Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4358 Serge 1
/*
2
 * Copyright © 2010 Luca Barbieri
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21
 * DEALINGS IN THE SOFTWARE.
22
 */
23
 
24
/**
25
 * \file lower_jumps.cpp
26
 *
27
 * This pass lowers jumps (break, continue, and return) to if/else structures.
28
 *
29
 * It can be asked to:
30
 * 1. Pull jumps out of ifs where possible
31
 * 2. Remove all "continue"s, replacing them with an "execute flag"
32
 * 3. Replace all "break" with a single conditional one at the end of the loop
33
 * 4. Replace all "return"s with a single return at the end of the function,
34
 *    for the main function and/or other functions
35
 *
36
 * Applying this pass gives several benefits:
37
 * 1. All functions can be inlined.
38
 * 2. nv40 and other pre-DX10 chips without "continue" can be supported
39
 * 3. nv30 and other pre-DX10 chips with no control flow at all are better
40
 *    supported
41
 *
42
 * Continues are lowered by adding a per-loop "execute flag", initialized to
43
 * true, that when cleared inhibits all execution until the end of the loop.
44
 *
45
 * Breaks are lowered to continues, plus setting a "break flag" that is checked
46
 * at the end of the loop, and trigger the unique "break".
47
 *
48
 * Returns are lowered to breaks/continues, plus adding a "return flag" that
49
 * causes loops to break again out of their enclosing loops until all the
50
 * loops are exited: then the "execute flag" logic will ignore everything
51
 * until the end of the function.
52
 *
53
 * Note that "continue" and "return" can also be implemented by adding
54
 * a dummy loop and using break.
55
 * However, this is bad for hardware with limited nesting depth, and
56
 * prevents further optimization, and thus is not currently performed.
57
 */
58
 
59
#include "glsl_types.h"
60
#include 
61
#include "ir.h"
62
 
63
/**
64
 * Enum recording the result of analyzing how control flow might exit
65
 * an IR node.
66
 *
67
 * Each possible value of jump_strength indicates a strictly stronger
68
 * guarantee on control flow than the previous value.
69
 *
70
 * The ordering of strengths roughly reflects the way jumps are
71
 * lowered: jumps with higher strength tend to be lowered to jumps of
72
 * lower strength.  Accordingly, strength is used as a heuristic to
73
 * determine which lowering to perform first.
74
 *
75
 * This enum is also used by get_jump_strength() to categorize
76
 * instructions as either break, continue, return, or other.  When
77
 * used in this fashion, strength_always_clears_execute_flag is not
78
 * used.
79
 *
80
 * The control flow analysis made by this optimization pass makes two
81
 * simplifying assumptions:
82
 *
83
 * - It ignores discard instructions, since they are lowered by a
84
 *   separate pass (lower_discard.cpp).
85
 *
86
 * - It assumes it is always possible for control to flow from a loop
87
 *   to the instruction immediately following it.  Technically, this
88
 *   is not true (since all execution paths through the loop might
89
 *   jump back to the top, or return from the function).
90
 *
91
 * Both of these simplifying assumtions are safe, since they can never
92
 * cause reachable code to be incorrectly classified as unreachable;
93
 * they can only do the opposite.
94
 */
95
enum jump_strength
96
{
97
   /**
98
    * Analysis has produced no guarantee on how control flow might
99
    * exit this IR node.  It might fall out the bottom (with or
100
    * without clearing the execute flag, if present), or it might
101
    * continue to the top of the innermost enclosing loop, break out
102
    * of it, or return from the function.
103
    */
104
   strength_none,
105
 
106
   /**
107
    * The only way control can fall out the bottom of this node is
108
    * through a code path that clears the execute flag.  It might also
109
    * continue to the top of the innermost enclosing loop, break out
110
    * of it, or return from the function.
111
    */
112
   strength_always_clears_execute_flag,
113
 
114
   /**
115
    * Control cannot fall out the bottom of this node.  It might
116
    * continue to the top of the innermost enclosing loop, break out
117
    * of it, or return from the function.
118
    */
119
   strength_continue,
120
 
