Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4349 Serge 1
/*
2
 * OpenEXR (.exr) image decoder
3
 * Copyright (c) 2009 Jimmy Christensen
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
 
22
/**
23
 * @file
24
 * OpenEXR decoder
25
 * @author Jimmy Christensen
26
 *
27
 * For more information on the OpenEXR format, visit:
28
 *  http://openexr.com/
29
 *
30
 * exr_flt2uint() and exr_halflt2uint() is credited to  Reimar Döffinger
31
 */
32
 
33
#include 
34
 
35
#include "get_bits.h"
36
#include "avcodec.h"
37
#include "bytestream.h"
38
#include "mathops.h"
39
#include "thread.h"
40
#include "libavutil/imgutils.h"
41
#include "libavutil/avassert.h"
42
 
43
enum ExrCompr {
44
    EXR_RAW   = 0,
45
    EXR_RLE   = 1,
46
    EXR_ZIP1  = 2,
47
    EXR_ZIP16 = 3,
48
    EXR_PIZ   = 4,
49
    EXR_PXR24 = 5,
50
    EXR_B44   = 6,
51
    EXR_B44A  = 7,
52
};
53
 
54
enum ExrPixelType {
55
    EXR_UINT,
56
    EXR_HALF,
57
    EXR_FLOAT
58
};
59
 
60
typedef struct EXRChannel {
61
    int               xsub, ysub;
62
    enum ExrPixelType pixel_type;
63
} EXRChannel;
64
 
65
typedef struct EXRThreadData {
66
    uint8_t *uncompressed_data;
67
    int uncompressed_size;
68
 
69
    uint8_t *tmp;
70
    int tmp_size;
71
 
72
    uint8_t *bitmap;
73
    uint16_t *lut;
74
} EXRThreadData;
75
 
76
typedef struct EXRContext {
77
    AVFrame *picture;
78
    int compr;
79
    enum ExrPixelType pixel_type;
80
    int channel_offsets[4]; // 0 = red, 1 = green, 2 = blue and 3 = alpha
81
    const AVPixFmtDescriptor *desc;
82
 
83
    uint32_t xmax, xmin;
84
    uint32_t ymax, ymin;
85
    uint32_t xdelta, ydelta;
86
 
87
    int ysize;
88
 
89
    uint64_t scan_line_size;
90
    int scan_lines_per_block;
91
 
92
    const uint8_t *buf, *table;
93
    int buf_size;
94
 
95
    EXRChannel *channels;
96
    int nb_channels;
97
 
98
    EXRThreadData *thread_data;
99
    int thread_data_size;
100
} EXRContext;
101
 
102
/**
103
 * Converts from 32-bit float as uint32_t to uint16_t
104
 *
105
 * @param v 32-bit float
106
 * @return normalized 16-bit unsigned int
107
 */
108
static inline uint16_t exr_flt2uint(uint32_t v)
109
{
110
    unsigned int exp = v >> 23;
111
    // "HACK": negative values result in exp<  0, so clipping them to 0
112
    // is also handled by this condition, avoids explicit check for sign bit.
113
    if (exp<= 127 + 7 - 24) // we would shift out all bits anyway
114
        return 0;
115
    if (exp >= 127)
116
        return 0xffff;
117
    v &= 0x007fffff;
118
    return (v + (1 << 23)) >> (127 + 7 - exp);
119
}
120
 
121
/**
122
 * Converts from 16-bit float as uint16_t to uint16_t
123
 *
124
 * @param v 16-bit float
125
 * @return normalized 16-bit unsigned int
126
 */
127
static inline uint16_t exr_halflt2uint(uint16_t v)
128
{
129
    unsigned exp = 14 - (v >> 10);
130
    if (exp >= 14) {
131
        if (exp == 14) return (v >> 9) & 1;
132
        else           return (v & 0x8000) ? 0 : 0xffff;
133
    }
134
    v <<= 6;
135
    return (v + (1 << 16)) >> (exp + 1);
136
}
137
 
138
/**
139
 * Gets the size of the header variable
140
 *
141
 * @param **buf the current pointer location in the header where
142
 * the variable data starts
143
 * @param *buf_end pointer location of the end of the buffer
144
 * @return size of variable data
145
 */
146
static unsigned int get_header_variable_length(const uint8_t **buf,
147
                                               const uint8_t *buf_end)
148
{
149
    unsigned int variable_buffer_data_size = bytestream_get_le32(buf);
150
    if (variable_buffer_data_size >= buf_end - *buf)
151
        return 0;
152
    return variable_buffer_data_size;
153
}
154
 
155
/**
156
 * Checks if the variable name corresponds with it's data type
157
 *
158
 * @param *avctx the AVCodecContext
159
 * @param **buf the current pointer location in the header where
160
 * the variable name starts
161
 * @param *buf_end pointer location of the end of the buffer
162
 * @param *value_name name of the varible to check
163
 * @param *value_type type of the varible to check
164
 * @param minimum_length minimum length of the variable data
165
 * @param variable_buffer_data_size variable length read from the header
166
 * after it's checked
167
 * @return negative if variable is invalid
168
 */
169
static int check_header_variable(AVCodecContext *avctx,
170
                                              const uint8_t **buf,
171
                                              const uint8_t *buf_end,
172
                                              const char *value_name,
173
                                              const char *value_type,
174
                                              unsigned int minimum_length,
175
                                              unsigned int *variable_buffer_data_size)
176
{
177
    if (buf_end - *buf >= minimum_length && !strcmp(*buf, value_name)) {
178
        *buf += strlen(value_name)+1;
179
        if (!strcmp(*buf, value_type)) {
180
            *buf += strlen(value_type)+1;
181
            *variable_buffer_data_size = get_header_variable_length(buf, buf_end);
182
            if (!*variable_buffer_data_size)
183
                av_log(avctx, AV_LOG_ERROR, "Incomplete header\n");
184
            return 1;
185
        }
186
        *buf -= strlen(value_name)+1;
187
        av_log(avctx, AV_LOG_WARNING, "Unknown data type for header variable %s\n", value_name);
188
    }
189
    return -1;
190
}
191
 
