Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4349 Serge 1
/*
2
 * Copyright (c) 2001, 2002 Fabrice Bellard
3
 *
4
 * This file is part of FFmpeg.
5
 *
6
 * FFmpeg is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2.1 of the License, or (at your option) any later version.
10
 *
11
 * FFmpeg is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with FFmpeg; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19
 */
20
 
21
#include 
22
 
23
#include "libavutil/attributes.h"
24
#include "libavutil/mem.h"
25
#include "dct32.h"
26
#include "mathops.h"
27
#include "mpegaudiodsp.h"
28
#include "mpegaudio.h"
29
 
30
#if CONFIG_FLOAT
31
#define RENAME(n) n##_float
32
 
33
static inline float round_sample(float *sum)
34
{
35
    float sum1=*sum;
36
    *sum = 0;
37
    return sum1;
38
}
39
 
40
#define MACS(rt, ra, rb) rt+=(ra)*(rb)
41
#define MULS(ra, rb) ((ra)*(rb))
42
#define MULH3(x, y, s) ((s)*(y)*(x))
43
#define MLSS(rt, ra, rb) rt-=(ra)*(rb)
44
#define MULLx(x, y, s) ((y)*(x))
45
#define FIXHR(x)        ((float)(x))
46
#define FIXR(x)        ((float)(x))
47
#define SHR(a,b)       ((a)*(1.0f/(1<<(b))))
48
 
49
#else
50
 
51
#define RENAME(n) n##_fixed
52
#define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15)
53
 
54
static inline int round_sample(int64_t *sum)
55
{
56
    int sum1;
57
    sum1 = (int)((*sum) >> OUT_SHIFT);
58
    *sum &= (1<
59
    return av_clip_int16(sum1);
60
}
61
 
62
#   define MULS(ra, rb) MUL64(ra, rb)
63
#   define MACS(rt, ra, rb) MAC64(rt, ra, rb)
64
#   define MLSS(rt, ra, rb) MLS64(rt, ra, rb)
65
#   define MULH3(x, y, s) MULH((s)*(x), y)
66
#   define MULLx(x, y, s) MULL(x,y,s)
67
#   define SHR(a,b)       ((a)>>(b))
68
#   define FIXR(a)        ((int)((a) * FRAC_ONE + 0.5))
69
#   define FIXHR(a)       ((int)((a) * (1LL<<32) + 0.5))
70
#endif
71
 
72
/** Window for MDCT. Actually only the elements in [0,17] and
73
    [MDCT_BUF_SIZE/2, MDCT_BUF_SIZE/2 + 17] are actually used. The rest
74
    is just to preserve alignment for SIMD implementations.
75
*/
76
DECLARE_ALIGNED(16, INTFLOAT, RENAME(ff_mdct_win))[8][MDCT_BUF_SIZE];
77
 
78
DECLARE_ALIGNED(16, MPA_INT, RENAME(ff_mpa_synth_window))[512+256];
79
 
80
#define SUM8(op, sum, w, p)               \
81
{                                         \
82
    op(sum, (w)[0 * 64], (p)[0 * 64]);    \
83
    op(sum, (w)[1 * 64], (p)[1 * 64]);    \
84
    op(sum, (w)[2 * 64], (p)[2 * 64]);    \
85
    op(sum, (w)[3 * 64], (p)[3 * 64]);    \
86
    op(sum, (w)[4 * 64], (p)[4 * 64]);    \
87
    op(sum, (w)[5 * 64], (p)[5 * 64]);    \
88
    op(sum, (w)[6 * 64], (p)[6 * 64]);    \
89
    op(sum, (w)[7 * 64], (p)[7 * 64]);    \
90
}
91
 
92
#define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
93
{                                               \
94
    INTFLOAT tmp;\
95
    tmp = p[0 * 64];\
96
    op1(sum1, (w1)[0 * 64], tmp);\
97
    op2(sum2, (w2)[0 * 64], tmp);\
98
    tmp = p[1 * 64];\
99
    op1(sum1, (w1)[1 * 64], tmp);\
100
    op2(sum2, (w2)[1 * 64], tmp);\
101
    tmp = p[2 * 64];\
102
    op1(sum1, (w1)[2 * 64], tmp);\
103
    op2(sum2, (w2)[2 * 64], tmp);\
104
    tmp = p[3 * 64];\
105
    op1(sum1, (w1)[3 * 64], tmp);\
106
    op2(sum2, (w2)[3 * 64], tmp);\
107
    tmp = p[4 * 64];\
108
    op1(sum1, (w1)[4 * 64], tmp);\
109
    op2(sum2, (w2)[4 * 64], tmp);\
110
    tmp = p[5 * 64];\
111
    op1(sum1, (w1)[5 * 64], tmp);\
112
    op2(sum2, (w2)[5 * 64], tmp);\
113
    tmp = p[6 * 64];\
114
    op1(sum1, (w1)[6 * 64], tmp);\
115
    op2(sum2, (w2)[6 * 64], tmp);\
116
    tmp = p[7 * 64];\
117
    op1(sum1, (w1)[7 * 64], tmp);\
118
    op2(sum2, (w2)[7 * 64], tmp);\
119
}
120
 