121
   /**
122
    * Control cannot fall out the bottom of this node, or continue the
123
    * top of the innermost enclosing loop.  It can only break out of
124
    * it or return from the function.
125
    */
126
   strength_break,
127
 
128
   /**
129
    * Control cannot fall out the bottom of this node, continue to the
130
    * top of the innermost enclosing loop, or break out of it.  It can
131
    * only return from the function.
132
    */
133
   strength_return
134
};
135
 
136
struct block_record
137
{
138
   /* minimum jump strength (of lowered IR, not pre-lowering IR)
139
    *
140
    * If the block ends with a jump, must be the strength of the jump.
141
    * Otherwise, the jump would be dead and have been deleted before)
142
    *
143
    * If the block doesn't end with a jump, it can be different than strength_none if all paths before it lead to some jump
144
    * (e.g. an if with a return in one branch, and a break in the other, while not lowering them)
145
    * Note that identical jumps are usually unified though.
146
    */
147
   jump_strength min_strength;
148
 
149
   /* can anything clear the execute flag? */
150
   bool may_clear_execute_flag;
151
 
152
   block_record()
153
   {
154
      this->min_strength = strength_none;
155
      this->may_clear_execute_flag = false;
156
   }
157
};
158
 
159
struct loop_record
160
{
161
   ir_function_signature* signature;
162
   ir_loop* loop;
163
 
164
   /* used to avoid lowering the break used to represent lowered breaks */
165
   unsigned nesting_depth;
166
   bool in_if_at_the_end_of_the_loop;
167
 
168
   bool may_set_return_flag;
169
 
170
   ir_variable* break_flag;
171
   ir_variable* execute_flag; /* cleared to emulate continue */
172
 
173
   loop_record(ir_function_signature* p_signature = 0, ir_loop* p_loop = 0)
174
   {
175
      this->signature = p_signature;
176
      this->loop = p_loop;
177
      this->nesting_depth = 0;
178
      this->in_if_at_the_end_of_the_loop = false;
179
      this->may_set_return_flag = false;
180
      this->break_flag = 0;
181
      this->execute_flag = 0;
182
   }
183
 
184
   ir_variable* get_execute_flag()
185
   {
186
      /* also supported for the "function loop" */
187
      if(!this->execute_flag) {
188
         exec_list& list = this->loop ? this->loop->body_instructions : signature->body;
189
         this->execute_flag = new(this->signature) ir_variable(glsl_type::bool_type, "execute_flag", ir_var_temporary);
190
         list.push_head(new(this->signature) ir_assignment(new(this->signature) ir_dereference_variable(execute_flag), new(this->signature) ir_constant(true), 0));
191
         list.push_head(this->execute_flag);
192
      }
193
      return this->execute_flag;
194
   }
195
 
196
   ir_variable* get_break_flag()
197
   {
198
      assert(this->loop);
199
      if(!this->break_flag) {
200
         this->break_flag = new(this->signature) ir_variable(glsl_type::bool_type, "break_flag", ir_var_temporary);
201
         this->loop->insert_before(this->break_flag);
202
         this->loop->insert_before(new(this->signature) ir_assignment(new(this->signature) ir_dereference_variable(break_flag), new(this->signature) ir_constant(false), 0));
203
      }
204
      return this->break_flag;
205
   }
206
};
207
 
208
struct function_record
209
{
210
   ir_function_signature* signature;
211
   ir_variable* return_flag; /* used to break out of all loops and then jump to the return instruction */
212
   ir_variable* return_value;
213
   bool lower_return;
214
   unsigned nesting_depth;
215
 
216
   function_record(ir_function_signature* p_signature = 0,
217
                   bool lower_return = false)
218
   {
219
      this->signature = p_signature;
220
      this->return_flag = 0;
221
      this->return_value = 0;
222
      this->nesting_depth = 0;
223
      this->lower_return = lower_return;
224
   }
225
 
