Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4349 Serge 1
/*
2
 * RV40 decoder
3
 * Copyright (c) 2007 Konstantin Shishkov
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
 
22
/**
23
 * @file
24
 * RV40 decoder
25
 */
26
 
27
#include "libavutil/imgutils.h"
28
 
29
#include "avcodec.h"
30
#include "mpegvideo.h"
31
#include "golomb.h"
32
 
33
#include "rv34.h"
34
#include "rv40vlc2.h"
35
#include "rv40data.h"
36
 
37
static VLC aic_top_vlc;
38
static VLC aic_mode1_vlc[AIC_MODE1_NUM], aic_mode2_vlc[AIC_MODE2_NUM];
39
static VLC ptype_vlc[NUM_PTYPE_VLCS], btype_vlc[NUM_BTYPE_VLCS];
40
 
41
static const int16_t mode2_offs[] = {
42
       0,  614, 1222, 1794, 2410,  3014,  3586,  4202,  4792, 5382, 5966, 6542,
43
    7138, 7716, 8292, 8864, 9444, 10030, 10642, 11212, 11814
44
};
45
 
46
/**
47
 * Initialize all tables.
48
 */
49
static av_cold void rv40_init_tables(void)
50
{
51
    int i;
52
    static VLC_TYPE aic_table[1 << AIC_TOP_BITS][2];
53
    static VLC_TYPE aic_mode1_table[AIC_MODE1_NUM << AIC_MODE1_BITS][2];
54
    static VLC_TYPE aic_mode2_table[11814][2];
55
    static VLC_TYPE ptype_table[NUM_PTYPE_VLCS << PTYPE_VLC_BITS][2];
56
    static VLC_TYPE btype_table[NUM_BTYPE_VLCS << BTYPE_VLC_BITS][2];
57
 
58
    aic_top_vlc.table = aic_table;
59
    aic_top_vlc.table_allocated = 1 << AIC_TOP_BITS;
60
    init_vlc(&aic_top_vlc, AIC_TOP_BITS, AIC_TOP_SIZE,
61
             rv40_aic_top_vlc_bits,  1, 1,
62
             rv40_aic_top_vlc_codes, 1, 1, INIT_VLC_USE_NEW_STATIC);
63
    for(i = 0; i < AIC_MODE1_NUM; i++){
64
        // Every tenth VLC table is empty
65
        if((i % 10) == 9) continue;
66
        aic_mode1_vlc[i].table = &aic_mode1_table[i << AIC_MODE1_BITS];
67
        aic_mode1_vlc[i].table_allocated = 1 << AIC_MODE1_BITS;
68
        init_vlc(&aic_mode1_vlc[i], AIC_MODE1_BITS, AIC_MODE1_SIZE,
69
                 aic_mode1_vlc_bits[i],  1, 1,
70
                 aic_mode1_vlc_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
71
    }
72
    for(i = 0; i < AIC_MODE2_NUM; i++){
73
        aic_mode2_vlc[i].table = &aic_mode2_table[mode2_offs[i]];
74
        aic_mode2_vlc[i].table_allocated = mode2_offs[i + 1] - mode2_offs[i];
75
        init_vlc(&aic_mode2_vlc[i], AIC_MODE2_BITS, AIC_MODE2_SIZE,
76
                 aic_mode2_vlc_bits[i],  1, 1,
77
                 aic_mode2_vlc_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
78
    }
79
    for(i = 0; i < NUM_PTYPE_VLCS; i++){
80
        ptype_vlc[i].table = &ptype_table[i << PTYPE_VLC_BITS];
81
        ptype_vlc[i].table_allocated = 1 << PTYPE_VLC_BITS;
82
        ff_init_vlc_sparse(&ptype_vlc[i], PTYPE_VLC_BITS, PTYPE_VLC_SIZE,
83
                            ptype_vlc_bits[i],  1, 1,
84
                            ptype_vlc_codes[i], 1, 1,
85
                            ptype_vlc_syms,     1, 1, INIT_VLC_USE_NEW_STATIC);
86
    }
87
    for(i = 0; i < NUM_BTYPE_VLCS; i++){
88
        btype_vlc[i].table = &btype_table[i << BTYPE_VLC_BITS];
89
        btype_vlc[i].table_allocated = 1 << BTYPE_VLC_BITS;
90
        ff_init_vlc_sparse(&btype_vlc[i], BTYPE_VLC_BITS, BTYPE_VLC_SIZE,
91
                            btype_vlc_bits[i],  1, 1,
92
                            btype_vlc_codes[i], 1, 1,
93
                            btype_vlc_syms,     1, 1, INIT_VLC_USE_NEW_STATIC);
94
    }
95
}
96
 
