Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4349 Serge 1
/*
2
 * Copyright (c) 2010-2011 Maxim Poliakovski
3
 * Copyright (c) 2010-2011 Elvis Presley
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
 
22
/**
23
 * @file
24
 * Known FOURCCs: 'apch' (HQ), 'apcn' (SD), 'apcs' (LT), 'acpo' (Proxy), 'ap4h' (4444)
25
 */
26
 
27
//#define DEBUG
28
 
29
#define LONG_BITSTREAM_READER
30
 
31
#include "avcodec.h"
32
#include "get_bits.h"
33
#include "internal.h"
34
#include "simple_idct.h"
35
#include "proresdec.h"
36
#include "proresdata.h"
37
 
38
static void permute(uint8_t *dst, const uint8_t *src, const uint8_t permutation[64])
39
{
40
    int i;
41
    for (i = 0; i < 64; i++)
42
        dst[i] = permutation[src[i]];
43
}
44
 
45
static av_cold int decode_init(AVCodecContext *avctx)
46
{
47
    ProresContext *ctx = avctx->priv_data;
48
    uint8_t idct_permutation[64];
49
 
50
    avctx->bits_per_raw_sample = 10;
51
 
52
    ff_dsputil_init(&ctx->dsp, avctx);
53
    ff_proresdsp_init(&ctx->prodsp, avctx);
54
 
55
    ff_init_scantable_permutation(idct_permutation,
56
                                  ctx->prodsp.idct_permutation_type);
57
 
58
    permute(ctx->progressive_scan, ff_prores_progressive_scan, idct_permutation);
59
    permute(ctx->interlaced_scan, ff_prores_interlaced_scan, idct_permutation);
60
 
61
    return 0;
62
}
63
 
64
static int decode_frame_header(ProresContext *ctx, const uint8_t *buf,
65
                               const int data_size, AVCodecContext *avctx)
66
{
67
    int hdr_size, width, height, flags;
68
    int version;
69
    const uint8_t *ptr;
70
 
71
    hdr_size = AV_RB16(buf);
72
    av_dlog(avctx, "header size %d\n", hdr_size);
73
    if (hdr_size > data_size) {
74
        av_log(avctx, AV_LOG_ERROR, "error, wrong header size\n");
75
        return AVERROR_INVALIDDATA;
76
    }
77
 
78
    version = AV_RB16(buf + 2);
79
    av_dlog(avctx, "%.4s version %d\n", buf+4, version);
80
    if (version > 1) {
81
        av_log(avctx, AV_LOG_ERROR, "unsupported version: %d\n", version);
82
        return AVERROR_PATCHWELCOME;
83
    }
84
 
85
    width  = AV_RB16(buf + 8);
86
    height = AV_RB16(buf + 10);
87
    if (width != avctx->width || height != avctx->height) {
88
        av_log(avctx, AV_LOG_ERROR, "picture resolution change: %dx%d -> %dx%d\n",
89
               avctx->width, avctx->height, width, height);
90
        return AVERROR_PATCHWELCOME;
91
    }
92
 
93
    ctx->frame_type = (buf[12] >> 2) & 3;
94
    ctx->alpha_info = buf[17] & 0xf;
95
 
96
    if (ctx->alpha_info > 2) {
97
        av_log(avctx, AV_LOG_ERROR, "Invalid alpha mode %d\n", ctx->alpha_info);
98
        return AVERROR_INVALIDDATA;
99
    }
100
    if (avctx->skip_alpha) ctx->alpha_info = 0;
101
 
102
    av_dlog(avctx, "frame type %d\n", ctx->frame_type);
103
 
104
    if (ctx->frame_type == 0) {
105
        ctx->scan = ctx->progressive_scan; // permuted
106
    } else {
107
        ctx->scan = ctx->interlaced_scan; // permuted
108
        ctx->frame->interlaced_frame = 1;
109
        ctx->frame->top_field_first = ctx->frame_type == 1;
110
    }
111
 
112
    if (ctx->alpha_info) {
113
        avctx->pix_fmt = (buf[12] & 0xC0) == 0xC0 ? AV_PIX_FMT_YUVA444P10 : AV_PIX_FMT_YUVA422P10;
114
    } else {
115
        avctx->pix_fmt = (buf[12] & 0xC0) == 0xC0 ? AV_PIX_FMT_YUV444P10 : AV_PIX_FMT_YUV422P10;
116
    }
117
 