226
   ir_variable* get_return_flag()
227
   {
228
      if(!this->return_flag) {
229
         this->return_flag = new(this->signature) ir_variable(glsl_type::bool_type, "return_flag", ir_var_temporary);
230
         this->signature->body.push_head(new(this->signature) ir_assignment(new(this->signature) ir_dereference_variable(return_flag), new(this->signature) ir_constant(false), 0));
231
         this->signature->body.push_head(this->return_flag);
232
      }
233
      return this->return_flag;
234
   }
235
 
236
   ir_variable* get_return_value()
237
   {
238
      if(!this->return_value) {
239
         assert(!this->signature->return_type->is_void());
240
         return_value = new(this->signature) ir_variable(this->signature->return_type, "return_value", ir_var_temporary);
241
         this->signature->body.push_head(this->return_value);
242
      }
243
      return this->return_value;
244
   }
245
};
246
 
247
struct ir_lower_jumps_visitor : public ir_control_flow_visitor {
248
   /* Postconditions: on exit of any visit() function:
249
    *
250
    * ANALYSIS: this->block.min_strength,
251
    * this->block.may_clear_execute_flag, and
252
    * this->loop.may_set_return_flag are updated to reflect the
253
    * characteristics of the visited statement.
254
    *
255
    * DEAD_CODE_ELIMINATION: If this->block.min_strength is not
256
    * strength_none, the visited node is at the end of its exec_list.
257
    * In other words, any unreachable statements that follow the
258
    * visited statement in its exec_list have been removed.
259
    *
260
    * CONTAINED_JUMPS_LOWERED: If the visited statement contains other
261
    * statements, then should_lower_jump() is false for all of the
262
    * return, break, or continue statements it contains.
263
    *
264
    * Note that visiting a jump does not lower it.  That is the
265
    * responsibility of the statement (or function signature) that
266
    * contains the jump.
267
    */
268
 
269
   bool progress;
270
 
271
   struct function_record function;
272
   struct loop_record loop;
273
   struct block_record block;
274
 
275
   bool pull_out_jumps;
276
   bool lower_continue;
277
   bool lower_break;
278
   bool lower_sub_return;
279
   bool lower_main_return;
280
 
281
   ir_lower_jumps_visitor()
282
   {
283
      this->progress = false;
284
   }
285
 
286
   void truncate_after_instruction(exec_node *ir)
287
   {
288
      if (!ir)
289
         return;
290
 
291
      while (!ir->get_next()->is_tail_sentinel()) {
292
         ((ir_instruction *)ir->get_next())->remove();
293
         this->progress = true;
294
      }
295
   }
296
 
297
   void move_outer_block_inside(ir_instruction *ir, exec_list *inner_block)
298
   {
299
      while (!ir->get_next()->is_tail_sentinel()) {
300
         ir_instruction *move_ir = (ir_instruction *)ir->get_next();
301
 
302
         move_ir->remove();
303
         inner_block->push_tail(move_ir);
304
      }
305
   }
306
 
307
   /**
308
    * Insert the instructions necessary to lower a return statement,
309
    * before the given return instruction.
310
    */
311
   void insert_lowered_return(ir_return *ir)
312
   {
313
      ir_variable* return_flag = this->function.get_return_flag();
314
      if(!this->function.signature->return_type->is_void()) {
315
         ir_variable* return_value = this->function.get_return_value();
316
         ir->insert_before(
317
            new(ir) ir_assignment(
318
               new (ir) ir_dereference_variable(return_value),
319
               ir->value));
320
      }
321
      ir->insert_before(
322
         new(ir) ir_assignment(
323
            new (ir) ir_dereference_variable(return_flag),
324
            new (ir) ir_constant(true)));
325
      this->loop.may_set_return_flag = true;
326
   }
327
 
328
   /**
329
    * If the given instruction is a return, lower it to instructions
330
    * that store the return value (if there is one), set the return
331
    * flag, and then break.
332
    *
333
    * It is safe to pass NULL to this function.
334
    */
335
   void lower_return_unconditionally(ir_instruction *ir)
336
   {
337
      if (get_jump_strength(ir) != strength_return) {
338
         return;
339
      }
340
      insert_lowered_return((ir_return*)ir);
341
      ir->replace_with(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
342
   }
343
 