97
/**
98
 * Get stored dimension from bitstream.
99
 *
100
 * If the width/height is the standard one then it's coded as a 3-bit index.
101
 * Otherwise it is coded as escaped 8-bit portions.
102
 */
103
static int get_dimension(GetBitContext *gb, const int *dim)
104
{
105
    int t   = get_bits(gb, 3);
106
    int val = dim[t];
107
    if(val < 0)
108
        val = dim[get_bits1(gb) - val];
109
    if(!val){
110
        do{
111
            t = get_bits(gb, 8);
112
            val += t << 2;
113
        }while(t == 0xFF);
114
    }
115
    return val;
116
}
117
 
118
/**
119
 * Get encoded picture size - usually this is called from rv40_parse_slice_header.
120
 */
121
static void rv40_parse_picture_size(GetBitContext *gb, int *w, int *h)
122
{
123
    *w = get_dimension(gb, rv40_standard_widths);
124
    *h = get_dimension(gb, rv40_standard_heights);
125
}
126
 
127
static int rv40_parse_slice_header(RV34DecContext *r, GetBitContext *gb, SliceInfo *si)
128
{
129
    int mb_bits;
130
    int w = r->s.width, h = r->s.height;
131
    int mb_size;
132
 
133
    memset(si, 0, sizeof(SliceInfo));
134
    if(get_bits1(gb))
135
        return -1;
136
    si->type = get_bits(gb, 2);
137
    if(si->type == 1) si->type = 0;
138
    si->quant = get_bits(gb, 5);
139
    if(get_bits(gb, 2))
140
        return -1;
141
    si->vlc_set = get_bits(gb, 2);
142
    skip_bits1(gb);
143
    si->pts = get_bits(gb, 13);
144
    if(!si->type || !get_bits1(gb))
145
        rv40_parse_picture_size(gb, &w, &h);
146
    if(av_image_check_size(w, h, 0, r->s.avctx) < 0)
147
        return -1;
148
    si->width  = w;
149
    si->height = h;
150
    mb_size = ((w + 15) >> 4) * ((h + 15) >> 4);
151
    mb_bits = ff_rv34_get_start_offset(gb, mb_size);
152
    si->start = get_bits(gb, mb_bits);
153
 
154
    return 0;
155
}
156
 
157
/**
158
 * Decode 4x4 intra types array.
159
 */
160
static int rv40_decode_intra_types(RV34DecContext *r, GetBitContext *gb, int8_t *dst)
161
{
162
    MpegEncContext *s = &r->s;
163
    int i, j, k, v;
164
    int A, B, C;
165
    int pattern;
166
    int8_t *ptr;
167
 