118
    ptr   = buf + 20;
119
    flags = buf[19];
120
    av_dlog(avctx, "flags %x\n", flags);
121
 
122
    if (flags & 2) {
123
        if(buf + data_size - ptr < 64) {
124
            av_log(avctx, AV_LOG_ERROR, "Header truncated\n");
125
            return AVERROR_INVALIDDATA;
126
        }
127
        permute(ctx->qmat_luma, ctx->prodsp.idct_permutation, ptr);
128
        ptr += 64;
129
    } else {
130
        memset(ctx->qmat_luma, 4, 64);
131
    }
132
 
133
    if (flags & 1) {
134
        if(buf + data_size - ptr < 64) {
135
            av_log(avctx, AV_LOG_ERROR, "Header truncated\n");
136
            return AVERROR_INVALIDDATA;
137
        }
138
        permute(ctx->qmat_chroma, ctx->prodsp.idct_permutation, ptr);
139
    } else {
140
        memset(ctx->qmat_chroma, 4, 64);
141
    }
142
 
143
    return hdr_size;
144
}
145
 
146
static int decode_picture_header(AVCodecContext *avctx, const uint8_t *buf, const int buf_size)
147
{
148
    ProresContext *ctx = avctx->priv_data;
149
    int i, hdr_size, slice_count;
150
    unsigned pic_data_size;
151
    int log2_slice_mb_width, log2_slice_mb_height;
152
    int slice_mb_count, mb_x, mb_y;
153
    const uint8_t *data_ptr, *index_ptr;
154
 
155
    hdr_size = buf[0] >> 3;
156
    if (hdr_size < 8 || hdr_size > buf_size) {
157
        av_log(avctx, AV_LOG_ERROR, "error, wrong picture header size\n");
158
        return AVERROR_INVALIDDATA;
159
    }
160
 
161
    pic_data_size = AV_RB32(buf + 1);
162
    if (pic_data_size > buf_size) {
163
        av_log(avctx, AV_LOG_ERROR, "error, wrong picture data size\n");
164
        return AVERROR_INVALIDDATA;
165
    }
166
 
167
    log2_slice_mb_width  = buf[7] >> 4;
168
    log2_slice_mb_height = buf[7] & 0xF;
169
    if (log2_slice_mb_width > 3 || log2_slice_mb_height) {
170
        av_log(avctx, AV_LOG_ERROR, "unsupported slice resolution: %dx%d\n",
171
               1 << log2_slice_mb_width, 1 << log2_slice_mb_height);
172
        return AVERROR_INVALIDDATA;
173
    }
174
 
175
    ctx->mb_width  = (avctx->width  + 15) >> 4;
176
    if (ctx->frame_type)
177
        ctx->mb_height = (avctx->height + 31) >> 5;
178
    else
179
        ctx->mb_height = (avctx->height + 15) >> 4;
180
 
181
    slice_count = AV_RB16(buf + 5);
182
 
183
    if (ctx->slice_count != slice_count || !ctx->slices) {
184
        av_freep(&ctx->slices);
185
        ctx->slices = av_mallocz(slice_count * sizeof(*ctx->slices));
186
        if (!ctx->slices)
187
            return AVERROR(ENOMEM);
188
        ctx->slice_count = slice_count;
189
    }
190
 
191
    if (!slice_count)
192
        return AVERROR(EINVAL);
193
 
194
    if (hdr_size + slice_count*2 > buf_size) {
195
        av_log(avctx, AV_LOG_ERROR, "error, wrong slice count\n");
196
        return AVERROR_INVALIDDATA;
197
    }
198
 
199
    // parse slice information
200
    index_ptr = buf + hdr_size;
201
    data_ptr  = index_ptr + slice_count*2;
202
 
203
    slice_mb_count = 1 << log2_slice_mb_width;
204
    mb_x = 0;
205
    mb_y = 0;
206
 
207
    for (i = 0; i < slice_count; i++) {
208
        SliceContext *slice = &ctx->slices[i];
209
 
