ftype, tctx->bits.window_type, out);
504
 
505
    FFSWAP(float *, tctx->curr_frame, tctx->prev_frame);
506
 
507
    if (tctx->discarded_packets < 2) {
508
        tctx->discarded_packets++;
509
        *got_frame_ptr = 0;
510
        return buf_size;
511
    }
512
 
513
    *got_frame_ptr = 1;
514
 
515
    return ret;
516
}
517
 
518
/**
519
 * Init IMDCT and windowing tables
520
 */
521
static av_cold int init_mdct_win(TwinVQContext *tctx)
522
{
523
    int i, j, ret;
524
    const TwinVQModeTab *mtab = tctx->mtab;
525
    int size_s = mtab->size / mtab->fmode[TWINVQ_FT_SHORT].sub;
526
    int size_m = mtab->size / mtab->fmode[TWINVQ_FT_MEDIUM].sub;
527
    int channels = tctx->avctx->channels;
528
    float norm = channels == 1 ? 2.0 : 1.0;
529
 
530
    for (i = 0; i < 3; i++) {
531
        int bsize = tctx->mtab->size / tctx->mtab->fmode[i].sub;
532
        if ((ret = ff_mdct_init(&tctx->mdct_ctx[i], av_log2(bsize) + 1, 1,
533
                                -sqrt(norm / bsize) / (1 << 15))))
534
            return ret;
535
    }
536
 
537
    FF_ALLOC_OR_GOTO(tctx->avctx, tctx->tmp_buf,
538
                     mtab->size * sizeof(*tctx->tmp_buf), alloc_fail);
539
 
540
    FF_ALLOC_OR_GOTO(tctx->avctx, tctx->spectrum,
541
                     2 * mtab->size * channels * sizeof(*tctx->spectrum),
542
                     alloc_fail);
543
    FF_ALLOC_OR_GOTO(tctx->avctx, tctx->curr_frame,
544
                     2 * mtab->size * channels * sizeof(*tctx->curr_frame),
545
                     alloc_fail);
546
    FF_ALLOC_OR_GOTO(tctx->avctx, tctx->prev_frame,
547
                     2 * mtab->size * channels * sizeof(*tctx->prev_frame),
548
                     alloc_fail);
549
 
550
    for (i = 0; i < 3; i++) {
551
        int m       = 4 * mtab->size / mtab->fmode[i].sub;
552
        double freq = 2 * M_PI / m;
553
        FF_ALLOC_OR_GOTO(tctx->avctx, tctx->cos_tabs[i],
554
                         (m / 4) * sizeof(*tctx->cos_tabs[i]), alloc_fail);
555
 
556
        for (j = 0; j <= m / 8; j++)
557
            tctx->cos_tabs[i][j] = cos((2 * j + 1) * freq);
558
        for (j = 1; j < m / 8; j++)
559
            tctx->cos_tabs[i][m / 4 - j] = tctx->cos_tabs[i][j];
560
    }
561
 
562
    ff_init_ff_sine_windows(av_log2(size_m));
563
    ff_init_ff_sine_windows(av_log2(size_s / 2));
564
    ff_init_ff_sine_windows(av_log2(mtab->size));
565
 
566
    return 0;
567
 
568
alloc_fail:
569
    return AVERROR(ENOMEM);
570
}
571
 
572
/**
573
 * Interpret the data as if it were a num_blocks x line_len[0] matrix and for
574
 * each line do a cyclic permutation, i.e.
575
 * abcdefghijklm -> defghijklmabc
576
 * where the amount to be shifted is evaluated depending on the column.
577
 */
578
static void permutate_in_line(int16_t *tab, int num_vect, int num_blocks,
579
                              int block_size,
580
                              const uint8_t line_len[2], int length_div,
581
                              enum TwinVQFrameType ftype)
582
{
583
    int i, j;
584
 
585
    for (i = 0; i < line_len[0]; i++) {
586
        int shift;
587
 
588
        if (num_blocks == 1                                    ||
589
            (ftype == TWINVQ_FT_LONG && num_vect % num_blocks) ||
590
            (ftype != TWINVQ_FT_LONG && num_vect & 1)          ||
591
            i == line_len[1]) {
592
            shift = 0;
593
        } else if (ftype == TWINVQ_FT_LONG) {
594
            shift = i;
595
        } else
596
            shift = i * i;
597
 