168
    for(i = 0; i < 4; i++, dst += r->intra_types_stride){
169
        if(!i && s->first_slice_line){
170
            pattern = get_vlc2(gb, aic_top_vlc.table, AIC_TOP_BITS, 1);
171
            dst[0] = (pattern >> 2) & 2;
172
            dst[1] = (pattern >> 1) & 2;
173
            dst[2] =  pattern       & 2;
174
            dst[3] = (pattern << 1) & 2;
175
            continue;
176
        }
177
        ptr = dst;
178
        for(j = 0; j < 4; j++){
179
            /* Coefficients are read using VLC chosen by the prediction pattern
180
             * The first one (used for retrieving a pair of coefficients) is
181
             * constructed from the top, top right and left coefficients
182
             * The second one (used for retrieving only one coefficient) is
183
             * top + 10 * left.
184
             */
185
            A = ptr[-r->intra_types_stride + 1]; // it won't be used for the last coefficient in a row
186
            B = ptr[-r->intra_types_stride];
187
            C = ptr[-1];
188
            pattern = A + (B << 4) + (C << 8);
189
            for(k = 0; k < MODE2_PATTERNS_NUM; k++)
190
                if(pattern == rv40_aic_table_index[k])
191
                    break;
192
            if(j < 3 && k < MODE2_PATTERNS_NUM){ //pattern is found, decoding 2 coefficients
193
                v = get_vlc2(gb, aic_mode2_vlc[k].table, AIC_MODE2_BITS, 2);
194
                *ptr++ = v/9;
195
                *ptr++ = v%9;
196
                j++;
197
            }else{
198
                if(B != -1 && C != -1)
199
                    v = get_vlc2(gb, aic_mode1_vlc[B + C*10].table, AIC_MODE1_BITS, 1);
200
                else{ // tricky decoding
201
                    v = 0;
202
                    switch(C){
203
                    case -1: // code 0 -> 1, 1 -> 0
204
                        if(B < 2)
205
                            v = get_bits1(gb) ^ 1;
206
                        break;
207
                    case  0:
208
                    case  2: // code 0 -> 2, 1 -> 0
209
                        v = (get_bits1(gb) ^ 1) << 1;
210
                        break;
211
                    }
212
                }
213
                *ptr++ = v;
214
            }
215
        }
216
    }
217
    return 0;
218
}
219
 
220
/**
221
 * Decode macroblock information.
222
 */
223
static int rv40_decode_mb_info(RV34DecContext *r)
224
{
225
    MpegEncContext *s = &r->s;
226
    GetBitContext *gb = &s->gb;
227
    int q, i;
228
    int prev_type = 0;
229
    int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
230
 
231
    if(!r->s.mb_skip_run) {
232
        r->s.mb_skip_run = svq3_get_ue_golomb(gb) + 1;
233
        if(r->s.mb_skip_run > (unsigned)s->mb_num)
234
            return -1;
235
    }
236
 
237
    if(--r->s.mb_skip_run)
238
         return RV34_MB_SKIP;
239
 
240
    if(r->avail_cache[6-4]){
241
        int blocks[RV34_MB_TYPES] = {0};
242
        int count = 0;
243
        if(r->avail_cache[6-1])
244
            blocks[r->mb_type[mb_pos - 1]]++;
245
        blocks[r->mb_type[mb_pos - s->mb_stride]]++;
246
        if(r->avail_cache[6-2])
247
            blocks[r->mb_type[mb_pos - s->mb_stride + 1]]++;
248
        if(r->avail_cache[6-5])
249
            blocks[r->mb_type[mb_pos - s->mb_stride - 1]]++;
250
        for(i = 0; i < RV34_MB_TYPES; i++){
251
            if(blocks[i] > count){
252
                count = blocks[i];
253
                prev_type = i;
254
                if(count>1)
255
                    break;
256
            }
257
        }
258
    } else if (r->avail_cache[6-1])
259
        prev_type = r->mb_type[mb_pos - 1];
260
 
261
    if(s->pict_type == AV_PICTURE_TYPE_P){
262
        prev_type = block_num_to_ptype_vlc_num[prev_type];
263
        q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
264
        if(q < PBTYPE_ESCAPE)
265
            return q;
266
        q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
267
        av_log(s->avctx, AV_LOG_ERROR, "Dquant for P-frame\n");
268
    }else{
269
        prev_type = block_num_to_btype_vlc_num[prev_type];
270
        q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
271
        if(q < PBTYPE_ESCAPE)
272
            return q;
273
        q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
274
        av_log(s->avctx, AV_LOG_ERROR, "Dquant for B-frame\n");
275
    }
276
    return 0;
277
}
278
 