121
void RENAME(ff_mpadsp_apply_window)(MPA_INT *synth_buf, MPA_INT *window,
122
                                  int *dither_state, OUT_INT *samples,
123
                                  int incr)
124
{
125
    register const MPA_INT *w, *w2, *p;
126
    int j;
127
    OUT_INT *samples2;
128
#if CONFIG_FLOAT
129
    float sum, sum2;
130
#else
131
    int64_t sum, sum2;
132
#endif
133
 
134
    /* copy to avoid wrap */
135
    memcpy(synth_buf + 512, synth_buf, 32 * sizeof(*synth_buf));
136
 
137
    samples2 = samples + 31 * incr;
138
    w = window;
139
    w2 = window + 31;
140
 
141
    sum = *dither_state;
142
    p = synth_buf + 16;
143
    SUM8(MACS, sum, w, p);
144
    p = synth_buf + 48;
145
    SUM8(MLSS, sum, w + 32, p);
146
    *samples = round_sample(&sum);
147
    samples += incr;
148
    w++;
149
 
150
    /* we calculate two samples at the same time to avoid one memory
151
       access per two sample */
152
    for(j=1;j<16;j++) {
153
        sum2 = 0;
154
        p = synth_buf + 16 + j;
155
        SUM8P2(sum, MACS, sum2, MLSS, w, w2, p);
156
        p = synth_buf + 48 - j;
157
        SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p);
158
 
159
        *samples = round_sample(&sum);
160
        samples += incr;
161
        sum += sum2;
162
        *samples2 = round_sample(&sum);
163
        samples2 -= incr;
164
        w++;
165
        w2--;
166
    }
167
 
168
    p = synth_buf + 32;
169
    SUM8(MLSS, sum, w + 32, p);
170
    *samples = round_sample(&sum);
171
    *dither_state= sum;
172
}
173
 
174
/* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
175
   32 samples. */
176
void RENAME(ff_mpa_synth_filter)(MPADSPContext *s, MPA_INT *synth_buf_ptr,
177
                                 int *synth_buf_offset,
178
                                 MPA_INT *window, int *dither_state,
179
                                 OUT_INT *samples, int incr,
180
                                 MPA_INT *sb_samples)
181
{
182
    MPA_INT *synth_buf;
183
    int offset;
184
 
185
    offset = *synth_buf_offset;
186
    synth_buf = synth_buf_ptr + offset;
187
 
188
    s->RENAME(dct32)(synth_buf, sb_samples);
189
    s->RENAME(apply_window)(synth_buf, window, dither_state, samples, incr);
190
 
191
    offset = (offset - 32) & 511;
192
    *synth_buf_offset = offset;
193
}
194
 
195
av_cold void RENAME(ff_mpa_synth_init)(MPA_INT *window)
196
{
197
    int i, j;
198
 
199
    /* max = 18760, max sum over all 16 coefs : 44736 */
200
    for(i=0;i<257;i++) {
201
        INTFLOAT v;
202
        v = ff_mpa_enwindow[i];
203
#if CONFIG_FLOAT
204
        v *= 1.0 / (1LL<<(16 + FRAC_BITS));
205
#endif
206
        window[i] = v;
207
        if ((i & 63) != 0)
208
            v = -v;
209
        if (i != 0)
210
            window[512 - i] = v;
211
    }
212
 
213
 
214
    // Needed for avoiding shuffles in ASM implementations
215
    for(i=0; i < 8; i++)
216
        for(j=0; j < 16; j++)
217
            window[512+16*i+j] = window[64*i+32-j];
218
 
219
    for(i=0; i < 8; i++)
220
        for(j=0; j < 16; j++)
221
            window[512+128+16*i+j] = window[64*i+48-j];
222
}
223
 