192
static void predictor(uint8_t *src, int size)
193
{
194
    uint8_t *t = src + 1;
195
    uint8_t *stop = src + size;
196
 
197
    while (t < stop) {
198
        int d = (int)t[-1] + (int)t[0] - 128;
199
        t[0] = d;
200
        ++t;
201
    }
202
}
203
 
204
static void reorder_pixels(uint8_t *src, uint8_t *dst, int size)
205
{
206
    const int8_t *t1 = src;
207
    const int8_t *t2 = src + (size + 1) / 2;
208
    int8_t *s = dst;
209
    int8_t *stop = s + size;
210
 
211
    while (1) {
212
        if (s < stop)
213
            *(s++) = *(t1++);
214
        else
215
            break;
216
 
217
        if (s < stop)
218
            *(s++) = *(t2++);
219
        else
220
            break;
221
    }
222
}
223
 
224
static int zip_uncompress(const uint8_t *src, int compressed_size,
225
                          int uncompressed_size, EXRThreadData *td)
226
{
227
    unsigned long dest_len = uncompressed_size;
228
 
229
    if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
230
        dest_len != uncompressed_size)
231
        return AVERROR(EINVAL);
232
 
233
    predictor(td->tmp, uncompressed_size);
234
    reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size);
235
 
236
    return 0;
237
}
238
 
239
static int rle_uncompress(const uint8_t *src, int compressed_size,
240
                          int uncompressed_size, EXRThreadData *td)
241
{
242
    int8_t *d = (int8_t *)td->tmp;
243
    const int8_t *s = (const int8_t *)src;
244
    int ssize = compressed_size;
245
    int dsize = uncompressed_size;
246
    int8_t *dend = d + dsize;
247
    int count;
248
 
249
    while (ssize > 0) {
250
        count = *s++;
251
 
252
        if (count < 0) {
253
            count = -count;
254
 
255
            if ((dsize -= count    ) < 0 ||
256
                (ssize -= count + 1) < 0)
257
                return -1;
258
 
259
            while (count--)
260
                *d++ = *s++;
261
        } else {
262
            count++;
263
 
264
            if ((dsize -= count) < 0 ||
265
                (ssize -= 2    ) < 0)
266
                return -1;
267
 
268
            while (count--)
269
                *d++ = *s;
270
 
271
            s++;
272
        }
273
    }
274
 
275
    if (dend != d)
276
        return AVERROR_INVALIDDATA;
277
 
278
    predictor(td->tmp, uncompressed_size);
279
    reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size);
280
 
281
    return 0;
282
}
283
 
284
#define USHORT_RANGE (1 << 16)
285
#define BITMAP_SIZE (1 << 13)
286
 
287
static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut)
288
{
289
    int i, k = 0;
290
 
291
    for (i = 0; i < USHORT_RANGE; i++) {
292
        if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7))))
293
            lut[k++] = i;
294
    }
295
 
296
    i = k - 1;
297
 
298
    memset(lut + k, 0, (USHORT_RANGE - k) * 2);
299
 
300
    return i;
301
}
302
 
303
static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize)
304
{
305
    int i;
306
 
307
    for (i = 0; i < dsize; ++i)
308
        dst[i] = lut[dst[i]];
309
}
310
 
311
#define HUF_ENCBITS 16  // literal (value) bit length
312
#define HUF_DECBITS 14  // decoding bit size (>= 8)
313
 
314
#define HUF_ENCSIZE ((1 << HUF_ENCBITS) + 1)  // encoding table size
315
#define HUF_DECSIZE (1 << HUF_DECBITS)     // decoding table size
316
#define HUF_DECMASK (HUF_DECSIZE - 1)
317
 
318
typedef struct HufDec {
319
    int len;
320
    int lit;
321
    int *p;
322
} HufDec;
323
 
324
static void huf_canonical_code_table(uint64_t *hcode)
325
{
326
    uint64_t c, n[59] = { 0 };
327
    int i;
328
 
329
    for (i = 0; i < HUF_ENCSIZE; ++i)
330
        n[hcode[i]] += 1;
331
 
332
    c = 0;
333
    for (i = 58; i > 0; --i) {
334
        uint64_t nc = ((c + n[i]) >> 1);
335
        n[i] = c;
336
        c = nc;
337
    }
338
 
339
    for (i = 0; i < HUF_ENCSIZE; ++i) {
340
        int l = hcode[i];
341
 
342
        if (l > 0)
343
            hcode[i] = l | (n[l]++ << 6);
344
    }
345
}
346
 
347
#define SHORT_ZEROCODE_RUN  59
348
#define LONG_ZEROCODE_RUN   63
349
#define SHORTEST_LONG_RUN   (2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN)
350
#define LONGEST_LONG_RUN    (255 + SHORTEST_LONG_RUN)
351
 
352
static int huf_unpack_enc_table(GetByteContext *gb,
353
                                int32_t im, int32_t iM, uint64_t *hcode)
354
{
355
    GetBitContext gbit;
356
 
357
    init_get_bits8(&gbit, gb->buffer, bytestream2_get_bytes_left(gb));
358
 
359
    for (; im <= iM; im++) {
360
        uint64_t l = hcode[im] = get_bits(&gbit, 6);
361
 
362
        if (l == LONG_ZEROCODE_RUN) {
363
            int zerun = get_bits(&gbit, 8) + SHORTEST_LONG_RUN;
364
 
365
            if (im + zerun > iM + 1)
366
                return AVERROR_INVALIDDATA;
367
 
368
            while (zerun--)
369
                hcode[im++] = 0;
370
 
371
            im--;
372
        } else if (l >= (uint64_t) SHORT_ZEROCODE_RUN) {
373
            int zerun = l - SHORT_ZEROCODE_RUN + 2;
374
 
375
            if (im + zerun > iM + 1)
376
                return AVERROR_INVALIDDATA;
377
 
378
            while (zerun--)
379
                hcode[im++] = 0;
380
 
381
            im--;
382
        }
383
    }
384
 
385
    bytestream2_skip(gb, (get_bits_count(&gbit) + 7) / 8);
386
    huf_canonical_code_table(hcode);
387
 