279
enum RV40BlockPos{
280
    POS_CUR,
281
    POS_TOP,
282
    POS_LEFT,
283
    POS_BOTTOM,
284
};
285
 
286
#define MASK_CUR          0x0001
287
#define MASK_RIGHT        0x0008
288
#define MASK_BOTTOM       0x0010
289
#define MASK_TOP          0x1000
290
#define MASK_Y_TOP_ROW    0x000F
291
#define MASK_Y_LAST_ROW   0xF000
292
#define MASK_Y_LEFT_COL   0x1111
293
#define MASK_Y_RIGHT_COL  0x8888
294
#define MASK_C_TOP_ROW    0x0003
295
#define MASK_C_LAST_ROW   0x000C
296
#define MASK_C_LEFT_COL   0x0005
297
#define MASK_C_RIGHT_COL  0x000A
298
 
299
static const int neighbour_offs_x[4] = { 0,  0, -1, 0 };
300
static const int neighbour_offs_y[4] = { 0, -1,  0, 1 };
301
 
302
static void rv40_adaptive_loop_filter(RV34DSPContext *rdsp,
303
                                      uint8_t *src, int stride, int dmode,
304
                                      int lim_q1, int lim_p1,
305
                                      int alpha, int beta, int beta2,
306
                                      int chroma, int edge, int dir)
307
{
308
    int filter_p1, filter_q1;
309
    int strong;
310
    int lims;
311
 
312
    strong = rdsp->rv40_loop_filter_strength[dir](src, stride, beta, beta2,
313
                                                  edge, &filter_p1, &filter_q1);
314
 
315
    lims = filter_p1 + filter_q1 + ((lim_q1 + lim_p1) >> 1) + 1;
316
 
317
    if (strong) {
318
        rdsp->rv40_strong_loop_filter[dir](src, stride, alpha,
319
                                           lims, dmode, chroma);
320
    } else if (filter_p1 & filter_q1) {
321
        rdsp->rv40_weak_loop_filter[dir](src, stride, 1, 1, alpha, beta,
322
                                         lims, lim_q1, lim_p1);
323
    } else if (filter_p1 | filter_q1) {
324
        rdsp->rv40_weak_loop_filter[dir](src, stride, filter_p1, filter_q1,
325
                                         alpha, beta, lims >> 1, lim_q1 >> 1,
326
                                         lim_p1 >> 1);
327
    }
328
}
329
 
330
/**
331
 * RV40 loop filtering function
332
 */
333
static void rv40_loop_filter(RV34DecContext *r, int row)
334
{
335
    MpegEncContext *s = &r->s;
336
    int mb_pos, mb_x;
337
    int i, j, k;
338
    uint8_t *Y, *C;
339
    int alpha, beta, betaY, betaC;
340
    int q;
341
    int mbtype[4];   ///< current macroblock and its neighbours types
342
    /**
343
     * flags indicating that macroblock can be filtered with strong filter
344
     * it is set only for intra coded MB and MB with DCs coded separately
345
     */
346
    int mb_strong[4];
347
    int clip[4];     ///< MB filter clipping value calculated from filtering strength
348
    /**
349
     * coded block patterns for luma part of current macroblock and its neighbours
350
     * Format:
351
     * LSB corresponds to the top left block,
352
     * each nibble represents one row of subblocks.
353
     */
354
    int cbp[4];
355
    /**
356
     * coded block patterns for chroma part of current macroblock and its neighbours
357
     * Format is the same as for luma with two subblocks in a row.
358
     */
359
    int uvcbp[4][2];
360
    /**
361
     * This mask represents the pattern of luma subblocks that should be filtered
362
     * in addition to the coded ones because they lie at the edge of
363
     * 8x8 block with different enough motion vectors
364
     */
365
    unsigned mvmasks[4];
366
 