344
   /**
345
    * Create the necessary instruction to replace a break instruction.
346
    */
347
   ir_instruction *create_lowered_break()
348
   {
349
      void *ctx = this->function.signature;
350
      return new(ctx) ir_assignment(
351
          new(ctx) ir_dereference_variable(this->loop.get_break_flag()),
352
          new(ctx) ir_constant(true),
353
          0);
354
   }
355
 
356
   /**
357
    * If the given instruction is a break, lower it to an instruction
358
    * that sets the break flag, without consulting
359
    * should_lower_jump().
360
    *
361
    * It is safe to pass NULL to this function.
362
    */
363
   void lower_break_unconditionally(ir_instruction *ir)
364
   {
365
      if (get_jump_strength(ir) != strength_break) {
366
         return;
367
      }
368
      ir->replace_with(create_lowered_break());
369
   }
370
 
371
   /**
372
    * If the block ends in a conditional or unconditional break, lower
373
    * it, even though should_lower_jump() says it needn't be lowered.
374
    */
375
   void lower_final_breaks(exec_list *block)
376
   {
377
      ir_instruction *ir = (ir_instruction *) block->get_tail();
378
      lower_break_unconditionally(ir);
379
      ir_if *ir_if = ir->as_if();
380
      if (ir_if) {
381
          lower_break_unconditionally(
382
              (ir_instruction *) ir_if->then_instructions.get_tail());
383
          lower_break_unconditionally(
384
              (ir_instruction *) ir_if->else_instructions.get_tail());
385
      }
386
   }
387
 
388
   virtual void visit(class ir_loop_jump * ir)
389
   {
390
      /* Eliminate all instructions after each one, since they are
391
       * unreachable.  This satisfies the DEAD_CODE_ELIMINATION
392
       * postcondition.
393
       */
394
      truncate_after_instruction(ir);
395
 
396
      /* Set this->block.min_strength based on this instruction.  This
397
       * satisfies the ANALYSIS postcondition.  It is not necessary to
398
       * update this->block.may_clear_execute_flag or
399
       * this->loop.may_set_return_flag, because an unlowered jump
400
       * instruction can't change any flags.
401
       */
402
      this->block.min_strength = ir->is_break() ? strength_break : strength_continue;
403
 
404
      /* The CONTAINED_JUMPS_LOWERED postcondition is already
405
       * satisfied, because jump statements can't contain other
406
       * statements.
407
       */
408
   }
409
 
410
   virtual void visit(class ir_return * ir)
411
   {
412
      /* Eliminate all instructions after each one, since they are
413
       * unreachable.  This satisfies the DEAD_CODE_ELIMINATION
414
       * postcondition.
415
       */
416
      truncate_after_instruction(ir);
417
 
418
      /* Set this->block.min_strength based on this instruction.  This
419
       * satisfies the ANALYSIS postcondition.  It is not necessary to
420
       * update this->block.may_clear_execute_flag or
421
       * this->loop.may_set_return_flag, because an unlowered return
422
       * instruction can't change any flags.
423
       */
424
      this->block.min_strength = strength_return;
425
 
426
      /* The CONTAINED_JUMPS_LOWERED postcondition is already
427
       * satisfied, because jump statements can't contain other
428
       * statements.
429
       */
430
   }
431
 
432
   virtual void visit(class ir_discard * ir)
433
   {
434
      /* Nothing needs to be done.  The ANALYSIS and
435
       * DEAD_CODE_ELIMINATION postconditions are already satisfied,
436
       * because discard statements are ignored by this optimization
437
       * pass.  The CONTAINED_JUMPS_LOWERED postcondition is already
438
       * satisfied, because discard statements can't contain other
439
       * statements.
440
       */
441
      (void) ir;
442
   }
443
 
