Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4349 Serge 1
/*
2
 * various filters for ACELP-based codecs
3
 *
4
 * Copyright (c) 2008 Vladimir Voroshilov
5
 *
6
 * This file is part of FFmpeg.
7
 *
8
 * FFmpeg is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 */
22
 
23
#ifndef AVCODEC_ACELP_FILTERS_H
24
#define AVCODEC_ACELP_FILTERS_H
25
 
26
#include 
27
 
28
typedef struct ACELPFContext {
29
    /**
30
    * Floating point version of ff_acelp_interpolate()
31
    */
32
    void (*acelp_interpolatef)(float *out, const float *in,
33
                            const float *filter_coeffs, int precision,
34
                            int frac_pos, int filter_length, int length);
35
 
36
    /**
37
     * Apply an order 2 rational transfer function in-place.
38
     *
39
     * @param out output buffer for filtered speech samples
40
     * @param in input buffer containing speech data (may be the same as out)
41
     * @param zero_coeffs z^-1 and z^-2 coefficients of the numerator
42
     * @param pole_coeffs z^-1 and z^-2 coefficients of the denominator
43
     * @param gain scale factor for final output
44
     * @param mem intermediate values used by filter (should be 0 initially)
45
     * @param n number of samples (should be a multiple of eight)
46
     */
47
    void (*acelp_apply_order_2_transfer_function)(float *out, const float *in,
48
                                                  const float zero_coeffs[2],
49
                                                  const float pole_coeffs[2],
50
                                                  float gain,
51
                                                  float mem[2], int n);
52
 
53
}ACELPFContext;
54
 
55
/**
56
 * Initialize ACELPFContext.
57
 */
58
void ff_acelp_filter_init(ACELPFContext *c);
59
void ff_acelp_filter_init_mips(ACELPFContext *c);
60
 
61
/**
62
 * low-pass Finite Impulse Response filter coefficients.
63
 *
64
 * Hamming windowed sinc filter with cutoff freq 3/40 of the sampling freq,
65
 * the coefficients are scaled by 2^15.
66
 * This array only contains the right half of the filter.
67
 * This filter is likely identical to the one used in G.729, though this
68
 * could not be determined from the original comments with certainty.
69
 */
70
extern const int16_t ff_acelp_interp_filter[61];
71
 
72
/**
73
 * Generic FIR interpolation routine.
74
 * @param[out] out buffer for interpolated data
75
 * @param in input data
76
 * @param filter_coeffs interpolation filter coefficients (0.15)
77
 * @param precision sub sample factor, that is the precision of the position
78
 * @param frac_pos fractional part of position [0..precision-1]
79
 * @param filter_length filter length
80
 * @param length length of output
81
 *
82
 * filter_coeffs contains coefficients of the right half of the symmetric
83
 * interpolation filter. filter_coeffs[0] should the central (unpaired) coefficient.
84
 * See ff_acelp_interp_filter for an example.
85
 *
86
 */
87
void ff_acelp_interpolate(int16_t* out, const int16_t* in,
88
                          const int16_t* filter_coeffs, int precision,
89
                          int frac_pos, int filter_length, int length);
90
 
91
/**
92
 * Floating point version of ff_acelp_interpolate()
93
 */
94
void ff_acelp_interpolatef(float *out, const float *in,
95
                           const float *filter_coeffs, int precision,
96
                           int frac_pos, int filter_length, int length);
97
 
98
 
99
/**
100
 * high-pass filtering and upscaling (4.2.5 of G.729).
101
 * @param[out]     out   output buffer for filtered speech data
102
 * @param[in,out]  hpf_f past filtered data from previous (2 items long)
103
 *                       frames (-0x20000000 <= (14.13) < 0x20000000)
104
 * @param in speech data to process
105
 * @param length input data size
106
 *
107
 * out[i] = 0.93980581 * in[i] - 1.8795834 * in[i-1] + 0.93980581 * in[i-2] +
108
 *          1.9330735 * out[i-1] - 0.93589199 * out[i-2]
109
 *
110
 * The filter has a cut-off frequency of 1/80 of the sampling freq
111
 *
112
 * @note Two items before the top of the in buffer must contain two items from the
113
 *       tail of the previous subframe.
114
 *
115
 * @remark It is safe to pass the same array in in and out parameters.
116
 *
117
 * @remark AMR uses mostly the same filter (cut-off frequency 60Hz, same formula,
118
 *         but constants differs in 5th sign after comma). Fortunately in
119
 *         fixed-point all coefficients are the same as in G.729. Thus this
120
 *         routine can be used for the fixed-point AMR decoder, too.
121
 */
122
void ff_acelp_high_pass_filter(int16_t* out, int hpf_f[2],
123
                               const int16_t* in, int length);
124
 
125
/**
126
 * Apply an order 2 rational transfer function in-place.
127
 *
128
 * @param out output buffer for filtered speech samples
129
 * @param in input buffer containing speech data (may be the same as out)
130
 * @param zero_coeffs z^-1 and z^-2 coefficients of the numerator
131
 * @param pole_coeffs z^-1 and z^-2 coefficients of the denominator
132
 * @param gain scale factor for final output
133
 * @param mem intermediate values used by filter (should be 0 initially)
134
 * @param n number of samples
135
 */
136
void ff_acelp_apply_order_2_transfer_function(float *out, const float *in,
137
                                              const float zero_coeffs[2],
138
                                              const float pole_coeffs[2],
139
                                              float gain,
140
                                              float mem[2], int n);
141
 
142
/**
143
 * Apply tilt compensation filter, 1 - tilt * z-1.
144
 *
145
 * @param mem pointer to the filter's state (one single float)
146
 * @param tilt tilt factor
147
 * @param samples array where the filter is applied
148
 * @param size the size of the samples array
149
 */
150
void ff_tilt_compensation(float *mem, float tilt, float *samples, int size);
151
 
152
 
153
#endif /* AVCODEC_ACELP_FILTERS_H */