367
    mb_pos = row * s->mb_stride;
368
    for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
369
        int mbtype = s->current_picture_ptr->mb_type[mb_pos];
370
        if(IS_INTRA(mbtype) || IS_SEPARATE_DC(mbtype))
371
            r->cbp_luma  [mb_pos] = r->deblock_coefs[mb_pos] = 0xFFFF;
372
        if(IS_INTRA(mbtype))
373
            r->cbp_chroma[mb_pos] = 0xFF;
374
    }
375
    mb_pos = row * s->mb_stride;
376
    for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
377
        int y_h_deblock, y_v_deblock;
378
        int c_v_deblock[2], c_h_deblock[2];
379
        int clip_left;
380
        int avail[4];
381
        unsigned y_to_deblock;
382
        int c_to_deblock[2];
383
 
384
        q = s->current_picture_ptr->qscale_table[mb_pos];
385
        alpha = rv40_alpha_tab[q];
386
        beta  = rv40_beta_tab [q];
387
        betaY = betaC = beta * 3;
388
        if(s->width * s->height <= 176*144)
389
            betaY += beta;
390
 
391
        avail[0] = 1;
392
        avail[1] = row;
393
        avail[2] = mb_x;
394
        avail[3] = row < s->mb_height - 1;
395
        for(i = 0; i < 4; i++){
396
            if(avail[i]){
397
                int pos = mb_pos + neighbour_offs_x[i] + neighbour_offs_y[i]*s->mb_stride;
398
                mvmasks[i] = r->deblock_coefs[pos];
399
                mbtype [i] = s->current_picture_ptr->mb_type[pos];
400
                cbp    [i] = r->cbp_luma[pos];
401
                uvcbp[i][0] = r->cbp_chroma[pos] & 0xF;
402
                uvcbp[i][1] = r->cbp_chroma[pos] >> 4;
403
            }else{
404
                mvmasks[i] = 0;
405
                mbtype [i] = mbtype[0];
406
                cbp    [i] = 0;
407
                uvcbp[i][0] = uvcbp[i][1] = 0;
408
            }
409
            mb_strong[i] = IS_INTRA(mbtype[i]) || IS_SEPARATE_DC(mbtype[i]);
410
            clip[i] = rv40_filter_clip_tbl[mb_strong[i] + 1][q];
411
        }
412
        y_to_deblock =  mvmasks[POS_CUR]
413
                     | (mvmasks[POS_BOTTOM] << 16);
414
        /* This pattern contains bits signalling that horizontal edges of
415
         * the current block can be filtered.
416
         * That happens when either of adjacent subblocks is coded or lies on
417
         * the edge of 8x8 blocks with motion vectors differing by more than
418
         * 3/4 pel in any component (any edge orientation for some reason).
419
         */
420
        y_h_deblock =   y_to_deblock
421
                    | ((cbp[POS_CUR]                           <<  4) & ~MASK_Y_TOP_ROW)
422
                    | ((cbp[POS_TOP]        & MASK_Y_LAST_ROW) >> 12);
423
        /* This pattern contains bits signalling that vertical edges of
424
         * the current block can be filtered.
425
         * That happens when either of adjacent subblocks is coded or lies on
426
         * the edge of 8x8 blocks with motion vectors differing by more than
427
         * 3/4 pel in any component (any edge orientation for some reason).
428
         */
429
        y_v_deblock =   y_to_deblock
430
                    | ((cbp[POS_CUR]                      << 1) & ~MASK_Y_LEFT_COL)
431
                    | ((cbp[POS_LEFT] & MASK_Y_RIGHT_COL) >> 3);
432
        if(!mb_x)
433
            y_v_deblock &= ~MASK_Y_LEFT_COL;
434
        if(!row)
435
            y_h_deblock &= ~MASK_Y_TOP_ROW;
436
        if(row == s->mb_height - 1 || (mb_strong[POS_CUR] | mb_strong[POS_BOTTOM]))
437
            y_h_deblock &= ~(MASK_Y_TOP_ROW << 16);
438
        /* Calculating chroma patterns is similar and easier since there is
439
         * no motion vector pattern for them.
440
         */
441
        for(i = 0; i < 2; i++){
442
            c_to_deblock[i] = (uvcbp[POS_BOTTOM][i] << 4) | uvcbp[POS_CUR][i];
443
            c_v_deblock[i] =   c_to_deblock[i]
444
                           | ((uvcbp[POS_CUR] [i]                       << 1) & ~MASK_C_LEFT_COL)
445
                           | ((uvcbp[POS_LEFT][i]   & MASK_C_RIGHT_COL) >> 1);
446
            c_h_deblock[i] =   c_to_deblock[i]
447
                           | ((uvcbp[POS_TOP][i]    & MASK_C_LAST_ROW)  >> 2)
448
                           |  (uvcbp[POS_CUR][i]                        << 2);
449
            if(!mb_x)
450
                c_v_deblock[i] &= ~MASK_C_LEFT_COL;
451
            if(!row)
452
                c_h_deblock[i] &= ~MASK_C_TOP_ROW;
453
            if(row == s->mb_height - 1 || (mb_strong[POS_CUR] | mb_strong[POS_BOTTOM]))
454
                c_h_deblock[i] &= ~(MASK_C_TOP_ROW << 4);
455
        }
456
 