598
        for (j = 0; j < num_vect && (j + num_vect * i < block_size * num_blocks); j++)
599
            tab[i * num_vect + j] = i * num_vect + (j + shift) % num_vect;
600
    }
601
}
602
 
603
/**
604
 * Interpret the input data as in the following table:
605
 *
606
 * @verbatim
607
 *
608
 * abcdefgh
609
 * ijklmnop
610
 * qrstuvw
611
 * x123456
612
 *
613
 * @endverbatim
614
 *
615
 * and transpose it, giving the output
616
 * aiqxbjr1cks2dlt3emu4fvn5gow6hp
617
 */
618
static void transpose_perm(int16_t *out, int16_t *in, int num_vect,
619
                           const uint8_t line_len[2], int length_div)
620
{
621
    int i, j;
622
    int cont = 0;
623
 
624
    for (i = 0; i < num_vect; i++)
625
        for (j = 0; j < line_len[i >= length_div]; j++)
626
            out[cont++] = in[j * num_vect + i];
627
}
628
 
629
static void linear_perm(int16_t *out, int16_t *in, int n_blocks, int size)
630
{
631
    int block_size = size / n_blocks;
632
    int i;
633
 
634
    for (i = 0; i < size; i++)
635
        out[i] = block_size * (in[i] % n_blocks) + in[i] / n_blocks;
636
}
637
 
638
static av_cold void construct_perm_table(TwinVQContext *tctx,
639
                                         enum TwinVQFrameType ftype)
640
{
641
    int block_size, size;
642
    const TwinVQModeTab *mtab = tctx->mtab;
643
    int16_t *tmp_perm = (int16_t *)tctx->tmp_buf;
644
 
645
    if (ftype == TWINVQ_FT_PPC) {
646
        size       = tctx->avctx->channels;
647
        block_size = mtab->ppc_shape_len;
648
    } else {
649
        size       = tctx->avctx->channels * mtab->fmode[ftype].sub;
650
        block_size = mtab->size / mtab->fmode[ftype].sub;
651
    }
652
 
653
    permutate_in_line(tmp_perm, tctx->n_div[ftype], size,
654
                      block_size, tctx->length[ftype],
655
                      tctx->length_change[ftype], ftype);
656
 
657
    transpose_perm(tctx->permut[ftype], tmp_perm, tctx->n_div[ftype],
658
                   tctx->length[ftype], tctx->length_change[ftype]);
659
 
660
    linear_perm(tctx->permut[ftype], tctx->permut[ftype], size,
661
                size * block_size);
662
}
663
 
664
static av_cold void init_bitstream_params(TwinVQContext *tctx)
665
{
666
    const TwinVQModeTab *mtab = tctx->mtab;
667
    int n_ch                  = tctx->avctx->channels;
668
    int total_fr_bits         = tctx->avctx->bit_rate * mtab->size /
669
                                tctx->avctx->sample_rate;
670
 
671
    int lsp_bits_per_block = n_ch * (mtab->lsp_bit0 + mtab->lsp_bit1 +
672
                                     mtab->lsp_split * mtab->lsp_bit2);
673
 
674
    int ppc_bits = n_ch * (mtab->pgain_bit + mtab->ppc_shape_bit +
675
                           mtab->ppc_period_bit);
676
 
677
    int bsize_no_main_cb[3], bse_bits[3], i;
678
    enum TwinVQFrameType frametype;
679
 
680
    for (i = 0; i < 3; i++)
681
        // +1 for history usage switch
682
        bse_bits[i] = n_ch *
683
                      (mtab->fmode[i].bark_n_coef *
684
                       mtab->fmode[i].bark_n_bit + 1);
685
 
686
    bsize_no_main_cb[2] = bse_bits[2] + lsp_bits_per_block + ppc_bits +
687
                          TWINVQ_WINDOW_TYPE_BITS + n_ch * TWINVQ_GAIN_BITS;
688
 