388
    return 0;
389
}
390
 
391
static int huf_build_dec_table(const uint64_t *hcode, int im,
392
                               int iM, HufDec *hdecod)
393
{
394
    for (; im <= iM; im++) {
395
        uint64_t c = hcode[im] >> 6;
396
        int i, l = hcode[im] & 63;
397
 
398
        if (c >> l)
399
            return AVERROR_INVALIDDATA;
400
 
401
        if (l > HUF_DECBITS) {
402
            HufDec *pl = hdecod + (c >> (l - HUF_DECBITS));
403
            if (pl->len)
404
                return AVERROR_INVALIDDATA;
405
 
406
            pl->lit++;
407
 
408
            pl->p = av_realloc_f(pl->p, pl->lit, sizeof(int));
409
            if (!pl->p)
410
                return AVERROR(ENOMEM);
411
 
412
            pl->p[pl->lit - 1] = im;
413
        } else if (l) {
414
            HufDec *pl = hdecod + (c << (HUF_DECBITS - l));
415
 
416
            for (i = 1 << (HUF_DECBITS - l); i > 0; i--, pl++) {
417
                if (pl->len || pl->p)
418
                    return AVERROR_INVALIDDATA;
419
                pl->len = l;
420
                pl->lit = im;
421
            }
422
        }
423
    }
424
 
425
    return 0;
426
}
427
 
428
#define get_char(c, lc, gb) {                   \
429
    c = (c << 8) | bytestream2_get_byte(gb);    \
430
    lc += 8;                                    \
431
}
432
 
433
#define get_code(po, rlc, c, lc, gb, out, oe) { \
434
    if (po == rlc) {                            \
435
        if (lc < 8)                             \
436
            get_char(c, lc, gb);                \
437
        lc -= 8;                                \
438
                                                \
439
        cs = c >> lc;                           \
440
                                                \
441
        if (out + cs > oe)                      \
442
            return AVERROR_INVALIDDATA;         \
443
                                                \
444
        s = out[-1];                            \
445
                                                \
446
        while (cs-- > 0)                        \
447
            *out++ = s;                         \
448
    } else if (out < oe) {                      \
449
        *out++ = po;                            \
450
    } else {                                    \
451
        return AVERROR_INVALIDDATA;             \
452
    }                                           \
453
}
454
 
455
static int huf_decode(const uint64_t *hcode, const HufDec *hdecod,
456
                      GetByteContext *gb, int nbits,
457
                      int rlc, int no, uint16_t *out)
458
{
459
    uint64_t c = 0;
460
    uint16_t *outb = out;
461
    uint16_t *oe = out + no;
462
    const uint8_t *ie = gb->buffer + (nbits + 7) / 8; // input byte size
463
    uint8_t cs, s;
464
    int i, lc = 0;
465
 
466
    while (gb->buffer < ie) {
467
        get_char(c, lc, gb);
468
 
469
        while (lc >= HUF_DECBITS) {
470
            const HufDec pl = hdecod[(c >> (lc-HUF_DECBITS)) & HUF_DECMASK];
471
 
472
            if (pl.len) {
473
                lc -= pl.len;
474
                get_code(pl.lit, rlc, c, lc, gb, out, oe);
475
            } else {
476
                int j;
477
 
478
                if (!pl.p)
479
                    return AVERROR_INVALIDDATA;
480
 
481
                for (j = 0; j < pl.lit; j++) {
482
                    int l = hcode[pl.p[j]] & 63;
483
 
484
                    while (lc < l && bytestream2_get_bytes_left(gb) > 0)
485
                        get_char(c, lc, gb);
486
 
487
                    if (lc >= l) {
488
                        if ((hcode[pl.p[j]] >> 6) ==
489
                            ((c >> (lc - l)) & ((1LL << l) - 1))) {
490
                            lc -= l;
491
                            get_code(pl.p[j], rlc, c, lc, gb, out, oe);
492
                            break;
493
                        }
494
                    }
495
                }
496
 
497
                if (j == pl.lit)
498
                    return AVERROR_INVALIDDATA;
499
            }
500
        }
501
    }
502
 
503
    i = (8 - nbits) & 7;
504
    c >>= i;
505
    lc -= i;
506
 
507
    while (lc > 0) {
508
        const HufDec pl = hdecod[(c << (HUF_DECBITS - lc)) & HUF_DECMASK];
509
 
510
        if (pl.len) {
511
            lc -= pl.len;
512
            get_code(pl.lit, rlc, c, lc, gb, out, oe);
513
        } else {
514
            return AVERROR_INVALIDDATA;
515
        }
516
    }
517
 
518
    if (out - outb != no)
519
        return AVERROR_INVALIDDATA;
520
    return 0;
521
}
522
 
523
static int huf_uncompress(GetByteContext *gb,
524
                          uint16_t *dst, int dst_size)
525
{
526
    int32_t src_size, im, iM;
527
    uint32_t nBits;
528
    uint64_t *freq;
529
    HufDec *hdec;
530
    int ret, i;
531
 
532
    src_size = bytestream2_get_le32(gb);
533
    im = bytestream2_get_le32(gb);
534
    iM = bytestream2_get_le32(gb);
535
    bytestream2_skip(gb, 4);
536
    nBits = bytestream2_get_le32(gb);
537
    if (im < 0 || im >= HUF_ENCSIZE ||
538
        iM < 0 || iM >= HUF_ENCSIZE ||
539
        src_size < 0)
540
        return AVERROR_INVALIDDATA;
541
 
542
    bytestream2_skip(gb, 4);
543
 
544
    freq = av_calloc(HUF_ENCSIZE, sizeof(*freq));
545
    hdec = av_calloc(HUF_DECSIZE, sizeof(*hdec));
546
    if (!freq || !hdec) {
547
        ret = AVERROR(ENOMEM);
548
        goto fail;
549
    }
550
 
551
    if ((ret = huf_unpack_enc_table(gb, im, iM, freq)) < 0)
552
        goto fail;
553
 
