Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4349 Serge 1
/*
2
 * ATRAC3 compatible decoder
3
 * Copyright (c) 2006-2008 Maxim Poliakovski
4
 * Copyright (c) 2006-2008 Benjamin Larsson
5
 *
6
 * This file is part of FFmpeg.
7
 *
8
 * FFmpeg is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 */
22
 
23
/**
24
 * @file
25
 * ATRAC3 compatible decoder.
26
 * This decoder handles Sony's ATRAC3 data.
27
 *
28
 * Container formats used to store ATRAC3 data:
29
 * RealMedia (.rm), RIFF WAV (.wav, .at3), Sony OpenMG (.oma, .aa3).
30
 *
31
 * To use this decoder, a calling application must supply the extradata
32
 * bytes provided in the containers above.
33
 */
34
 
35
#include 
36
#include 
37
#include 
38
 
39
#include "libavutil/attributes.h"
40
#include "libavutil/float_dsp.h"
41
#include "libavutil/libm.h"
42
#include "avcodec.h"
43
#include "bytestream.h"
44
#include "fft.h"
45
#include "fmtconvert.h"
46
#include "get_bits.h"
47
#include "internal.h"
48
 
49
#include "atrac.h"
50
#include "atrac3data.h"
51
 
52
#define JOINT_STEREO    0x12
53
#define STEREO          0x2
54
 
55
#define SAMPLES_PER_FRAME 1024
56
#define MDCT_SIZE          512
57
 
58
typedef struct GainBlock {
59
    AtracGainInfo g_block[4];
60
} GainBlock;
61
 
62
typedef struct TonalComponent {
63
    int pos;
64
    int num_coefs;
65
    float coef[8];
66
} TonalComponent;
67
 
68
typedef struct ChannelUnit {
69
    int            bands_coded;
70
    int            num_components;
71
    float          prev_frame[SAMPLES_PER_FRAME];
72
    int            gc_blk_switch;
73
    TonalComponent components[64];
74
    GainBlock      gain_block[2];
75
 
76
    DECLARE_ALIGNED(32, float, spectrum)[SAMPLES_PER_FRAME];
77
    DECLARE_ALIGNED(32, float, imdct_buf)[SAMPLES_PER_FRAME];
78
 
79
    float          delay_buf1[46]; ///
80
    float          delay_buf2[46];
81
    float          delay_buf3[46];
82
} ChannelUnit;
83
 
84
typedef struct ATRAC3Context {
85
    GetBitContext gb;
86
    //@{
87
    /** stream data */
88
    int coding_mode;
89
 
90
    ChannelUnit *units;
91
    //@}
92
    //@{
93
    /** joint-stereo related variables */
94
    int matrix_coeff_index_prev[4];
95
    int matrix_coeff_index_now[4];
96
    int matrix_coeff_index_next[4];
97
    int weighting_delay[6];
98
    //@}
99
    //@{
100
    /** data buffers */
101
    uint8_t *decoded_bytes_buffer;
102
    float temp_buf[1070];
103
    //@}
104
    //@{
105
    /** extradata */
106
    int scrambled_stream;
107
    //@}
108
 
109
    AtracGCContext    gainc_ctx;
110
    FFTContext        mdct_ctx;
111
    FmtConvertContext fmt_conv;
112
    AVFloatDSPContext fdsp;
113
} ATRAC3Context;
114
 
115
static DECLARE_ALIGNED(32, float, mdct_window)[MDCT_SIZE];
116
static VLC_TYPE atrac3_vlc_table[4096][2];
117
static VLC   spectral_coeff_tab[7];
118
 
119
/**
120
 * Regular 512 points IMDCT without overlapping, with the exception of the
121
 * swapping of odd bands caused by the reverse spectra of the QMF.
122
 *
123
 * @param odd_band  1 if the band is an odd band
124
 */
125
static void imlt(ATRAC3Context *q, float *input, float *output, int odd_band)
126
{
127
    int i;
128
 
129
    if (odd_band) {
130
        /**
131
         * Reverse the odd bands before IMDCT, this is an effect of the QMF
132
         * transform or it gives better compression to do it this way.
133
         * FIXME: It should be possible to handle this in imdct_calc
134
         * for that to happen a modification of the prerotation step of
135
         * all SIMD code and C code is needed.
136
         * Or fix the functions before so they generate a pre reversed spectrum.
137
         */
138
        for (i = 0; i < 128; i++)
139
            FFSWAP(float, input[i], input[255 - i]);
140
    }
141
 
142
    q->mdct_ctx.imdct_calc(&q->mdct_ctx, output, input);
143
 
144
    /* Perform windowing on the output. */
145
    q->fdsp.vector_fmul(output, output, mdct_window, MDCT_SIZE);
146
}
147
 