689
    for (i = 0; i < 2; i++)
690
        bsize_no_main_cb[i] =
691
            lsp_bits_per_block + n_ch * TWINVQ_GAIN_BITS +
692
            TWINVQ_WINDOW_TYPE_BITS +
693
            mtab->fmode[i].sub * (bse_bits[i] + n_ch * TWINVQ_SUB_GAIN_BITS);
694
 
695
    if (tctx->codec == TWINVQ_CODEC_METASOUND) {
696
        bsize_no_main_cb[1] += 2;
697
        bsize_no_main_cb[2] += 2;
698
    }
699
 
700
    // The remaining bits are all used for the main spectrum coefficients
701
    for (i = 0; i < 4; i++) {
702
        int bit_size, vect_size;
703
        int rounded_up, rounded_down, num_rounded_down, num_rounded_up;
704
        if (i == 3) {
705
            bit_size  = n_ch * mtab->ppc_shape_bit;
706
            vect_size = n_ch * mtab->ppc_shape_len;
707
        } else {
708
            bit_size  = total_fr_bits - bsize_no_main_cb[i];
709
            vect_size = n_ch * mtab->size;
710
        }
711
 
712
        tctx->n_div[i] = (bit_size + 13) / 14;
713
 
714
        rounded_up                     = (bit_size + tctx->n_div[i] - 1) /
715
                                         tctx->n_div[i];
716
        rounded_down                   = (bit_size) / tctx->n_div[i];
717
        num_rounded_down               = rounded_up * tctx->n_div[i] - bit_size;
718
        num_rounded_up                 = tctx->n_div[i] - num_rounded_down;
719
        tctx->bits_main_spec[0][i][0]  = (rounded_up + 1)   / 2;
720
        tctx->bits_main_spec[1][i][0]  =  rounded_up        / 2;
721
        tctx->bits_main_spec[0][i][1]  = (rounded_down + 1) / 2;
722
        tctx->bits_main_spec[1][i][1]  =  rounded_down      / 2;
723
        tctx->bits_main_spec_change[i] = num_rounded_up;
724
 
725
        rounded_up             = (vect_size + tctx->n_div[i] - 1) /
726
                                 tctx->n_div[i];
727
        rounded_down           = (vect_size) / tctx->n_div[i];
728
        num_rounded_down       = rounded_up * tctx->n_div[i] - vect_size;
729
        num_rounded_up         = tctx->n_div[i] - num_rounded_down;
730
        tctx->length[i][0]     = rounded_up;
731
        tctx->length[i][1]     = rounded_down;
732
        tctx->length_change[i] = num_rounded_up;
733
    }
734
 
735
    for (frametype = TWINVQ_FT_SHORT; frametype <= TWINVQ_FT_PPC; frametype++)
736
        construct_perm_table(tctx, frametype);
737
}
738
 
739
av_cold int ff_twinvq_decode_close(AVCodecContext *avctx)
740
{
741
    TwinVQContext *tctx = avctx->priv_data;
742
    int i;
743
 
744
    for (i = 0; i < 3; i++) {
745
        ff_mdct_end(&tctx->mdct_ctx[i]);
746
        av_free(tctx->cos_tabs[i]);
747
    }
748
 
749
    av_free(tctx->curr_frame);
750
    av_free(tctx->spectrum);
751
    av_free(tctx->prev_frame);
752
    av_free(tctx->tmp_buf);
753
 
754
    return 0;
755
}
756
 
757
av_cold int ff_twinvq_decode_init(AVCodecContext *avctx)
758
{
759
    int ret;
760
    TwinVQContext *tctx = avctx->priv_data;
761
 
762
    tctx->avctx       = avctx;
763
    avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
764
 
765
    avpriv_float_dsp_init(&tctx->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
766
    if ((ret = init_mdct_win(tctx))) {
767
        av_log(avctx, AV_LOG_ERROR, "Error initializing MDCT\n");
768
        ff_twinvq_decode_close(avctx);
769
        return ret;
770
    }
771
    init_bitstream_params(tctx);
772
 
773
    twinvq_memset_float(tctx->bark_hist[0][0], 0.1,
774
                        FF_ARRAY_ELEMS(tctx->bark_hist));
775
 
776
    return 0;
777
}