444
   enum jump_strength get_jump_strength(ir_instruction* ir)
445
   {
446
      if(!ir)
447
         return strength_none;
448
      else if(ir->ir_type == ir_type_loop_jump) {
449
         if(((ir_loop_jump*)ir)->is_break())
450
            return strength_break;
451
         else
452
            return strength_continue;
453
      } else if(ir->ir_type == ir_type_return)
454
         return strength_return;
455
      else
456
         return strength_none;
457
   }
458
 
459
   bool should_lower_jump(ir_jump* ir)
460
   {
461
      unsigned strength = get_jump_strength(ir);
462
      bool lower;
463
      switch(strength)
464
      {
465
      case strength_none:
466
         lower = false; /* don't change this, code relies on it */
467
         break;
468
      case strength_continue:
469
         lower = lower_continue;
470
         break;
471
      case strength_break:
472
         assert(this->loop.loop);
473
         /* never lower "canonical break" */
474
         if(ir->get_next()->is_tail_sentinel() && (this->loop.nesting_depth == 0
475
               || (this->loop.nesting_depth == 1 && this->loop.in_if_at_the_end_of_the_loop)))
476
            lower = false;
477
         else
478
            lower = lower_break;
479
         break;
480
      case strength_return:
481
         /* never lower return at the end of a this->function */
482
         if(this->function.nesting_depth == 0 && ir->get_next()->is_tail_sentinel())
483
            lower = false;
484
         else
485
            lower = this->function.lower_return;
486
         break;
487
      }
488
      return lower;
489
   }
490
 
491
   block_record visit_block(exec_list* list)
492
   {
493
      /* Note: since visiting a node may change that node's next
494
       * pointer, we can't use visit_exec_list(), because
495
       * visit_exec_list() caches the node's next pointer before
496
       * visiting it.  So we use foreach_list() instead.
497
       *
498
       * foreach_list() isn't safe if the node being visited gets
499
       * removed, but fortunately this visitor doesn't do that.
500
       */
501
 
502
      block_record saved_block = this->block;
503
      this->block = block_record();
504
      foreach_list(node, list) {
505
         ((ir_instruction *) node)->accept(this);
506
      }
507
      block_record ret = this->block;
508
      this->block = saved_block;
509
      return ret;
510
   }
511
 
512
   virtual void visit(ir_if *ir)
513
   {
514
      if(this->loop.nesting_depth == 0 && ir->get_next()->is_tail_sentinel())
515
         this->loop.in_if_at_the_end_of_the_loop = true;
516
 
517
      ++this->function.nesting_depth;
518
      ++this->loop.nesting_depth;
519
 
520
      block_record block_records[2];
521
      ir_jump* jumps[2];
522
 
523
      /* Recursively lower nested jumps.  This satisfies the
524
       * CONTAINED_JUMPS_LOWERED postcondition, except in the case of
525
       * unconditional jumps at the end of ir->then_instructions and
526
       * ir->else_instructions, which are handled below.
527
       */
528
      block_records[0] = visit_block(&ir->then_instructions);
529
      block_records[1] = visit_block(&ir->else_instructions);
530
 
531
retry: /* we get here if we put code after the if inside a branch */
532
 
533
      /* Determine which of ir->then_instructions and
534
       * ir->else_instructions end with an unconditional jump.
535
       */
536
      for(unsigned i = 0; i < 2; ++i) {
537
         exec_list& list = i ? ir->else_instructions : ir->then_instructions;
538
         jumps[i] = 0;
539
         if(!list.is_empty() && get_jump_strength((ir_instruction*)list.get_tail()))
540
            jumps[i] = (ir_jump*)list.get_tail();
541
      }
542
 
543
      /* Loop until we have satisfied the CONTAINED_JUMPS_LOWERED
544
       * postcondition by lowering jumps in both then_instructions and
545
       * else_instructions.
546
       */
547
      for(;;) {
548
         /* Determine the types of the jumps that terminate
549
          * ir->then_instructions and ir->else_instructions.
550
          */
551
         jump_strength jump_strengths[2];
552
 
553
         for(unsigned i = 0; i < 2; ++i) {
554
            if(jumps[i]) {
555
               jump_strengths[i] = block_records[i].min_strength;
556
               assert(jump_strengths[i] == get_jump_strength(jumps[i]));
557
            } else
558
               jump_strengths[i] = strength_none;
559
         }
560
 