148
/*
149
 * indata descrambling, only used for data coming from the rm container
150
 */
151
static int decode_bytes(const uint8_t *input, uint8_t *out, int bytes)
152
{
153
    int i, off;
154
    uint32_t c;
155
    const uint32_t *buf;
156
    uint32_t *output = (uint32_t *)out;
157
 
158
    off = (intptr_t)input & 3;
159
    buf = (const uint32_t *)(input - off);
160
    if (off)
161
        c = av_be2ne32((0x537F6103U >> (off * 8)) | (0x537F6103U << (32 - (off * 8))));
162
    else
163
        c = av_be2ne32(0x537F6103U);
164
    bytes += 3 + off;
165
    for (i = 0; i < bytes / 4; i++)
166
        output[i] = c ^ buf[i];
167
 
168
    if (off)
169
        avpriv_request_sample(NULL, "Offset of %d", off);
170
 
171
    return off;
172
}
173
 
174
static av_cold void init_imdct_window(void)
175
{
176
    int i, j;
177
 
178
    /* generate the mdct window, for details see
179
     * http://wiki.multimedia.cx/index.php?title=RealAudio_atrc#Windows */
180
    for (i = 0, j = 255; i < 128; i++, j--) {
181
        float wi = sin(((i + 0.5) / 256.0 - 0.5) * M_PI) + 1.0;
182
        float wj = sin(((j + 0.5) / 256.0 - 0.5) * M_PI) + 1.0;
183
        float w  = 0.5 * (wi * wi + wj * wj);
184
        mdct_window[i] = mdct_window[511 - i] = wi / w;
185
        mdct_window[j] = mdct_window[511 - j] = wj / w;
186
    }
187
}
188
 
189
static av_cold int atrac3_decode_close(AVCodecContext *avctx)
190
{
191
    ATRAC3Context *q = avctx->priv_data;
192
 
193
    av_free(q->units);
194
    av_free(q->decoded_bytes_buffer);
195
 
196
    ff_mdct_end(&q->mdct_ctx);
197
 
198
    return 0;
199
}
200
 
201
/**
202
 * Mantissa decoding
203
 *
204
 * @param selector     which table the output values are coded with
205
 * @param coding_flag  constant length coding or variable length coding
206
 * @param mantissas    mantissa output table
207
 * @param num_codes    number of values to get
208
 */
209
static void read_quant_spectral_coeffs(GetBitContext *gb, int selector,
210
                                       int coding_flag, int *mantissas,
211
                                       int num_codes)
212
{
213
    int i, code, huff_symb;
214
 
215
    if (selector == 1)
216
        num_codes /= 2;
217
 
218
    if (coding_flag != 0) {
219
        /* constant length coding (CLC) */
220
        int num_bits = clc_length_tab[selector];
221
 
222
        if (selector > 1) {
223
            for (i = 0; i < num_codes; i++) {
224
                if (num_bits)
225
                    code = get_sbits(gb, num_bits);
226
                else
227
                    code = 0;
228
                mantissas[i] = code;
229
            }
230
        } else {
231
            for (i = 0; i < num_codes; i++) {
232
                if (num_bits)
233
                    code = get_bits(gb, num_bits); // num_bits is always 4 in this case
234
                else
235
                    code = 0;
236
                mantissas[i * 2    ] = mantissa_clc_tab[code >> 2];
237
                mantissas[i * 2 + 1] = mantissa_clc_tab[code &  3];
238
            }
239
        }
240
    } else {
241
        /* variable length coding (VLC) */
242
        if (selector != 1) {
243
            for (i = 0; i < num_codes; i++) {
244
                huff_symb = get_vlc2(gb, spectral_coeff_tab[selector-1].table,
245
                                     spectral_coeff_tab[selector-1].bits, 3);
246
                huff_symb += 1;
247
                code = huff_symb >> 1;
248
                if (huff_symb & 1)
249
                    code = -code;
250
                mantissas[i] = code;
251
            }
252
        } else {
253
            for (i = 0; i < num_codes; i++) {
254
                huff_symb = get_vlc2(gb, spectral_coeff_tab[selector - 1].table,
255
                                     spectral_coeff_tab[selector - 1].bits, 3);
256
                mantissas[i * 2    ] = mantissa_vlc_tab[huff_symb * 2    ];
257
                mantissas[i * 2 + 1] = mantissa_vlc_tab[huff_symb * 2 + 1];
258
            }
259
        }
260
    }
261
}
262
 
263
/**
264
 * Restore the quantized band spectrum coefficients
265
 *
266
 * @return subband count, fix for broken specification/files
267
 */
268
static int decode_spectrum(GetBitContext *gb, float *output)
269
{
270
    int num_subbands, coding_mode, i, j, first, last, subband_size;
271
    int subband_vlc_index[32], sf_index[32];
272
    int mantissas[128];
273
    float scale_factor;
274
 