210
        slice->data = data_ptr;
211
        data_ptr += AV_RB16(index_ptr + i*2);
212
 
213
        while (ctx->mb_width - mb_x < slice_mb_count)
214
            slice_mb_count >>= 1;
215
 
216
        slice->mb_x = mb_x;
217
        slice->mb_y = mb_y;
218
        slice->mb_count = slice_mb_count;
219
        slice->data_size = data_ptr - slice->data;
220
 
221
        if (slice->data_size < 6) {
222
            av_log(avctx, AV_LOG_ERROR, "error, wrong slice data size\n");
223
            return AVERROR_INVALIDDATA;
224
        }
225
 
226
        mb_x += slice_mb_count;
227
        if (mb_x == ctx->mb_width) {
228
            slice_mb_count = 1 << log2_slice_mb_width;
229
            mb_x = 0;
230
            mb_y++;
231
        }
232
        if (data_ptr > buf + buf_size) {
233
            av_log(avctx, AV_LOG_ERROR, "error, slice out of bounds\n");
234
            return AVERROR_INVALIDDATA;
235
        }
236
    }
237
 
238
    if (mb_x || mb_y != ctx->mb_height) {
239
        av_log(avctx, AV_LOG_ERROR, "error wrong mb count y %d h %d\n",
240
               mb_y, ctx->mb_height);
241
        return AVERROR_INVALIDDATA;
242
    }
243
 
244
    return pic_data_size;
245
}
246
 
247
#define DECODE_CODEWORD(val, codebook)                                  \
248
    do {                                                                \
249
        unsigned int rice_order, exp_order, switch_bits;                \
250
        unsigned int q, buf, bits;                                      \
251
                                                                        \
252
        UPDATE_CACHE(re, gb);                                           \
253
        buf = GET_CACHE(re, gb);                                        \
254
                                                                        \
255
        /* number of bits to switch between rice and exp golomb */      \
256
        switch_bits =  codebook & 3;                                    \
257
        rice_order  =  codebook >> 5;                                   \
258
        exp_order   = (codebook >> 2) & 7;                              \
259
                                                                        \
260
        q = 31 - av_log2(buf);                                          \
261
                                                                        \
262
        if (q > switch_bits) { /* exp golomb */                         \
263
            bits = exp_order - switch_bits + (q<<1);                    \
264
            val = SHOW_UBITS(re, gb, bits) - (1 << exp_order) +         \
265
                ((switch_bits + 1) << rice_order);                      \
266
            SKIP_BITS(re, gb, bits);                                    \
267
        } else if (rice_order) {                                        \
268
            SKIP_BITS(re, gb, q+1);                                     \
269
            val = (q << rice_order) + SHOW_UBITS(re, gb, rice_order);   \
270
            SKIP_BITS(re, gb, rice_order);                              \
271
        } else {                                                        \
272
            val = q;                                                    \
273
            SKIP_BITS(re, gb, q+1);                                     \
274
        }                                                               \
275
    } while (0)
276
 
277
#define TOSIGNED(x) (((x) >> 1) ^ (-((x) & 1)))
278
 
279
#define FIRST_DC_CB 0xB8
280
 
281
static const uint8_t dc_codebook[7] = { 0x04, 0x28, 0x28, 0x4D, 0x4D, 0x70, 0x70};
282
 
283
static av_always_inline void decode_dc_coeffs(GetBitContext *gb, int16_t *out,
284
                                              int blocks_per_slice)
285
{
286
    int16_t prev_dc;
287
    int code, i, sign;
288
 
289
    OPEN_READER(re, gb);
290
 
291
    DECODE_CODEWORD(code, FIRST_DC_CB);
292
    prev_dc = TOSIGNED(code);
293
    out[0] = prev_dc;
294
 
295
    out += 64; // dc coeff for the next block
296
 
297
    code = 5;
298
    sign = 0;
299
    for (i = 1; i < blocks_per_slice; i++, out += 64) {
300
        DECODE_CODEWORD(code, dc_codebook[FFMIN(code, 6U)]);
301
        if(code) sign ^= -(code & 1);
302
        else     sign  = 0;
303
        prev_dc += (((code + 1) >> 1) ^ sign) - sign;
304
        out[0] = prev_dc;
305
    }
306
    CLOSE_READER(re, gb);
307
}
308
 