554
    if (nBits > 8 * bytestream2_get_bytes_left(gb)) {
555
        ret = AVERROR_INVALIDDATA;
556
        goto fail;
557
    }
558
 
559
    if ((ret = huf_build_dec_table(freq, im, iM, hdec)) < 0)
560
        goto fail;
561
    ret = huf_decode(freq, hdec, gb, nBits, iM, dst_size, dst);
562
 
563
fail:
564
    for (i = 0; i < HUF_DECSIZE; i++) {
565
        if (hdec)
566
            av_freep(&hdec[i].p);
567
    }
568
 
569
    av_free(freq);
570
    av_free(hdec);
571
 
572
    return ret;
573
}
574
 
575
static inline void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
576
{
577
    int16_t ls = l;
578
    int16_t hs = h;
579
    int hi = hs;
580
    int ai = ls + (hi & 1) + (hi >> 1);
581
    int16_t as = ai;
582
    int16_t bs = ai - hi;
583
 
584
    *a = as;
585
    *b = bs;
586
}
587
 
588
#define NBITS      16
589
#define A_OFFSET  (1 << (NBITS  - 1))
590
#define MOD_MASK  ((1 << NBITS) - 1)
591
 
592
static inline void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
593
{
594
    int m = l;
595
    int d = h;
596
    int bb = (m - (d >> 1)) & MOD_MASK;
597
    int aa = (d + bb - A_OFFSET) & MOD_MASK;
598
    *b = bb;
599
    *a = aa;
600
}
601
 
602
static void wav_decode(uint16_t *in, int nx, int ox,
603
                       int ny, int oy, uint16_t mx)
604
{
605
    int w14 = (mx < (1 << 14));
606
    int n = (nx > ny) ? ny: nx;
607
    int p = 1;
608
    int p2;
609
 
610
    while (p <= n)
611
        p <<= 1;
612
 
613
    p >>= 1;
614
    p2  = p;
615
    p >>= 1;
616
 
617
    while (p >= 1) {
618
        uint16_t *py = in;
619
        uint16_t *ey = in + oy * (ny - p2);
620
        uint16_t i00, i01, i10, i11;
621
        int oy1 = oy * p;
622
        int oy2 = oy * p2;
623
        int ox1 = ox * p;
624
        int ox2 = ox * p2;
625
 
626
        for (; py <= ey; py += oy2) {
627
            uint16_t *px = py;
628
            uint16_t *ex = py + ox * (nx - p2);
629
 
630
            for (; px <= ex; px += ox2) {
631
                uint16_t *p01 = px  + ox1;
632
                uint16_t *p10 = px  + oy1;
633
                uint16_t *p11 = p10 + ox1;
634
 
635
                if (w14) {
636
                    wdec14(*px,  *p10, &i00, &i10);
637
                    wdec14(*p01, *p11, &i01, &i11);
638
                    wdec14(i00, i01, px,  p01);
639
                    wdec14(i10, i11, p10, p11);
640
                } else {
641
                    wdec16(*px,  *p10, &i00, &i10);
642
                    wdec16(*p01, *p11, &i01, &i11);
643
                    wdec16(i00, i01, px,  p01);
644
                    wdec16(i10, i11, p10, p11);
645
                }
646
            }
647
 
648
            if (nx & p) {
649
                uint16_t *p10 = px + oy1;
650
 
651
                if (w14)
652
                    wdec14(*px, *p10, &i00, p10);
653
                else
654
                    wdec16(*px, *p10, &i00, p10);
655
 
656
                *px = i00;
657
            }
658
        }
659
 
660
        if (ny & p) {
661
            uint16_t *px = py;
662
            uint16_t *ex = py + ox * (nx - p2);
663
 
664
            for (; px <= ex; px += ox2) {
665
                uint16_t *p01 = px + ox1;
666
 
667
                if (w14)
668
                    wdec14(*px, *p01, &i00, p01);
669
                else
670
                    wdec16(*px, *p01, &i00, p01);
671
 
672
                *px = i00;
673
            }
674
        }
675
 
676
        p2 = p;
677
        p >>= 1;
678
    }
679
}
680
 
681
static int piz_uncompress(EXRContext *s, const uint8_t *src, int ssize, int dsize, EXRThreadData *td)
682
{
683
    GetByteContext gb;
684
    uint16_t maxval, min_non_zero, max_non_zero;
685
    uint16_t *ptr, *tmp = (uint16_t *)td->tmp;
686
    int8_t *out;
687
    int ret, i, j;
688
 
689
    if (!td->bitmap)
690
        td->bitmap = av_malloc(BITMAP_SIZE);
691
    if (!td->lut)
692
        td->lut = av_malloc(1 << 17);
693
    if (!td->bitmap || !td->lut)
694
        return AVERROR(ENOMEM);
695
 
696
    bytestream2_init(&gb, src, ssize);
697
    min_non_zero = bytestream2_get_le16(&gb);
698
    max_non_zero = bytestream2_get_le16(&gb);
699
 
700
    if (max_non_zero >= BITMAP_SIZE)
701
        return AVERROR_INVALIDDATA;
702
 
703
    memset(td->bitmap, 0, FFMIN(min_non_zero, BITMAP_SIZE));
704
    if (min_non_zero <= max_non_zero)
705
        bytestream2_get_buffer(&gb, td->bitmap + min_non_zero,
706
                               max_non_zero - min_non_zero + 1);
707
    memset(td->bitmap + max_non_zero, 0, BITMAP_SIZE - max_non_zero);
708
 
709
    maxval = reverse_lut(td->bitmap, td->lut);
710
 
711
    ret = huf_uncompress(&gb, tmp, dsize / sizeof(int16_t));
712
    if (ret)
713
        return ret;
714
 
715
    ptr = tmp;
716
    for (i = 0; i < s->nb_channels; i++) {
717
        EXRChannel *channel = &s->channels[i];
718
        int size = channel->pixel_type;
719
 
720
        for (j = 0; j < size; j++)
721
            wav_decode(ptr + j, s->xdelta, size, s->ysize, s->xdelta * size, maxval);
722
        ptr += s->xdelta * s->ysize * size;
723
    }
724
 