224
av_cold void RENAME(ff_init_mpadsp_tabs)(void)
225
{
226
    int i, j;
227
    /* compute mdct windows */
228
    for (i = 0; i < 36; i++) {
229
        for (j = 0; j < 4; j++) {
230
            double d;
231
 
232
            if (j == 2 && i % 3 != 1)
233
                continue;
234
 
235
            d = sin(M_PI * (i + 0.5) / 36.0);
236
            if (j == 1) {
237
                if      (i >= 30) d = 0;
238
                else if (i >= 24) d = sin(M_PI * (i - 18 + 0.5) / 12.0);
239
                else if (i >= 18) d = 1;
240
            } else if (j == 3) {
241
                if      (i <   6) d = 0;
242
                else if (i <  12) d = sin(M_PI * (i -  6 + 0.5) / 12.0);
243
                else if (i <  18) d = 1;
244
            }
245
            //merge last stage of imdct into the window coefficients
246
            d *= 0.5 * IMDCT_SCALAR / cos(M_PI * (2 * i + 19) / 72);
247
 
248
            if (j == 2)
249
                RENAME(ff_mdct_win)[j][i/3] = FIXHR((d / (1<<5)));
250
            else {
251
                int idx = i < 18 ? i : i + (MDCT_BUF_SIZE/2 - 18);
252
                RENAME(ff_mdct_win)[j][idx] = FIXHR((d / (1<<5)));
253
            }
254
        }
255
    }
256
 
257
    /* NOTE: we do frequency inversion adter the MDCT by changing
258
        the sign of the right window coefs */
259
    for (j = 0; j < 4; j++) {
260
        for (i = 0; i < MDCT_BUF_SIZE; i += 2) {
261
            RENAME(ff_mdct_win)[j + 4][i    ] =  RENAME(ff_mdct_win)[j][i    ];
262
            RENAME(ff_mdct_win)[j + 4][i + 1] = -RENAME(ff_mdct_win)[j][i + 1];
263
        }
264
    }
265
}
266
/* cos(pi*i/18) */
267
#define C1 FIXHR(0.98480775301220805936/2)
268
#define C2 FIXHR(0.93969262078590838405/2)
269
#define C3 FIXHR(0.86602540378443864676/2)
270
#define C4 FIXHR(0.76604444311897803520/2)
271
#define C5 FIXHR(0.64278760968653932632/2)
272
#define C6 FIXHR(0.5/2)
273
#define C7 FIXHR(0.34202014332566873304/2)
274
#define C8 FIXHR(0.17364817766693034885/2)
275
 
276
/* 0.5 / cos(pi*(2*i+1)/36) */
277
static const INTFLOAT icos36[9] = {
278
    FIXR(0.50190991877167369479),
279
    FIXR(0.51763809020504152469), //0
280
    FIXR(0.55168895948124587824),
281
    FIXR(0.61038729438072803416),
282
    FIXR(0.70710678118654752439), //1
283
    FIXR(0.87172339781054900991),
284
    FIXR(1.18310079157624925896),
285
    FIXR(1.93185165257813657349), //2
286
    FIXR(5.73685662283492756461),
287
};
288
 
289
/* 0.5 / cos(pi*(2*i+1)/36) */
290
static const INTFLOAT icos36h[9] = {
291
    FIXHR(0.50190991877167369479/2),
292
    FIXHR(0.51763809020504152469/2), //0
293
    FIXHR(0.55168895948124587824/2),
294
    FIXHR(0.61038729438072803416/2),
295
    FIXHR(0.70710678118654752439/2), //1
296
    FIXHR(0.87172339781054900991/2),
297
    FIXHR(1.18310079157624925896/4),
298
    FIXHR(1.93185165257813657349/4), //2
299
//    FIXHR(5.73685662283492756461),
300
};
301
 
302
/* using Lee like decomposition followed by hand coded 9 points DCT */
303
static void imdct36(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in, INTFLOAT *win)
304
{
305
    int i, j;
306
    INTFLOAT t0, t1, t2, t3, s0, s1, s2, s3;
307
    INTFLOAT tmp[18], *tmp1, *in1;
308
 
309
    for (i = 17; i >= 1; i--)
310
        in[i] += in[i-1];
311
    for (i = 17; i >= 3; i -= 2)
312
        in[i] += in[i-2];
313
 
314
    for (j = 0; j < 2; j++) {
315
        tmp1 = tmp + j;
316
        in1 = in + j;
317
 