309
// adaptive codebook switching lut according to previous run/level values
310
static const uint8_t run_to_cb[16] = { 0x06, 0x06, 0x05, 0x05, 0x04, 0x29, 0x29, 0x29, 0x29, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x4C };
311
static const uint8_t lev_to_cb[10] = { 0x04, 0x0A, 0x05, 0x06, 0x04, 0x28, 0x28, 0x28, 0x28, 0x4C };
312
 
313
static av_always_inline int decode_ac_coeffs(AVCodecContext *avctx, GetBitContext *gb,
314
                                             int16_t *out, int blocks_per_slice)
315
{
316
    ProresContext *ctx = avctx->priv_data;
317
    int block_mask, sign;
318
    unsigned pos, run, level;
319
    int max_coeffs, i, bits_left;
320
    int log2_block_count = av_log2(blocks_per_slice);
321
 
322
    OPEN_READER(re, gb);
323
    UPDATE_CACHE(re, gb);                                           \
324
    run   = 4;
325
    level = 2;
326
 
327
    max_coeffs = 64 << log2_block_count;
328
    block_mask = blocks_per_slice - 1;
329
 
330
    for (pos = block_mask;;) {
331
        bits_left = gb->size_in_bits - re_index;
332
        if (!bits_left || (bits_left < 32 && !SHOW_UBITS(re, gb, bits_left)))
333
            break;
334
 
335
        DECODE_CODEWORD(run, run_to_cb[FFMIN(run,  15)]);
336
        pos += run + 1;
337
        if (pos >= max_coeffs) {
338
            av_log(avctx, AV_LOG_ERROR, "ac tex damaged %d, %d\n", pos, max_coeffs);
339
            return AVERROR_INVALIDDATA;
340
        }
341
 
342
        DECODE_CODEWORD(level, lev_to_cb[FFMIN(level, 9)]);
343
        level += 1;
344
 
345
        i = pos >> log2_block_count;
346
 
347
        sign = SHOW_SBITS(re, gb, 1);
348
        SKIP_BITS(re, gb, 1);
349
        out[((pos & block_mask) << 6) + ctx->scan[i]] = ((level ^ sign) - sign);
350
    }
351
 
352
    CLOSE_READER(re, gb);
353
    return 0;
354
}
355
 
356
static int decode_slice_luma(AVCodecContext *avctx, SliceContext *slice,
357
                             uint16_t *dst, int dst_stride,
358
                             const uint8_t *buf, unsigned buf_size,
359
                             const int16_t *qmat)
360
{
361
    ProresContext *ctx = avctx->priv_data;
362
    LOCAL_ALIGNED_16(int16_t, blocks, [8*4*64]);
363
    int16_t *block;
364
    GetBitContext gb;
365
    int i, blocks_per_slice = slice->mb_count<<2;
366
    int ret;
367
 
368
    for (i = 0; i < blocks_per_slice; i++)
369
        ctx->dsp.clear_block(blocks+(i<<6));
370
 
371
    init_get_bits(&gb, buf, buf_size << 3);
372
 
373
    decode_dc_coeffs(&gb, blocks, blocks_per_slice);
374
    if ((ret = decode_ac_coeffs(avctx, &gb, blocks, blocks_per_slice)) < 0)
375
        return ret;
376
 
377
    block = blocks;
378
    for (i = 0; i < slice->mb_count; i++) {
379
        ctx->prodsp.idct_put(dst, dst_stride, block+(0<<6), qmat);
380
        ctx->prodsp.idct_put(dst             +8, dst_stride, block+(1<<6), qmat);
381
        ctx->prodsp.idct_put(dst+4*dst_stride  , dst_stride, block+(2<<6), qmat);
382
        ctx->prodsp.idct_put(dst+4*dst_stride+8, dst_stride, block+(3<<6), qmat);
383
        block += 4*64;
384
        dst += 16;
385
    }
386
    return 0;
387
}
388
 