725
    apply_lut(td->lut, tmp, dsize / sizeof(int16_t));
726
 
727
    out = td->uncompressed_data;
728
    for (i = 0; i < s->ysize; i++) {
729
        for (j = 0; j < s->nb_channels; j++) {
730
            uint16_t *in = tmp + j * s->xdelta * s->ysize + i * s->xdelta;
731
            memcpy(out, in, s->xdelta * 2);
732
            out += s->xdelta * 2;
733
        }
734
    }
735
 
736
    return 0;
737
}
738
 
739
static int pxr24_uncompress(EXRContext *s, const uint8_t *src,
740
                            int compressed_size, int uncompressed_size,
741
                            EXRThreadData *td)
742
{
743
    unsigned long dest_len = uncompressed_size;
744
    const uint8_t *in = td->tmp;
745
    uint8_t *out;
746
    int c, i, j;
747
 
748
    if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
749
        dest_len != uncompressed_size)
750
        return AVERROR(EINVAL);
751
 
752
    out = td->uncompressed_data;
753
    for (i = 0; i < s->ysize; i++) {
754
        for (c = 0; c < s->nb_channels; c++) {
755
            EXRChannel *channel = &s->channels[c];
756
            const uint8_t *ptr[4];
757
            uint32_t pixel = 0;
758
 
759
            switch (channel->pixel_type) {
760
            case EXR_FLOAT:
761
                ptr[0] = in;
762
                ptr[1] = ptr[0] + s->xdelta;
763
                ptr[2] = ptr[1] + s->xdelta;
764
                in = ptr[2] + s->xdelta;
765
 
766
                for (j = 0; j < s->xdelta; ++j) {
767
                    uint32_t diff = (*(ptr[0]++) << 24) |
768
                                    (*(ptr[1]++) << 16) |
769
                                    (*(ptr[2]++) <<  8);
770
                    pixel += diff;
771
                    bytestream_put_le32(&out, pixel);
772
                }
773
                break;
774
            case EXR_HALF:
775
                ptr[0] = in;
776
                ptr[1] = ptr[0] + s->xdelta;
777
                in = ptr[1] + s->xdelta;
778
                for (j = 0; j < s->xdelta; j++) {
779
                    uint32_t diff = (*(ptr[0]++) << 8) | *(ptr[1]++);
780
 
781
                    pixel += diff;
782
                    bytestream_put_le16(&out, pixel);
783
                }
784
                break;
785
            default:
786
                av_assert1(0);
787
            }
788
        }
789
    }
790
 
791
    return 0;
792
}
793
 
794
static int decode_block(AVCodecContext *avctx, void *tdata,
795
                        int jobnr, int threadnr)
796
{
797
    EXRContext *s = avctx->priv_data;
798
    AVFrame *const p = s->picture;
799
    EXRThreadData *td = &s->thread_data[threadnr];
800
    const uint8_t *channel_buffer[4] = { 0 };
801
    const uint8_t *buf = s->buf;
802
    uint64_t line_offset, uncompressed_size;
803
    uint32_t xdelta = s->xdelta;
804
    uint16_t *ptr_x;
805
    uint8_t *ptr;
806
    int32_t data_size, line;
807
    const uint8_t *src;
808
    int axmax = (avctx->width - (s->xmax + 1)) * 2 * s->desc->nb_components;
809
    int bxmin = s->xmin * 2 * s->desc->nb_components;
810
    int i, x, buf_size = s->buf_size;
811
    int av_unused ret;
812
 
813
    line_offset = AV_RL64(s->table + jobnr * 8);
814
    // Check if the buffer has the required bytes needed from the offset
815
    if (line_offset > buf_size - 8)
816
        return AVERROR_INVALIDDATA;
817
 
818
    src = buf + line_offset + 8;
819
    line = AV_RL32(src - 8);
820
    if (line < s->ymin || line > s->ymax)
821
        return AVERROR_INVALIDDATA;
822
 
823
    data_size = AV_RL32(src - 4);
824
    if (data_size <= 0 || data_size > buf_size)
825
        return AVERROR_INVALIDDATA;
826
 
827
    s->ysize = FFMIN(s->scan_lines_per_block, s->ymax - line + 1);
828
    uncompressed_size = s->scan_line_size * s->ysize;
829
    if ((s->compr == EXR_RAW && (data_size != uncompressed_size ||
830
                                 line_offset > buf_size - uncompressed_size)) ||
831
        (s->compr != EXR_RAW && (data_size > uncompressed_size ||
832
                                 line_offset > buf_size - data_size))) {
833
        return AVERROR_INVALIDDATA;
834
    }
835
 
836
    if (data_size < uncompressed_size) {
837
        av_fast_padded_malloc(&td->uncompressed_data, &td->uncompressed_size, uncompressed_size);
838
        av_fast_padded_malloc(&td->tmp, &td->tmp_size, uncompressed_size);
839
        if (!td->uncompressed_data || !td->tmp)
840
            return AVERROR(ENOMEM);
841
 
842
        switch (s->compr) {
843
        case EXR_ZIP1:
844
        case EXR_ZIP16:
845
            ret = zip_uncompress(src, data_size, uncompressed_size, td);
846
            break;
847
        case EXR_PIZ:
848
            ret = piz_uncompress(s, src, data_size, uncompressed_size, td);
849
            break;
850
        case EXR_PXR24:
851
            ret = pxr24_uncompress(s, src, data_size, uncompressed_size, td);
852
            break;
853
        case EXR_RLE:
854
            ret = rle_uncompress(src, data_size, uncompressed_size, td);
855
        }
856
 
857
        src = td->uncompressed_data;
858
    }
859
 
860
    channel_buffer[0] = src + xdelta * s->channel_offsets[0];
861
    channel_buffer[1] = src + xdelta * s->channel_offsets[1];
862
    channel_buffer[2] = src + xdelta * s->channel_offsets[2];
863
    if (s->channel_offsets[3] >= 0)
864
        channel_buffer[3] = src + xdelta * s->channel_offsets[3];
865
 