275
    num_subbands = get_bits(gb, 5);  // number of coded subbands
276
    coding_mode  = get_bits1(gb);    // coding Mode: 0 - VLC/ 1-CLC
277
 
278
    /* get the VLC selector table for the subbands, 0 means not coded */
279
    for (i = 0; i <= num_subbands; i++)
280
        subband_vlc_index[i] = get_bits(gb, 3);
281
 
282
    /* read the scale factor indexes from the stream */
283
    for (i = 0; i <= num_subbands; i++) {
284
        if (subband_vlc_index[i] != 0)
285
            sf_index[i] = get_bits(gb, 6);
286
    }
287
 
288
    for (i = 0; i <= num_subbands; i++) {
289
        first = subband_tab[i    ];
290
        last  = subband_tab[i + 1];
291
 
292
        subband_size = last - first;
293
 
294
        if (subband_vlc_index[i] != 0) {
295
            /* decode spectral coefficients for this subband */
296
            /* TODO: This can be done faster is several blocks share the
297
             * same VLC selector (subband_vlc_index) */
298
            read_quant_spectral_coeffs(gb, subband_vlc_index[i], coding_mode,
299
                                       mantissas, subband_size);
300
 
301
            /* decode the scale factor for this subband */
302
            scale_factor = ff_atrac_sf_table[sf_index[i]] *
303
                           inv_max_quant[subband_vlc_index[i]];
304
 
305
            /* inverse quantize the coefficients */
306
            for (j = 0; first < last; first++, j++)
307
                output[first] = mantissas[j] * scale_factor;
308
        } else {
309
            /* this subband was not coded, so zero the entire subband */
310
            memset(output + first, 0, subband_size * sizeof(*output));
311
        }
312
    }
313
 
314
    /* clear the subbands that were not coded */
315
    first = subband_tab[i];
316
    memset(output + first, 0, (SAMPLES_PER_FRAME - first) * sizeof(*output));
317
    return num_subbands;
318
}
319
 
320
/**
321
 * Restore the quantized tonal components
322
 *
323
 * @param components tonal components
324
 * @param num_bands  number of coded bands
325
 */
326
static int decode_tonal_components(GetBitContext *gb,
327
                                   TonalComponent *components, int num_bands)
328
{
329
    int i, b, c, m;
330
    int nb_components, coding_mode_selector, coding_mode;
331
    int band_flags[4], mantissa[8];
332
    int component_count = 0;
333
 
334
    nb_components = get_bits(gb, 5);
335
 
336
    /* no tonal components */
337
    if (nb_components == 0)
338
        return 0;
339
 
340
    coding_mode_selector = get_bits(gb, 2);
341
    if (coding_mode_selector == 2)
342
        return AVERROR_INVALIDDATA;
343
 
344
    coding_mode = coding_mode_selector & 1;
345
 
346
    for (i = 0; i < nb_components; i++) {
347
        int coded_values_per_component, quant_step_index;
348
 
349
        for (b = 0; b <= num_bands; b++)
350
            band_flags[b] = get_bits1(gb);
351
 
352
        coded_values_per_component = get_bits(gb, 3);
353
 
354
        quant_step_index = get_bits(gb, 3);
355
        if (quant_step_index <= 1)
356
            return AVERROR_INVALIDDATA;
357
 
358
        if (coding_mode_selector == 3)
359
            coding_mode = get_bits1(gb);
360
 
361
        for (b = 0; b < (num_bands + 1) * 4; b++) {
362
            int coded_components;
363
 
364
            if (band_flags[b >> 2] == 0)
365
                continue;
366
 
367
            coded_components = get_bits(gb, 3);
368
 
369
            for (c = 0; c < coded_components; c++) {
370
                TonalComponent *cmp = &components[component_count];
371
                int sf_index, coded_values, max_coded_values;
372
                float scale_factor;
373
 
374
                sf_index = get_bits(gb, 6);
375
                if (component_count >= 64)
376
                    return AVERROR_INVALIDDATA;
377
 
378
                cmp->pos = b * 64 + get_bits(gb, 6);
379
 
380
                max_coded_values = SAMPLES_PER_FRAME - cmp->pos;
381
                coded_values     = coded_values_per_component + 1;
382
                coded_values     = FFMIN(max_coded_values, coded_values);
383
 
384
                scale_factor = ff_atrac_sf_table[sf_index] *
385
                               inv_max_quant[quant_step_index];
386
 
387
                read_quant_spectral_coeffs(gb, quant_step_index, coding_mode,
388
                                           mantissa, coded_values);
389
 