561
         /* If both code paths end in a jump, and the jumps are the
562
          * same, and we are pulling out jumps, replace them with a
563
          * single jump that comes after the if instruction.  The new
564
          * jump will be visited next, and it will be lowered if
565
          * necessary by the loop or conditional that encloses it.
566
          */
567
         if(pull_out_jumps && jump_strengths[0] == jump_strengths[1]) {
568
            bool unify = true;
569
            if(jump_strengths[0] == strength_continue)
570
               ir->insert_after(new(ir) ir_loop_jump(ir_loop_jump::jump_continue));
571
            else if(jump_strengths[0] == strength_break)
572
               ir->insert_after(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
573
            /* FINISHME: unify returns with identical expressions */
574
            else if(jump_strengths[0] == strength_return && this->function.signature->return_type->is_void())
575
               ir->insert_after(new(ir) ir_return(NULL));
576
	    else
577
	       unify = false;
578
 
579
            if(unify) {
580
               jumps[0]->remove();
581
               jumps[1]->remove();
582
               this->progress = true;
583
 
584
               /* Update jumps[] to reflect the fact that the jumps
585
                * are gone, and update block_records[] to reflect the
586
                * fact that control can now flow to the next
587
                * instruction.
588
                */
589
               jumps[0] = 0;
590
               jumps[1] = 0;
591
               block_records[0].min_strength = strength_none;
592
               block_records[1].min_strength = strength_none;
593
 
594
               /* The CONTAINED_JUMPS_LOWERED postcondition is now
595
                * satisfied, so we can break out of the loop.
596
                */
597
               break;
598
            }
599
         }
600
 
601
         /* lower a jump: if both need to lowered, start with the strongest one, so that
602
          * we might later unify the lowered version with the other one
603
          */
604
         bool should_lower[2];
605
         for(unsigned i = 0; i < 2; ++i)
606
            should_lower[i] = should_lower_jump(jumps[i]);
607
 
608
         int lower;
609
         if(should_lower[1] && should_lower[0])
610
            lower = jump_strengths[1] > jump_strengths[0];
611
         else if(should_lower[0])
612
            lower = 0;
613
         else if(should_lower[1])
614
            lower = 1;
615
         else
616
            /* Neither code path ends in a jump that needs to be
617
             * lowered, so the CONTAINED_JUMPS_LOWERED postcondition
618
             * is satisfied and we can break out of the loop.
619
             */
620
            break;
621
 
622
         if(jump_strengths[lower] == strength_return) {
623
            /* To lower a return, we create a return flag (if the
624
             * function doesn't have one already) and add instructions
625
             * that: 1. store the return value (if this function has a
626
             * non-void return) and 2. set the return flag
627
             */
628
            insert_lowered_return((ir_return*)jumps[lower]);
629
            if(this->loop.loop) {
630
               /* If we are in a loop, replace the return instruction
631
                * with a break instruction, and then loop so that the
632
                * break instruction can be lowered if necessary.
633
                */
634
               ir_loop_jump* lowered = 0;
635
               lowered = new(ir) ir_loop_jump(ir_loop_jump::jump_break);
636
               /* Note: we must update block_records and jumps to
637
                * reflect the fact that the control path has been
638
                * altered from a return to a break.
639
                */
640
               block_records[lower].min_strength = strength_break;
641
               jumps[lower]->replace_with(lowered);
642
               jumps[lower] = lowered;
643
            } else {
644
               /* If we are not in a loop, we then proceed as we would
645
                * for a continue statement (set the execute flag to
646
                * false to prevent the rest of the function from
647
                * executing).
648
                */
649
               goto lower_continue;
650
            }
651
            this->progress = true;
652
         } else if(jump_strengths[lower] == strength_break) {
653
            /* To lower a break, we create a break flag (if the loop
654
             * doesn't have one already) and add an instruction that
655
             * sets it.
656
             *
657
             * Then we proceed as we would for a continue statement
658
             * (set the execute flag to false to prevent the rest of
659
             * the loop body from executing).
660
             *
661
             * The visit() function for the loop will ensure that the
662
             * break flag is checked after executing the loop body.
663
             */
664
            jumps[lower]->insert_before(create_lowered_break());
665
            goto lower_continue;
666
         } else if(jump_strengths[lower] == strength_continue) {
667
lower_continue:
668
            /* To lower a continue, we create an execute flag (if the
669
             * loop doesn't have one already) and replace the continue
670
             * with an instruction that clears it.
671
             *
672
             * Note that this code path gets exercised when lowering
673
             * return statements that are not inside a loop, so
674
             * this->loop must be initialized even outside of loops.
675
             */
676
            ir_variable* execute_flag = this->loop.get_execute_flag();
677
            jumps[lower]->replace_with(new(ir) ir_assignment(new (ir) ir_dereference_variable(execute_flag), new (ir) ir_constant(false), 0));
678
            /* Note: we must update block_records and jumps to reflect
679
             * the fact that the control path has been altered to an
680
             * instruction that clears the execute flag.
681
             */
682
            jumps[lower] = 0;
683
            block_records[lower].min_strength = strength_always_clears_execute_flag;
684
            block_records[lower].may_clear_execute_flag = true;
685
            this->progress = true;
686
 