389
static int decode_slice_chroma(AVCodecContext *avctx, SliceContext *slice,
390
                               uint16_t *dst, int dst_stride,
391
                               const uint8_t *buf, unsigned buf_size,
392
                               const int16_t *qmat, int log2_blocks_per_mb)
393
{
394
    ProresContext *ctx = avctx->priv_data;
395
    LOCAL_ALIGNED_16(int16_t, blocks, [8*4*64]);
396
    int16_t *block;
397
    GetBitContext gb;
398
    int i, j, blocks_per_slice = slice->mb_count << log2_blocks_per_mb;
399
    int ret;
400
 
401
    for (i = 0; i < blocks_per_slice; i++)
402
        ctx->dsp.clear_block(blocks+(i<<6));
403
 
404
    init_get_bits(&gb, buf, buf_size << 3);
405
 
406
    decode_dc_coeffs(&gb, blocks, blocks_per_slice);
407
    if ((ret = decode_ac_coeffs(avctx, &gb, blocks, blocks_per_slice)) < 0)
408
        return ret;
409
 
410
    block = blocks;
411
    for (i = 0; i < slice->mb_count; i++) {
412
        for (j = 0; j < log2_blocks_per_mb; j++) {
413
            ctx->prodsp.idct_put(dst,              dst_stride, block+(0<<6), qmat);
414
            ctx->prodsp.idct_put(dst+4*dst_stride, dst_stride, block+(1<<6), qmat);
415
            block += 2*64;
416
            dst += 8;
417
        }
418
    }
419
    return 0;
420
}
421
 
422
static void unpack_alpha(GetBitContext *gb, uint16_t *dst, int num_coeffs,
423
                         const int num_bits)
424
{
425
    const int mask = (1 << num_bits) - 1;
426
    int i, idx, val, alpha_val;
427
 
428
    idx       = 0;
429
    alpha_val = mask;
430
    do {
431
        do {
432
            if (get_bits1(gb)) {
433
                val = get_bits(gb, num_bits);
434
            } else {
435
                int sign;
436
                val  = get_bits(gb, num_bits == 16 ? 7 : 4);
437
                sign = val & 1;
438
                val  = (val + 2) >> 1;
439
                if (sign)
440
                    val = -val;
441
            }
442
            alpha_val = (alpha_val + val) & mask;
443
            if (num_bits == 16) {
444
                dst[idx++] = alpha_val >> 6;
445
            } else {
446
                dst[idx++] = (alpha_val << 2) | (alpha_val >> 6);
447
            }
448
            if (idx >= num_coeffs)
449
                break;
450
        } while (get_bits_left(gb)>0 && get_bits1(gb));
451
        val = get_bits(gb, 4);
452
        if (!val)
453
            val = get_bits(gb, 11);
454
        if (idx + val > num_coeffs)
455
            val = num_coeffs - idx;
456
        if (num_bits == 16) {
457
            for (i = 0; i < val; i++)
458
                dst[idx++] = alpha_val >> 6;
459
        } else {
460
            for (i = 0; i < val; i++)
461
                dst[idx++] = (alpha_val << 2) | (alpha_val >> 6);
462
 
463
        }
464
    } while (idx < num_coeffs);
465
}
466
 
467
/**
468
 * Decode alpha slice plane.
469
 */
470
static void decode_slice_alpha(ProresContext *ctx,
471
                               uint16_t *dst, int dst_stride,
472
                               const uint8_t *buf, int buf_size,
473
                               int blocks_per_slice)
474
{
475
    GetBitContext gb;
476
    int i;
477
    LOCAL_ALIGNED_16(int16_t, blocks, [8*4*64]);
478
    int16_t *block;
479
 
480
    for (i = 0; i < blocks_per_slice<<2; i++)
481
        ctx->dsp.clear_block(blocks+(i<<6));
482
 
483
    init_get_bits(&gb, buf, buf_size << 3);
484
 
485
    if (ctx->alpha_info == 2) {
486
        unpack_alpha(&gb, blocks, blocks_per_slice * 4 * 64, 16);
487
    } else {
488
        unpack_alpha(&gb, blocks, blocks_per_slice * 4 * 64, 8);
489
    }
490
 
491
    block = blocks;
492
    for (i = 0; i < 16; i++) {
493
        memcpy(dst, block, 16 * blocks_per_slice * sizeof(*dst));
494
        dst   += dst_stride >> 1;
495
        block += 16 * blocks_per_slice;
496
    }
497
}
498
 