390
                cmp->num_coefs = coded_values;
391
 
392
                /* inverse quant */
393
                for (m = 0; m < coded_values; m++)
394
                    cmp->coef[m] = mantissa[m] * scale_factor;
395
 
396
                component_count++;
397
            }
398
        }
399
    }
400
 
401
    return component_count;
402
}
403
 
404
/**
405
 * Decode gain parameters for the coded bands
406
 *
407
 * @param block      the gainblock for the current band
408
 * @param num_bands  amount of coded bands
409
 */
410
static int decode_gain_control(GetBitContext *gb, GainBlock *block,
411
                               int num_bands)
412
{
413
    int b, j;
414
    int *level, *loc;
415
 
416
    AtracGainInfo *gain = block->g_block;
417
 
418
    for (b = 0; b <= num_bands; b++) {
419
        gain[b].num_points = get_bits(gb, 3);
420
        level              = gain[b].lev_code;
421
        loc                = gain[b].loc_code;
422
 
423
        for (j = 0; j < gain[b].num_points; j++) {
424
            level[j] = get_bits(gb, 4);
425
            loc[j]   = get_bits(gb, 5);
426
            if (j && loc[j] <= loc[j - 1])
427
                return AVERROR_INVALIDDATA;
428
        }
429
    }
430
 
431
    /* Clear the unused blocks. */
432
    for (; b < 4 ; b++)
433
        gain[b].num_points = 0;
434
 
435
    return 0;
436
}
437
 
438
/**
439
 * Combine the tonal band spectrum and regular band spectrum
440
 *
441
 * @param spectrum        output spectrum buffer
442
 * @param num_components  number of tonal components
443
 * @param components      tonal components for this band
444
 * @return                position of the last tonal coefficient
445
 */
446
static int add_tonal_components(float *spectrum, int num_components,
447
                                TonalComponent *components)
448
{
449
    int i, j, last_pos = -1;
450
    float *input, *output;
451
 
452
    for (i = 0; i < num_components; i++) {
453
        last_pos = FFMAX(components[i].pos + components[i].num_coefs, last_pos);
454
        input    = components[i].coef;
455
        output   = &spectrum[components[i].pos];
456
 
457
        for (j = 0; j < components[i].num_coefs; j++)
458
            output[j] += input[j];
459
    }
460
 
461
    return last_pos;
462
}
463
 
464
#define INTERPOLATE(old, new, nsample) \
465
    ((old) + (nsample) * 0.125 * ((new) - (old)))
466
 
467
static void reverse_matrixing(float *su1, float *su2, int *prev_code,
468
                              int *curr_code)
469
{
470
    int i, nsample, band;
471
    float mc1_l, mc1_r, mc2_l, mc2_r;
472
 
473
    for (i = 0, band = 0; band < 4 * 256; band += 256, i++) {
474
        int s1 = prev_code[i];
475
        int s2 = curr_code[i];
476
        nsample = band;
477
 
478
        if (s1 != s2) {
479
            /* Selector value changed, interpolation needed. */
480
            mc1_l = matrix_coeffs[s1 * 2    ];
481
            mc1_r = matrix_coeffs[s1 * 2 + 1];
482
            mc2_l = matrix_coeffs[s2 * 2    ];
483
            mc2_r = matrix_coeffs[s2 * 2 + 1];
484
 
485
            /* Interpolation is done over the first eight samples. */
486
            for (; nsample < band + 8; nsample++) {
487
                float c1 = su1[nsample];
488
                float c2 = su2[nsample];
489
                c2 = c1 * INTERPOLATE(mc1_l, mc2_l, nsample - band) +
490
                     c2 * INTERPOLATE(mc1_r, mc2_r, nsample - band);
491
                su1[nsample] = c2;
492
                su2[nsample] = c1 * 2.0 - c2;
493
            }
494
        }
495
 
496
        /* Apply the matrix without interpolation. */
497
        switch (s2) {
498
        case 0:     /* M/S decoding */
499
            for (; nsample < band + 256; nsample++) {
500
                float c1 = su1[nsample];
501
                float c2 = su2[nsample];
502
                su1[nsample] =  c2       * 2.0;
503
                su2[nsample] = (c1 - c2) * 2.0;
504
            }
505
            break;
506
        case 1:
507
            for (; nsample < band + 256; nsample++) {
508
                float c1 = su1[nsample];
509
                float c2 = su2[nsample];
510
                su1[nsample] = (c1 + c2) *  2.0;
511
                su2[nsample] =  c2       * -2.0;
512
            }
513
            break;
514
        case 2:
515
        case 3:
516
            for (; nsample < band + 256; nsample++) {
517
                float c1 = su1[nsample];
518
                float c2 = su2[nsample];
519
                su1[nsample] = c1 + c2;
520
                su2[nsample] = c1 - c2;
521
            }
522
            break;
523
        default:
524
            av_assert1(0);
525
        }
526
    }
527
}
528
 