457
        for(j = 0; j < 16; j += 4){
458
            Y = s->current_picture_ptr->f.data[0] + mb_x*16 + (row*16 + j) * s->linesize;
459
            for(i = 0; i < 4; i++, Y += 4){
460
                int ij = i + j;
461
                int clip_cur = y_to_deblock & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
462
                int dither = j ? ij : i*4;
463
 
464
                // if bottom block is coded then we can filter its top edge
465
                // (or bottom edge of this block, which is the same)
466
                if(y_h_deblock & (MASK_BOTTOM << ij)){
467
                    rv40_adaptive_loop_filter(&r->rdsp, Y+4*s->linesize,
468
                                              s->linesize, dither,
469
                                              y_to_deblock & (MASK_BOTTOM << ij) ? clip[POS_CUR] : 0,
470
                                              clip_cur, alpha, beta, betaY,
471
                                              0, 0, 0);
472
                }
473
                // filter left block edge in ordinary mode (with low filtering strength)
474
                if(y_v_deblock & (MASK_CUR << ij) && (i || !(mb_strong[POS_CUR] | mb_strong[POS_LEFT]))){
475
                    if(!i)
476
                        clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
477
                    else
478
                        clip_left = y_to_deblock & (MASK_CUR << (ij-1)) ? clip[POS_CUR] : 0;
479
                    rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither,
480
                                              clip_cur,
481
                                              clip_left,
482
                                              alpha, beta, betaY, 0, 0, 1);
483
                }
484
                // filter top edge of the current macroblock when filtering strength is high
485
                if(!j && y_h_deblock & (MASK_CUR << i) && (mb_strong[POS_CUR] | mb_strong[POS_TOP])){
486
                    rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither,
487
                                       clip_cur,
488
                                       mvmasks[POS_TOP] & (MASK_TOP << i) ? clip[POS_TOP] : 0,
489
                                       alpha, beta, betaY, 0, 1, 0);
490
                }
491
                // filter left block edge in edge mode (with high filtering strength)
492
                if(y_v_deblock & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] | mb_strong[POS_LEFT])){
493
                    clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
494
                    rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither,
495
                                       clip_cur,
496
                                       clip_left,
497
                                       alpha, beta, betaY, 0, 1, 1);
498
                }
499
            }
500
        }
501
        for(k = 0; k < 2; k++){
502
            for(j = 0; j < 2; j++){
503
                C = s->current_picture_ptr->f.data[k + 1] + mb_x*8 + (row*8 + j*4) * s->uvlinesize;
504
                for(i = 0; i < 2; i++, C += 4){
505
                    int ij = i + j*2;
506
                    int clip_cur = c_to_deblock[k] & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
507
                    if(c_h_deblock[k] & (MASK_CUR << (ij+2))){
508
                        int clip_bot = c_to_deblock[k] & (MASK_CUR << (ij+2)) ? clip[POS_CUR] : 0;
509
                        rv40_adaptive_loop_filter(&r->rdsp, C+4*s->uvlinesize, s->uvlinesize, i*8,
510
                                           clip_bot,
511
                                           clip_cur,
512
                                           alpha, beta, betaC, 1, 0, 0);
513
                    }
514
                    if((c_v_deblock[k] & (MASK_CUR << ij)) && (i || !(mb_strong[POS_CUR] | mb_strong[POS_LEFT]))){
515
                        if(!i)
516
                            clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
517
                        else
518
                            clip_left = c_to_deblock[k]    & (MASK_CUR << (ij-1))  ? clip[POS_CUR]  : 0;
519
                        rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, j*8,
520
                                           clip_cur,
521
                                           clip_left,
522
                                           alpha, beta, betaC, 1, 0, 1);
523
                    }
524
                    if(!j && c_h_deblock[k] & (MASK_CUR << ij) && (mb_strong[POS_CUR] | mb_strong[POS_TOP])){
525
                        int clip_top = uvcbp[POS_TOP][k] & (MASK_CUR << (ij+2)) ? clip[POS_TOP] : 0;
526
                        rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, i*8,
527
                                           clip_cur,
528
                                           clip_top,
529
                                           alpha, beta, betaC, 1, 1, 0);
530
                    }
531
                    if(c_v_deblock[k] & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] | mb_strong[POS_LEFT])){
532
                        clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
533
                        rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, j*8,
534
                                           clip_cur,
535
                                           clip_left,
536
                                           alpha, beta, betaC, 1, 1, 1);
537
                    }
538
                }
539
            }
540
        }
541
    }
542
}
543
 