499
static int decode_slice_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
500
{
501
    ProresContext *ctx = avctx->priv_data;
502
    SliceContext *slice = &ctx->slices[jobnr];
503
    const uint8_t *buf = slice->data;
504
    AVFrame *pic = ctx->frame;
505
    int i, hdr_size, qscale, log2_chroma_blocks_per_mb;
506
    int luma_stride, chroma_stride;
507
    int y_data_size, u_data_size, v_data_size, a_data_size;
508
    uint8_t *dest_y, *dest_u, *dest_v, *dest_a;
509
    int16_t qmat_luma_scaled[64];
510
    int16_t qmat_chroma_scaled[64];
511
    int mb_x_shift;
512
    int ret;
513
 
514
    slice->ret = -1;
515
    //av_log(avctx, AV_LOG_INFO, "slice %d mb width %d mb x %d y %d\n",
516
    //       jobnr, slice->mb_count, slice->mb_x, slice->mb_y);
517
 
518
    // slice header
519
    hdr_size = buf[0] >> 3;
520
    qscale = av_clip(buf[1], 1, 224);
521
    qscale = qscale > 128 ? qscale - 96 << 2: qscale;
522
    y_data_size = AV_RB16(buf + 2);
523
    u_data_size = AV_RB16(buf + 4);
524
    v_data_size = slice->data_size - y_data_size - u_data_size - hdr_size;
525
    if (hdr_size > 7) v_data_size = AV_RB16(buf + 6);
526
    a_data_size = slice->data_size - y_data_size - u_data_size -
527
                  v_data_size - hdr_size;
528
 
529
    if (y_data_size < 0 || u_data_size < 0 || v_data_size < 0
530
        || hdr_size+y_data_size+u_data_size+v_data_size > slice->data_size){
531
        av_log(avctx, AV_LOG_ERROR, "invalid plane data size\n");
532
        return AVERROR_INVALIDDATA;
533
    }
534
 
535
    buf += hdr_size;
536
 
537
    for (i = 0; i < 64; i++) {
538
        qmat_luma_scaled  [i] = ctx->qmat_luma  [i] * qscale;
539
        qmat_chroma_scaled[i] = ctx->qmat_chroma[i] * qscale;
540
    }
541
 
542
    if (ctx->frame_type == 0) {
543
        luma_stride   = pic->linesize[0];
544
        chroma_stride = pic->linesize[1];
545
    } else {
546
        luma_stride   = pic->linesize[0] << 1;
547
        chroma_stride = pic->linesize[1] << 1;
548
    }
549
 
550
    if (avctx->pix_fmt == AV_PIX_FMT_YUV444P10 || avctx->pix_fmt == AV_PIX_FMT_YUVA444P10) {
551
        mb_x_shift = 5;
552
        log2_chroma_blocks_per_mb = 2;
553
    } else {
554
        mb_x_shift = 4;
555
        log2_chroma_blocks_per_mb = 1;
556
    }
557
 
558
    dest_y = pic->data[0] + (slice->mb_y << 4) * luma_stride + (slice->mb_x << 5);
559
    dest_u = pic->data[1] + (slice->mb_y << 4) * chroma_stride + (slice->mb_x << mb_x_shift);
560
    dest_v = pic->data[2] + (slice->mb_y << 4) * chroma_stride + (slice->mb_x << mb_x_shift);
561
    dest_a = pic->data[3] + (slice->mb_y << 4) * luma_stride + (slice->mb_x << 5);
562
 
563
    if (ctx->frame_type && ctx->first_field ^ ctx->frame->top_field_first) {
564
        dest_y += pic->linesize[0];
565
        dest_u += pic->linesize[1];
566
        dest_v += pic->linesize[2];
567
        dest_a += pic->linesize[3];
568
    }
569
 
570
    ret = decode_slice_luma(avctx, slice, (uint16_t*)dest_y, luma_stride,
571
                            buf, y_data_size, qmat_luma_scaled);
572
    if (ret < 0)
573
        return ret;
574
 