529
static void get_channel_weights(int index, int flag, float ch[2])
530
{
531
    if (index == 7) {
532
        ch[0] = 1.0;
533
        ch[1] = 1.0;
534
    } else {
535
        ch[0] = (index & 7) / 7.0;
536
        ch[1] = sqrt(2 - ch[0] * ch[0]);
537
        if (flag)
538
            FFSWAP(float, ch[0], ch[1]);
539
    }
540
}
541
 
542
static void channel_weighting(float *su1, float *su2, int *p3)
543
{
544
    int band, nsample;
545
    /* w[x][y] y=0 is left y=1 is right */
546
    float w[2][2];
547
 
548
    if (p3[1] != 7 || p3[3] != 7) {
549
        get_channel_weights(p3[1], p3[0], w[0]);
550
        get_channel_weights(p3[3], p3[2], w[1]);
551
 
552
        for (band = 256; band < 4 * 256; band += 256) {
553
            for (nsample = band; nsample < band + 8; nsample++) {
554
                su1[nsample] *= INTERPOLATE(w[0][0], w[0][1], nsample - band);
555
                su2[nsample] *= INTERPOLATE(w[1][0], w[1][1], nsample - band);
556
            }
557
            for(; nsample < band + 256; nsample++) {
558
                su1[nsample] *= w[1][0];
559
                su2[nsample] *= w[1][1];
560
            }
561
        }
562
    }
563
}
564
 
565
/**
566
 * Decode a Sound Unit
567
 *
568
 * @param snd           the channel unit to be used
569
 * @param output        the decoded samples before IQMF in float representation
570
 * @param channel_num   channel number
571
 * @param coding_mode   the coding mode (JOINT_STEREO or regular stereo/mono)
572
 */
573
static int decode_channel_sound_unit(ATRAC3Context *q, GetBitContext *gb,
574
                                     ChannelUnit *snd, float *output,
575
                                     int channel_num, int coding_mode)
576
{
577
    int band, ret, num_subbands, last_tonal, num_bands;
578
    GainBlock *gain1 = &snd->gain_block[    snd->gc_blk_switch];
579
    GainBlock *gain2 = &snd->gain_block[1 - snd->gc_blk_switch];
580
 
581
    if (coding_mode == JOINT_STEREO && channel_num == 1) {
582
        if (get_bits(gb, 2) != 3) {
583
            av_log(NULL,AV_LOG_ERROR,"JS mono Sound Unit id != 3.\n");
584
            return AVERROR_INVALIDDATA;
585
        }
586
    } else {
587
        if (get_bits(gb, 6) != 0x28) {
588
            av_log(NULL,AV_LOG_ERROR,"Sound Unit id != 0x28.\n");
589
            return AVERROR_INVALIDDATA;
590
        }
591
    }
592
 
593
    /* number of coded QMF bands */
594
    snd->bands_coded = get_bits(gb, 2);
595
 
596
    ret = decode_gain_control(gb, gain2, snd->bands_coded);
597
    if (ret)
598
        return ret;
599
 
600
    snd->num_components = decode_tonal_components(gb, snd->components,
601
                                                  snd->bands_coded);
602
    if (snd->num_components < 0)
603
        return snd->num_components;
604
 
605
    num_subbands = decode_spectrum(gb, snd->spectrum);
606
 
607
    /* Merge the decoded spectrum and tonal components. */
608
    last_tonal = add_tonal_components(snd->spectrum, snd->num_components,
609
                                      snd->components);
610
 
611
 
612
    /* calculate number of used MLT/QMF bands according to the amount of coded
613
       spectral lines */
614
    num_bands = (subband_tab[num_subbands] - 1) >> 8;
615
    if (last_tonal >= 0)
616
        num_bands = FFMAX((last_tonal + 256) >> 8, num_bands);
617
 
618
 
619
    /* Reconstruct time domain samples. */
620
    for (band = 0; band < 4; band++) {
621
        /* Perform the IMDCT step without overlapping. */
622
        if (band <= num_bands)
623
            imlt(q, &snd->spectrum[band * 256], snd->imdct_buf, band & 1);
624
        else
625
            memset(snd->imdct_buf, 0, 512 * sizeof(*snd->imdct_buf));
626
 
627
        /* gain compensation and overlapping */
628
        ff_atrac_gain_compensation(&q->gainc_ctx, snd->imdct_buf,
629
                                   &snd->prev_frame[band * 256],
630
                                   &gain1->g_block[band], &gain2->g_block[band],
631
                                   256, &output[band * 256]);
632
    }
633
 
634
    /* Swap the gain control buffers for the next frame. */
635
    snd->gc_blk_switch ^= 1;
636
 