866
    ptr = p->data[0] + line * p->linesize[0];
867
    for (i = 0; i < s->scan_lines_per_block && line + i <= s->ymax; i++, ptr += p->linesize[0]) {
868
        const uint8_t *r, *g, *b, *a;
869
 
870
        r = channel_buffer[0];
871
        g = channel_buffer[1];
872
        b = channel_buffer[2];
873
        if (channel_buffer[3])
874
            a = channel_buffer[3];
875
 
876
        ptr_x = (uint16_t *)ptr;
877
 
878
        // Zero out the start if xmin is not 0
879
        memset(ptr_x, 0, bxmin);
880
        ptr_x += s->xmin * s->desc->nb_components;
881
        if (s->pixel_type == EXR_FLOAT) {
882
            // 32-bit
883
            for (x = 0; x < xdelta; x++) {
884
                *ptr_x++ = exr_flt2uint(bytestream_get_le32(&r));
885
                *ptr_x++ = exr_flt2uint(bytestream_get_le32(&g));
886
                *ptr_x++ = exr_flt2uint(bytestream_get_le32(&b));
887
                if (channel_buffer[3])
888
                    *ptr_x++ = exr_flt2uint(bytestream_get_le32(&a));
889
            }
890
        } else {
891
            // 16-bit
892
            for (x = 0; x < xdelta; x++) {
893
                *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&r));
894
                *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&g));
895
                *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&b));
896
                if (channel_buffer[3])
897
                    *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&a));
898
            }
899
        }
900
 
901
        // Zero out the end if xmax+1 is not w
902
        memset(ptr_x, 0, axmax);
903
 
904
        channel_buffer[0] += s->scan_line_size;
905
        channel_buffer[1] += s->scan_line_size;
906
        channel_buffer[2] += s->scan_line_size;
907
        if (channel_buffer[3])
908
            channel_buffer[3] += s->scan_line_size;
909
    }
910
 
911
    return 0;
912
}
913
 
914
static int decode_frame(AVCodecContext *avctx,
915
                        void *data,
916
                        int *got_frame,
917
                        AVPacket *avpkt)
918
{
919
    const uint8_t *buf      = avpkt->data;
920
    unsigned int   buf_size = avpkt->size;
921
    const uint8_t *buf_end  = buf + buf_size;
922
 
923
    EXRContext *const s = avctx->priv_data;
924
    ThreadFrame frame = { .f = data };
925
    AVFrame *picture  = data;
926
    uint8_t *ptr;
927
 
928
    int i, y, magic_number, version, flags, ret;
929
    int w = 0;
930
    int h = 0;
931
 
932
    int out_line_size;
933
    int scan_line_blocks;
934
 
935
    unsigned int current_channel_offset = 0;
936
 
937
    s->xmin = ~0;
938
    s->xmax = ~0;
939
    s->ymin = ~0;
940
    s->ymax = ~0;
941
    s->xdelta = ~0;
942
    s->ydelta = ~0;
943
    s->channel_offsets[0] = -1;
944
    s->channel_offsets[1] = -1;
945
    s->channel_offsets[2] = -1;
946
    s->channel_offsets[3] = -1;
947
    s->pixel_type = -1;
948
    s->nb_channels = 0;
949
    s->compr = -1;
950
    s->buf = buf;
951
    s->buf_size = buf_size;
952
 
953
    if (buf_size < 10) {
954
        av_log(avctx, AV_LOG_ERROR, "Too short header to parse\n");
955
        return AVERROR_INVALIDDATA;
956
    }
957
 
958
    magic_number = bytestream_get_le32(&buf);
959
    if (magic_number != 20000630) { // As per documentation of OpenEXR it's supposed to be int 20000630 little-endian
960
        av_log(avctx, AV_LOG_ERROR, "Wrong magic number %d\n", magic_number);
961
        return AVERROR_INVALIDDATA;
962
    }
963
 
964
    version = bytestream_get_byte(&buf);
965
    if (version != 2) {
966
        avpriv_report_missing_feature(avctx, "Version %d", version);
967
        return AVERROR_PATCHWELCOME;
968
    }
969
 
970
    flags = bytestream_get_le24(&buf);
971
    if (flags & 0x2) {
972
        avpriv_report_missing_feature(avctx, "Tile support");
973
        return AVERROR_PATCHWELCOME;
974
    }
975
 
976
    // Parse the header
977
    while (buf < buf_end && buf[0]) {
978
        unsigned int variable_buffer_data_size;
979
        // Process the channel list
980
        if (check_header_variable(avctx, &buf, buf_end, "channels", "chlist", 38, &variable_buffer_data_size) >= 0) {
981
            const uint8_t *channel_list_end;
982
            if (!variable_buffer_data_size)
983
                return AVERROR_INVALIDDATA;
984
 
985
            channel_list_end = buf + variable_buffer_data_size;
986
            while (channel_list_end - buf >= 19) {
987
                EXRChannel *channel;
988
                enum ExrPixelType current_pixel_type;
989
                int channel_index = -1;
990
                int xsub, ysub;
991
 
992
                if (!strcmp(buf, "R"))
993
                    channel_index = 0;
994
                else if (!strcmp(buf, "G"))
995
                    channel_index = 1;
996
                else if (!strcmp(buf, "B"))
997
                    channel_index = 2;
998
                else if (!strcmp(buf, "A"))
999
                    channel_index = 3;
1000
                else
1001
                    av_log(avctx, AV_LOG_WARNING, "Unsupported channel %.256s\n", buf);
1002
 
1003
                while (bytestream_get_byte(&buf) && buf < channel_list_end)
1004
                    continue; /* skip */
1005
 
1006
                if (channel_list_end - * &buf < 4) {
1007
                    av_log(avctx, AV_LOG_ERROR, "Incomplete header\n");
1008
                    return AVERROR_INVALIDDATA;
1009
                }
1010
 
1011
                current_pixel_type = bytestream_get_le32(&buf);
1012
                if (current_pixel_type > 2) {
1013
                    av_log(avctx, AV_LOG_ERROR, "Unknown pixel type\n");
1014
                    return AVERROR_INVALIDDATA;
1015
                }
1016
 