544
/**
545
 * Initialize decoder.
546
 */
547
static av_cold int rv40_decode_init(AVCodecContext *avctx)
548
{
549
    RV34DecContext *r = avctx->priv_data;
550
    int ret;
551
 
552
    r->rv30 = 0;
553
    if ((ret = ff_rv34_decode_init(avctx)) < 0)
554
        return ret;
555
    if(!aic_top_vlc.bits)
556
        rv40_init_tables();
557
    r->parse_slice_header = rv40_parse_slice_header;
558
    r->decode_intra_types = rv40_decode_intra_types;
559
    r->decode_mb_info     = rv40_decode_mb_info;
560
    r->loop_filter        = rv40_loop_filter;
561
    r->luma_dc_quant_i = rv40_luma_dc_quant[0];
562
    r->luma_dc_quant_p = rv40_luma_dc_quant[1];
563
    return 0;
564
}
565
 
566
AVCodec ff_rv40_decoder = {
567
    .name                  = "rv40",
568
    .long_name             = NULL_IF_CONFIG_SMALL("RealVideo 4.0"),
569
    .type                  = AVMEDIA_TYPE_VIDEO,
570
    .id                    = AV_CODEC_ID_RV40,
571
    .priv_data_size        = sizeof(RV34DecContext),
572
    .init                  = rv40_decode_init,
573
    .close                 = ff_rv34_decode_end,
574
    .decode                = ff_rv34_decode_frame,
575
    .capabilities          = CODEC_CAP_DR1 | CODEC_CAP_DELAY |
576
                             CODEC_CAP_FRAME_THREADS,
577
    .flush                 = ff_mpeg_flush,
578
    .pix_fmts              = ff_pixfmt_list_420,
579
    .init_thread_copy      = ONLY_IF_THREADS_ENABLED(ff_rv34_decode_init_thread_copy),
580
    .update_thread_context = ONLY_IF_THREADS_ENABLED(ff_rv34_decode_update_thread_context),
581
};