637
    return 0;
638
}
639
 
640
static int decode_frame(AVCodecContext *avctx, const uint8_t *databuf,
641
                        float **out_samples)
642
{
643
    ATRAC3Context *q = avctx->priv_data;
644
    int ret, i;
645
    uint8_t *ptr1;
646
 
647
    if (q->coding_mode == JOINT_STEREO) {
648
        /* channel coupling mode */
649
        /* decode Sound Unit 1 */
650
        init_get_bits(&q->gb, databuf, avctx->block_align * 8);
651
 
652
        ret = decode_channel_sound_unit(q, &q->gb, q->units, out_samples[0], 0,
653
                                        JOINT_STEREO);
654
        if (ret != 0)
655
            return ret;
656
 
657
        /* Framedata of the su2 in the joint-stereo mode is encoded in
658
         * reverse byte order so we need to swap it first. */
659
        if (databuf == q->decoded_bytes_buffer) {
660
            uint8_t *ptr2 = q->decoded_bytes_buffer + avctx->block_align - 1;
661
            ptr1          = q->decoded_bytes_buffer;
662
            for (i = 0; i < avctx->block_align / 2; i++, ptr1++, ptr2--)
663
                FFSWAP(uint8_t, *ptr1, *ptr2);
664
        } else {
665
            const uint8_t *ptr2 = databuf + avctx->block_align - 1;
666
            for (i = 0; i < avctx->block_align; i++)
667
                q->decoded_bytes_buffer[i] = *ptr2--;
668
        }
669
 
670
        /* Skip the sync codes (0xF8). */
671
        ptr1 = q->decoded_bytes_buffer;
672
        for (i = 4; *ptr1 == 0xF8; i++, ptr1++) {
673
            if (i >= avctx->block_align)
674
                return AVERROR_INVALIDDATA;
675
        }
676
 
677
 
678
        /* set the bitstream reader at the start of the second Sound Unit*/
679
        init_get_bits8(&q->gb, ptr1, q->decoded_bytes_buffer + avctx->block_align - ptr1);
680
 
681
        /* Fill the Weighting coeffs delay buffer */
682
        memmove(q->weighting_delay, &q->weighting_delay[2],
683
                4 * sizeof(*q->weighting_delay));
684
        q->weighting_delay[4] = get_bits1(&q->gb);
685
        q->weighting_delay[5] = get_bits(&q->gb, 3);
686
 
687
        for (i = 0; i < 4; i++) {
688
            q->matrix_coeff_index_prev[i] = q->matrix_coeff_index_now[i];
689
            q->matrix_coeff_index_now[i]  = q->matrix_coeff_index_next[i];
690
            q->matrix_coeff_index_next[i] = get_bits(&q->gb, 2);
691
        }
692
 
693
        /* Decode Sound Unit 2. */
694
        ret = decode_channel_sound_unit(q, &q->gb, &q->units[1],
695
                                        out_samples[1], 1, JOINT_STEREO);
696
        if (ret != 0)
697
            return ret;
698
 
699
        /* Reconstruct the channel coefficients. */
700
        reverse_matrixing(out_samples[0], out_samples[1],
701
                          q->matrix_coeff_index_prev,
702
                          q->matrix_coeff_index_now);
703
 
704
        channel_weighting(out_samples[0], out_samples[1], q->weighting_delay);
705
    } else {
706
        /* normal stereo mode or mono */
707
        /* Decode the channel sound units. */
708
        for (i = 0; i < avctx->channels; i++) {
709
            /* Set the bitstream reader at the start of a channel sound unit. */
710
            init_get_bits(&q->gb,
711
                          databuf + i * avctx->block_align / avctx->channels,
712
                          avctx->block_align * 8 / avctx->channels);
713
 
714
            ret = decode_channel_sound_unit(q, &q->gb, &q->units[i],
715
                                            out_samples[i], i, q->coding_mode);
716
            if (ret != 0)
717
                return ret;
718
        }
719
    }
720
 
721
    /* Apply the iQMF synthesis filter. */
722
    for (i = 0; i < avctx->channels; i++) {
723
        float *p1 = out_samples[i];
724
        float *p2 = p1 + 256;
725
        float *p3 = p2 + 256;
726
        float *p4 = p3 + 256;
727
        ff_atrac_iqmf(p1, p2, 256, p1, q->units[i].delay_buf1, q->temp_buf);
728
        ff_atrac_iqmf(p4, p3, 256, p3, q->units[i].delay_buf2, q->temp_buf);
729
        ff_atrac_iqmf(p1, p3, 512, p1, q->units[i].delay_buf3, q->temp_buf);
730
    }
731
 