1017
                buf += 4;
1018
                xsub = bytestream_get_le32(&buf);
1019
                ysub = bytestream_get_le32(&buf);
1020
                if (xsub != 1 || ysub != 1) {
1021
                    avpriv_report_missing_feature(avctx, "Subsampling %dx%d", xsub, ysub);
1022
                    return AVERROR_PATCHWELCOME;
1023
                }
1024
 
1025
                if (channel_index >= 0) {
1026
                    if (s->pixel_type != -1 && s->pixel_type != current_pixel_type) {
1027
                        av_log(avctx, AV_LOG_ERROR, "RGB channels not of the same depth\n");
1028
                        return AVERROR_INVALIDDATA;
1029
                    }
1030
                    s->pixel_type = current_pixel_type;
1031
                    s->channel_offsets[channel_index] = current_channel_offset;
1032
                }
1033
 
1034
                s->channels = av_realloc_f(s->channels, ++s->nb_channels, sizeof(EXRChannel));
1035
                if (!s->channels)
1036
                    return AVERROR(ENOMEM);
1037
                channel = &s->channels[s->nb_channels - 1];
1038
                channel->pixel_type = current_pixel_type;
1039
                channel->xsub = xsub;
1040
                channel->ysub = ysub;
1041
 
1042
                current_channel_offset += 1 << current_pixel_type;
1043
            }
1044
 
1045
            /* Check if all channels are set with an offset or if the channels
1046
             * are causing an overflow  */
1047
 
1048
            if (FFMIN3(s->channel_offsets[0],
1049
                       s->channel_offsets[1],
1050
                       s->channel_offsets[2]) < 0) {
1051
                if (s->channel_offsets[0] < 0)
1052
                    av_log(avctx, AV_LOG_ERROR, "Missing red channel\n");
1053
                if (s->channel_offsets[1] < 0)
1054
                    av_log(avctx, AV_LOG_ERROR, "Missing green channel\n");
1055
                if (s->channel_offsets[2] < 0)
1056
                    av_log(avctx, AV_LOG_ERROR, "Missing blue channel\n");
1057
                return AVERROR_INVALIDDATA;
1058
            }
1059
 
1060
            buf = channel_list_end;
1061
            continue;
1062
        } else if (check_header_variable(avctx, &buf, buf_end, "dataWindow", "box2i", 31, &variable_buffer_data_size) >= 0) {
1063
            if (!variable_buffer_data_size)
1064
                return AVERROR_INVALIDDATA;
1065
 
1066
            s->xmin = AV_RL32(buf);
1067
            s->ymin = AV_RL32(buf + 4);
1068
            s->xmax = AV_RL32(buf + 8);
1069
            s->ymax = AV_RL32(buf + 12);
1070
            s->xdelta = (s->xmax - s->xmin) + 1;
1071
            s->ydelta = (s->ymax - s->ymin) + 1;
1072
 
1073
            buf += variable_buffer_data_size;
1074
            continue;
1075
        } else if (check_header_variable(avctx, &buf, buf_end, "displayWindow", "box2i", 34, &variable_buffer_data_size) >= 0) {
1076
            if (!variable_buffer_data_size)
1077
                return AVERROR_INVALIDDATA;
1078
 
1079
            w = AV_RL32(buf + 8) + 1;
1080
            h = AV_RL32(buf + 12) + 1;
1081
 
1082
            buf += variable_buffer_data_size;
1083
            continue;
1084
        } else if (check_header_variable(avctx, &buf, buf_end, "lineOrder", "lineOrder", 25, &variable_buffer_data_size) >= 0) {
1085
            if (!variable_buffer_data_size)
1086
                return AVERROR_INVALIDDATA;
1087
 
1088
            av_log(avctx, AV_LOG_DEBUG, "line order : %d\n", *buf);
1089
            if (*buf > 2) {
1090
                av_log(avctx, AV_LOG_ERROR, "Unknown line order\n");
1091
                return AVERROR_INVALIDDATA;
1092
            }
1093
 
1094
            buf += variable_buffer_data_size;
1095
            continue;
1096
        } else if (check_header_variable(avctx, &buf, buf_end, "pixelAspectRatio", "float", 31, &variable_buffer_data_size) >= 0) {
1097
            if (!variable_buffer_data_size)
1098
                return AVERROR_INVALIDDATA;
1099
 
1100
            avctx->sample_aspect_ratio = av_d2q(av_int2float(AV_RL32(buf)), 255);
1101
 
1102
            buf += variable_buffer_data_size;
1103
            continue;
1104
        } else if (check_header_variable(avctx, &buf, buf_end, "compression", "compression", 29, &variable_buffer_data_size) >= 0) {
1105
            if (!variable_buffer_data_size)
1106
                return AVERROR_INVALIDDATA;
1107
 
1108
            if (s->compr == -1)
1109
                s->compr = *buf;
1110
            else
1111
                av_log(avctx, AV_LOG_WARNING, "Found more than one compression attribute\n");
1112
 
1113
            buf += variable_buffer_data_size;
1114
            continue;
1115
        }
1116
 
1117
        // Check if there is enough bytes for a header
1118
        if (buf_end - buf <= 9) {
1119
            av_log(avctx, AV_LOG_ERROR, "Incomplete header\n");
1120
            return AVERROR_INVALIDDATA;
1121
        }
1122
 
1123
        // Process unknown variables
1124
        for (i = 0; i < 2; i++) {
1125
            // Skip variable name/type
1126
            while (++buf < buf_end)
1127
                if (buf[0] == 0x0)
1128
                    break;
1129
        }
1130
        buf++;
1131
        // Skip variable length
1132
        if (buf_end - buf >= 5) {
1133
            variable_buffer_data_size = get_header_variable_length(&buf, buf_end);
1134
            if (!variable_buffer_data_size) {
1135
                av_log(avctx, AV_LOG_ERROR, "Incomplete header\n");
1136
                return AVERROR_INVALIDDATA;
1137
            }
1138
            buf += variable_buffer_data_size;
1139
        }
1140
    }
1141
 