575
    if (!(avctx->flags & CODEC_FLAG_GRAY)) {
576
        ret = decode_slice_chroma(avctx, slice, (uint16_t*)dest_u, chroma_stride,
577
                                  buf + y_data_size, u_data_size,
578
                                  qmat_chroma_scaled, log2_chroma_blocks_per_mb);
579
        if (ret < 0)
580
            return ret;
581
 
582
        ret = decode_slice_chroma(avctx, slice, (uint16_t*)dest_v, chroma_stride,
583
                                  buf + y_data_size + u_data_size, v_data_size,
584
                                  qmat_chroma_scaled, log2_chroma_blocks_per_mb);
585
        if (ret < 0)
586
            return ret;
587
    }
588
    /* decode alpha plane if available */
589
    if (ctx->alpha_info && pic->data[3] && a_data_size)
590
        decode_slice_alpha(ctx, (uint16_t*)dest_a, luma_stride,
591
                           buf + y_data_size + u_data_size + v_data_size,
592
                           a_data_size, slice->mb_count);
593
 
594
    slice->ret = 0;
595
    return 0;
596
}
597
 
598
static int decode_picture(AVCodecContext *avctx)
599
{
600
    ProresContext *ctx = avctx->priv_data;
601
    int i;
602
 
603
    avctx->execute2(avctx, decode_slice_thread, NULL, NULL, ctx->slice_count);
604
 
605
    for (i = 0; i < ctx->slice_count; i++)
606
        if (ctx->slices[i].ret < 0)
607
            return ctx->slices[i].ret;
608
 
609
    return 0;
610
}
611
 
612
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
613
                        AVPacket *avpkt)
614
{
615
    ProresContext *ctx = avctx->priv_data;
616
    AVFrame *frame = data;
617
    const uint8_t *buf = avpkt->data;
618
    int buf_size = avpkt->size;
619
    int frame_hdr_size, pic_size, ret;
620
 
621
    if (buf_size < 28 || AV_RL32(buf + 4) != AV_RL32("icpf")) {
622
        av_log(avctx, AV_LOG_ERROR, "invalid frame header\n");
623
        return AVERROR_INVALIDDATA;
624
    }
625
 
626
    ctx->frame = frame;
627
    ctx->frame->pict_type = AV_PICTURE_TYPE_I;
628
    ctx->frame->key_frame = 1;
629
    ctx->first_field = 1;
630
 
631
    buf += 8;
632
    buf_size -= 8;
633
 
634
    frame_hdr_size = decode_frame_header(ctx, buf, buf_size, avctx);
635
    if (frame_hdr_size < 0)
636
        return frame_hdr_size;
637
 
638
    buf += frame_hdr_size;
639
    buf_size -= frame_hdr_size;
640
 
641
    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
642
        return ret;
643
 
644
 decode_picture:
645
    pic_size = decode_picture_header(avctx, buf, buf_size);
646
    if (pic_size < 0) {
647
        av_log(avctx, AV_LOG_ERROR, "error decoding picture header\n");
648
        return pic_size;
649
    }
650
 
651
    if ((ret = decode_picture(avctx)) < 0) {
652
        av_log(avctx, AV_LOG_ERROR, "error decoding picture\n");
653
        return ret;
654
    }
655
 
656
    buf += pic_size;
657
    buf_size -= pic_size;
658
 
659
    if (ctx->frame_type && buf_size > 0 && ctx->first_field) {
660
        ctx->first_field = 0;
661
        goto decode_picture;
662
    }
663
 
664
    *got_frame      = 1;
665
 
666
    return avpkt->size;
667
}
668
 
669
static av_cold int decode_close(AVCodecContext *avctx)
670
{
671
    ProresContext *ctx = avctx->priv_data;
672
 
673
    av_freep(&ctx->slices);
674
 
675
    return 0;
676
}
677
 
678
AVCodec ff_prores_decoder = {
679
    .name           = "prores",
680
    .long_name      = NULL_IF_CONFIG_SMALL("ProRes"),
681
    .type           = AVMEDIA_TYPE_VIDEO,
682
    .id             = AV_CODEC_ID_PRORES,
683
    .priv_data_size = sizeof(ProresContext),
684
    .init           = decode_init,
685
    .close          = decode_close,
686
    .decode         = decode_frame,
687
    .capabilities   = CODEC_CAP_DR1 | CODEC_CAP_SLICE_THREADS,
688
};