732
    return 0;
733
}
734
 
735
static int atrac3_decode_frame(AVCodecContext *avctx, void *data,
736
                               int *got_frame_ptr, AVPacket *avpkt)
737
{
738
    AVFrame *frame     = data;
739
    const uint8_t *buf = avpkt->data;
740
    int buf_size = avpkt->size;
741
    ATRAC3Context *q = avctx->priv_data;
742
    int ret;
743
    const uint8_t *databuf;
744
 
745
    if (buf_size < avctx->block_align) {
746
        av_log(avctx, AV_LOG_ERROR,
747
               "Frame too small (%d bytes). Truncated file?\n", buf_size);
748
        return AVERROR_INVALIDDATA;
749
    }
750
 
751
    /* get output buffer */
752
    frame->nb_samples = SAMPLES_PER_FRAME;
753
    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
754
        return ret;
755
 
756
    /* Check if we need to descramble and what buffer to pass on. */
757
    if (q->scrambled_stream) {
758
        decode_bytes(buf, q->decoded_bytes_buffer, avctx->block_align);
759
        databuf = q->decoded_bytes_buffer;
760
    } else {
761
        databuf = buf;
762
    }
763
 
764
    ret = decode_frame(avctx, databuf, (float **)frame->extended_data);
765
    if (ret) {
766
        av_log(NULL, AV_LOG_ERROR, "Frame decoding error!\n");
767
        return ret;
768
    }
769
 
770
    *got_frame_ptr = 1;
771
 
772
    return avctx->block_align;
773
}
774
 
775
static av_cold void atrac3_init_static_data(void)
776
{
777
    int i;
778
 
779
    init_imdct_window();
780
    ff_atrac_generate_tables();
781
 
782
    /* Initialize the VLC tables. */
783
    for (i = 0; i < 7; i++) {
784
        spectral_coeff_tab[i].table = &atrac3_vlc_table[atrac3_vlc_offs[i]];
785
        spectral_coeff_tab[i].table_allocated = atrac3_vlc_offs[i + 1] -
786
                                                atrac3_vlc_offs[i    ];
787
        init_vlc(&spectral_coeff_tab[i], 9, huff_tab_sizes[i],
788
                 huff_bits[i],  1, 1,
789
                 huff_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
790
    }
791
}
792
 
793
static av_cold int atrac3_decode_init(AVCodecContext *avctx)
794
{
795
    static int static_init_done;
796
    int i, ret;
797
    int version, delay, samples_per_frame, frame_factor;
798
    const uint8_t *edata_ptr = avctx->extradata;
799
    ATRAC3Context *q = avctx->priv_data;
800
 
801
    if (avctx->channels <= 0 || avctx->channels > 2) {
802
        av_log(avctx, AV_LOG_ERROR, "Channel configuration error!\n");
803
        return AVERROR(EINVAL);
804
    }
805
 
806
    if (!static_init_done)
807
        atrac3_init_static_data();
808
    static_init_done = 1;
809
 
810
    /* Take care of the codec-specific extradata. */
811
    if (avctx->extradata_size == 14) {
812
        /* Parse the extradata, WAV format */
813
        av_log(avctx, AV_LOG_DEBUG, "[0-1] %d\n",
814
               bytestream_get_le16(&edata_ptr));  // Unknown value always 1
815
        edata_ptr += 4;                             // samples per channel
816
        q->coding_mode = bytestream_get_le16(&edata_ptr);
817
        av_log(avctx, AV_LOG_DEBUG,"[8-9] %d\n",
818
               bytestream_get_le16(&edata_ptr));  //Dupe of coding mode
819
        frame_factor = bytestream_get_le16(&edata_ptr);  // Unknown always 1
820
        av_log(avctx, AV_LOG_DEBUG,"[12-13] %d\n",
821
               bytestream_get_le16(&edata_ptr));  // Unknown always 0
822
 
823
        /* setup */
824
        samples_per_frame    = SAMPLES_PER_FRAME * avctx->channels;
825
        version              = 4;
826
        delay                = 0x88E;
827
        q->coding_mode       = q->coding_mode ? JOINT_STEREO : STEREO;
828
        q->scrambled_stream  = 0;
829
 
830
        if (avctx->block_align !=  96 * avctx->channels * frame_factor &&
831
            avctx->block_align != 152 * avctx->channels * frame_factor &&
832
            avctx->block_align != 192 * avctx->channels * frame_factor) {
833
            av_log(avctx, AV_LOG_ERROR, "Unknown frame/channel/frame_factor "
834
                   "configuration %d/%d/%d\n", avctx->block_align,
835
                   avctx->channels, frame_factor);
836
            return AVERROR_INVALIDDATA;
837
        }
838
    } else if (avctx->extradata_size == 12 || avctx->extradata_size == 10) {
839
        /* Parse the extradata, RM format. */
840
        version                = bytestream_get_be32(&edata_ptr);
841
        samples_per_frame      = bytestream_get_be16(&edata_ptr);
842
        delay                  = bytestream_get_be16(&edata_ptr);
843
        q->coding_mode         = bytestream_get_be16(&edata_ptr);
844
        q->scrambled_stream    = 1;
845
 