318
        t2 = in1[2*4] + in1[2*8] - in1[2*2];
319
 
320
        t3 = in1[2*0] + SHR(in1[2*6],1);
321
        t1 = in1[2*0] - in1[2*6];
322
        tmp1[ 6] = t1 - SHR(t2,1);
323
        tmp1[16] = t1 + t2;
324
 
325
        t0 = MULH3(in1[2*2] + in1[2*4] ,    C2, 2);
326
        t1 = MULH3(in1[2*4] - in1[2*8] , -2*C8, 1);
327
        t2 = MULH3(in1[2*2] + in1[2*8] ,   -C4, 2);
328
 
329
        tmp1[10] = t3 - t0 - t2;
330
        tmp1[ 2] = t3 + t0 + t1;
331
        tmp1[14] = t3 + t2 - t1;
332
 
333
        tmp1[ 4] = MULH3(in1[2*5] + in1[2*7] - in1[2*1], -C3, 2);
334
        t2 = MULH3(in1[2*1] + in1[2*5],    C1, 2);
335
        t3 = MULH3(in1[2*5] - in1[2*7], -2*C7, 1);
336
        t0 = MULH3(in1[2*3], C3, 2);
337
 
338
        t1 = MULH3(in1[2*1] + in1[2*7],   -C5, 2);
339
 
340
        tmp1[ 0] = t2 + t3 + t0;
341
        tmp1[12] = t2 + t1 - t0;
342
        tmp1[ 8] = t3 - t1 - t0;
343
    }
344
 
345
    i = 0;
346
    for (j = 0; j < 4; j++) {
347
        t0 = tmp[i];
348
        t1 = tmp[i + 2];
349
        s0 = t1 + t0;
350
        s2 = t1 - t0;
351
 
352
        t2 = tmp[i + 1];
353
        t3 = tmp[i + 3];
354
        s1 = MULH3(t3 + t2, icos36h[    j], 2);
355
        s3 = MULLx(t3 - t2, icos36 [8 - j], FRAC_BITS);
356
 
357
        t0 = s0 + s1;
358
        t1 = s0 - s1;
359
        out[(9 + j) * SBLIMIT] = MULH3(t1, win[     9 + j], 1) + buf[4*(9 + j)];
360
        out[(8 - j) * SBLIMIT] = MULH3(t1, win[     8 - j], 1) + buf[4*(8 - j)];
361
        buf[4 * ( 9 + j     )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + j], 1);
362
        buf[4 * ( 8 - j     )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 8 - j], 1);
363
 
364
        t0 = s2 + s3;
365
        t1 = s2 - s3;
366
        out[(9 + 8 - j) * SBLIMIT] = MULH3(t1, win[     9 + 8 - j], 1) + buf[4*(9 + 8 - j)];
367
        out[         j  * SBLIMIT] = MULH3(t1, win[             j], 1) + buf[4*(        j)];
368
        buf[4 * ( 9 + 8 - j     )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + 8 - j], 1);
369
        buf[4 * (         j     )] = MULH3(t0, win[MDCT_BUF_SIZE/2         + j], 1);
370
        i += 4;
371
    }
372
 
373
    s0 = tmp[16];
374
    s1 = MULH3(tmp[17], icos36h[4], 2);
375
    t0 = s0 + s1;
376
    t1 = s0 - s1;
377
    out[(9 + 4) * SBLIMIT] = MULH3(t1, win[     9 + 4], 1) + buf[4*(9 + 4)];
378
    out[(8 - 4) * SBLIMIT] = MULH3(t1, win[     8 - 4], 1) + buf[4*(8 - 4)];
379
    buf[4 * ( 9 + 4     )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + 4], 1);
380
    buf[4 * ( 8 - 4     )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 8 - 4], 1);
381
}
382
 
383
void RENAME(ff_imdct36_blocks)(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in,
384
                               int count, int switch_point, int block_type)
385
{
386
    int j;
387
    for (j=0 ; j < count; j++) {
388
        /* apply window & overlap with previous buffer */
389
 
390
        /* select window */
391
        int win_idx = (switch_point && j < 2) ? 0 : block_type;
392
        INTFLOAT *win = RENAME(ff_mdct_win)[win_idx + (4 & -(j & 1))];
393
 
394
        imdct36(out, buf, in, win);
395
 
396
        in  += 18;
397
        buf += ((j&3) != 3 ? 1 : (72-3));
398
        out++;
399
    }
400
}
401