1142
    if (s->compr == -1) {
1143
        av_log(avctx, AV_LOG_ERROR, "Missing compression attribute\n");
1144
        return AVERROR_INVALIDDATA;
1145
    }
1146
 
1147
    if (buf >= buf_end) {
1148
        av_log(avctx, AV_LOG_ERROR, "Incomplete frame\n");
1149
        return AVERROR_INVALIDDATA;
1150
    }
1151
    buf++;
1152
 
1153
    switch (s->pixel_type) {
1154
    case EXR_FLOAT:
1155
    case EXR_HALF:
1156
        if (s->channel_offsets[3] >= 0)
1157
            avctx->pix_fmt = AV_PIX_FMT_RGBA64;
1158
        else
1159
            avctx->pix_fmt = AV_PIX_FMT_RGB48;
1160
        break;
1161
    case EXR_UINT:
1162
        avpriv_request_sample(avctx, "32-bit unsigned int");
1163
        return AVERROR_PATCHWELCOME;
1164
    default:
1165
        av_log(avctx, AV_LOG_ERROR, "Missing channel list\n");
1166
        return AVERROR_INVALIDDATA;
1167
    }
1168
 
1169
    switch (s->compr) {
1170
    case EXR_RAW:
1171
    case EXR_RLE:
1172
    case EXR_ZIP1:
1173
        s->scan_lines_per_block = 1;
1174
        break;
1175
    case EXR_PXR24:
1176
    case EXR_ZIP16:
1177
        s->scan_lines_per_block = 16;
1178
        break;
1179
    case EXR_PIZ:
1180
        s->scan_lines_per_block = 32;
1181
        break;
1182
    default:
1183
        avpriv_report_missing_feature(avctx, "Compression %d", s->compr);
1184
        return AVERROR_PATCHWELCOME;
1185
    }
1186
 
1187
    if (av_image_check_size(w, h, 0, avctx))
1188
        return AVERROR_INVALIDDATA;
1189
 
1190
    // Verify the xmin, xmax, ymin, ymax and xdelta before setting the actual image size
1191
    if (s->xmin > s->xmax ||
1192
        s->ymin > s->ymax ||
1193
        s->xdelta != s->xmax - s->xmin + 1 ||
1194
        s->xmax >= w || s->ymax >= h) {
1195
        av_log(avctx, AV_LOG_ERROR, "Wrong sizing or missing size information\n");
1196
        return AVERROR_INVALIDDATA;
1197
    }
1198
 
1199
    if (w != avctx->width || h != avctx->height) {
1200
        avcodec_set_dimensions(avctx, w, h);
1201
    }
1202
 
1203
    s->desc = av_pix_fmt_desc_get(avctx->pix_fmt);
1204
    out_line_size = avctx->width * 2 * s->desc->nb_components;
1205
    s->scan_line_size = s->xdelta * current_channel_offset;
1206
    scan_line_blocks = (s->ydelta + s->scan_lines_per_block - 1) / s->scan_lines_per_block;
1207
 
1208
    if (s->compr != EXR_RAW) {
1209
        size_t thread_data_size, prev_size;
1210
        EXRThreadData *m;
1211
 
1212
        prev_size = s->thread_data_size;
1213
        if (av_size_mult(avctx->thread_count, sizeof(EXRThreadData), &thread_data_size))
1214
            return AVERROR(EINVAL);
1215
 
1216
        m = av_fast_realloc(s->thread_data, &s->thread_data_size, thread_data_size);
1217
        if (!m)
1218
            return AVERROR(ENOMEM);
1219
        s->thread_data = m;
1220
        memset(s->thread_data + prev_size, 0, s->thread_data_size - prev_size);
1221
    }
1222
 
1223
    if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
1224
        return ret;
1225
 
1226
    if (buf_end - buf < scan_line_blocks * 8)
1227
        return AVERROR_INVALIDDATA;
1228
    s->table = buf;
1229
    ptr = picture->data[0];
1230
 
1231
    // Zero out the start if ymin is not 0
1232
    for (y = 0; y < s->ymin; y++) {
1233
        memset(ptr, 0, out_line_size);
1234
        ptr += picture->linesize[0];
1235
    }
1236
 
1237
    s->picture = picture;
1238
    avctx->execute2(avctx, decode_block, s->thread_data, NULL, scan_line_blocks);
1239
 
1240
    // Zero out the end if ymax+1 is not h
1241
    for (y = s->ymax + 1; y < avctx->height; y++) {
1242
        memset(ptr, 0, out_line_size);
1243
        ptr += picture->linesize[0];
1244
    }
1245
 
1246
    picture->pict_type = AV_PICTURE_TYPE_I;
1247
    *got_frame = 1;
1248
 
1249
    return buf_size;
1250
}
1251
 
1252
static av_cold int decode_end(AVCodecContext *avctx)
1253
{
1254
    EXRContext *s = avctx->priv_data;
1255
    int i;
1256
 
1257
    for (i = 0; i < s->thread_data_size / sizeof(EXRThreadData); i++) {
1258
        EXRThreadData *td = &s->thread_data[i];
1259
        av_freep(&td->uncompressed_data);
1260
        av_freep(&td->tmp);
1261
        av_freep(&td->bitmap);
1262
        av_freep(&td->lut);
1263
    }
1264
 
1265
    av_freep(&s->thread_data);
1266
    s->thread_data_size = 0;
1267
    av_freep(&s->channels);
1268
 
1269
    return 0;
1270
}
1271
 
1272
AVCodec ff_exr_decoder = {
1273
    .name               = "exr",
1274
    .long_name          = NULL_IF_CONFIG_SMALL("OpenEXR image"),
1275
    .type               = AVMEDIA_TYPE_VIDEO,
1276
    .id                 = AV_CODEC_ID_EXR,
1277
    .priv_data_size     = sizeof(EXRContext),
1278
    .close              = decode_end,
1279
    .decode             = decode_frame,
1280
    .capabilities       = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS | CODEC_CAP_SLICE_THREADS,
1281
};