846
    } else {
847
        av_log(NULL, AV_LOG_ERROR, "Unknown extradata size %d.\n",
848
               avctx->extradata_size);
849
        return AVERROR(EINVAL);
850
    }
851
 
852
    /* Check the extradata */
853
 
854
    if (version != 4) {
855
        av_log(avctx, AV_LOG_ERROR, "Version %d != 4.\n", version);
856
        return AVERROR_INVALIDDATA;
857
    }
858
 
859
    if (samples_per_frame != SAMPLES_PER_FRAME &&
860
        samples_per_frame != SAMPLES_PER_FRAME * 2) {
861
        av_log(avctx, AV_LOG_ERROR, "Unknown amount of samples per frame %d.\n",
862
               samples_per_frame);
863
        return AVERROR_INVALIDDATA;
864
    }
865
 
866
    if (delay != 0x88E) {
867
        av_log(avctx, AV_LOG_ERROR, "Unknown amount of delay %x != 0x88E.\n",
868
               delay);
869
        return AVERROR_INVALIDDATA;
870
    }
871
 
872
    if (q->coding_mode == STEREO)
873
        av_log(avctx, AV_LOG_DEBUG, "Normal stereo detected.\n");
874
    else if (q->coding_mode == JOINT_STEREO) {
875
        if (avctx->channels != 2) {
876
            av_log(avctx, AV_LOG_ERROR, "Invalid coding mode\n");
877
            return AVERROR_INVALIDDATA;
878
        }
879
        av_log(avctx, AV_LOG_DEBUG, "Joint stereo detected.\n");
880
    } else {
881
        av_log(avctx, AV_LOG_ERROR, "Unknown channel coding mode %x!\n",
882
               q->coding_mode);
883
        return AVERROR_INVALIDDATA;
884
    }
885
 
886
    if (avctx->block_align >= UINT_MAX / 2)
887
        return AVERROR(EINVAL);
888
 
889
    q->decoded_bytes_buffer = av_mallocz(FFALIGN(avctx->block_align, 4) +
890
                                         FF_INPUT_BUFFER_PADDING_SIZE);
891
    if (q->decoded_bytes_buffer == NULL)
892
        return AVERROR(ENOMEM);
893
 
894
    avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
895
 
896
    /* initialize the MDCT transform */
897
    if ((ret = ff_mdct_init(&q->mdct_ctx, 9, 1, 1.0 / 32768)) < 0) {
898
        av_log(avctx, AV_LOG_ERROR, "Error initializing MDCT\n");
899
        av_freep(&q->decoded_bytes_buffer);
900
        return ret;
901
    }
902
 
903
    /* init the joint-stereo decoding data */
904
    q->weighting_delay[0] = 0;
905
    q->weighting_delay[1] = 7;
906
    q->weighting_delay[2] = 0;
907
    q->weighting_delay[3] = 7;
908
    q->weighting_delay[4] = 0;
909
    q->weighting_delay[5] = 7;
910
 
911
    for (i = 0; i < 4; i++) {
912
        q->matrix_coeff_index_prev[i] = 3;
913
        q->matrix_coeff_index_now[i]  = 3;
914
        q->matrix_coeff_index_next[i] = 3;
915
    }
916
 
917
    ff_atrac_init_gain_compensation(&q->gainc_ctx, 4, 3);
918
    avpriv_float_dsp_init(&q->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
919
    ff_fmt_convert_init(&q->fmt_conv, avctx);
920
 
921
    q->units = av_mallocz(sizeof(*q->units) * avctx->channels);
922
    if (!q->units) {
923
        atrac3_decode_close(avctx);
924
        return AVERROR(ENOMEM);
925
    }
926
 
927
    return 0;
928
}
929
 
930
AVCodec ff_atrac3_decoder = {
931
    .name             = "atrac3",
932
    .long_name        = NULL_IF_CONFIG_SMALL("ATRAC3 (Adaptive TRansform Acoustic Coding 3)"),
933
    .type             = AVMEDIA_TYPE_AUDIO,
934
    .id               = AV_CODEC_ID_ATRAC3,
935
    .priv_data_size   = sizeof(ATRAC3Context),
936
    .init             = atrac3_decode_init,
937
    .close            = atrac3_decode_close,
938
    .decode           = atrac3_decode_frame,
939
    .capabilities     = CODEC_CAP_SUBFRAMES | CODEC_CAP_DR1,
940
    .sample_fmts      = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
941
                                                        AV_SAMPLE_FMT_NONE },
942
};