687
            /* Let the loop run again, in case the other branch of the
688
             * if needs to be lowered too.
689
             */
690
         }
691
      }
692
 
693
      /* move out a jump out if possible */
694
      if(pull_out_jumps) {
695
         /* If one of the branches ends in a jump, and control cannot
696
          * fall out the bottom of the other branch, then we can move
697
          * the jump after the if.
698
          *
699
          * Set move_out to the branch we are moving a jump out of.
700
          */
701
         int move_out = -1;
702
         if(jumps[0] && block_records[1].min_strength >= strength_continue)
703
            move_out = 0;
704
         else if(jumps[1] && block_records[0].min_strength >= strength_continue)
705
            move_out = 1;
706
 
707
         if(move_out >= 0)
708
         {
709
            jumps[move_out]->remove();
710
            ir->insert_after(jumps[move_out]);
711
            /* Note: we must update block_records and jumps to reflect
712
             * the fact that the jump has been moved out of the if.
713
             */
714
            jumps[move_out] = 0;
715
            block_records[move_out].min_strength = strength_none;
716
            this->progress = true;
717
         }
718
      }
719
 
720
      /* Now satisfy the ANALYSIS postcondition by setting
721
       * this->block.min_strength and
722
       * this->block.may_clear_execute_flag based on the
723
       * characteristics of the two branches.
724
       */
725
      if(block_records[0].min_strength < block_records[1].min_strength)
726
         this->block.min_strength = block_records[0].min_strength;
727
      else
728
         this->block.min_strength = block_records[1].min_strength;
729
      this->block.may_clear_execute_flag = this->block.may_clear_execute_flag || block_records[0].may_clear_execute_flag || block_records[1].may_clear_execute_flag;
730
 
731
      /* Now we need to clean up the instructions that follow the
732
       * if.
733
       *
734
       * If those instructions are unreachable, then satisfy the
735
       * DEAD_CODE_ELIMINATION postcondition by eliminating them.
736
       * Otherwise that postcondition is already satisfied.
737
       */
738
      if(this->block.min_strength)
739
         truncate_after_instruction(ir);
740
      else if(this->block.may_clear_execute_flag)
741
      {
742
         /* If the "if" instruction might clear the execute flag, then
743
          * we need to guard any instructions that follow so that they
744
          * are only executed if the execute flag is set.
745
          *
746
          * If one of the branches of the "if" always clears the
747
          * execute flag, and the other branch never clears it, then
748
          * this is easy: just move all the instructions following the
749
          * "if" into the branch that never clears it.
750
          */
751
         int move_into = -1;
752
         if(block_records[0].min_strength && !block_records[1].may_clear_execute_flag)
753
            move_into = 1;
754
         else if(block_records[1].min_strength && !block_records[0].may_clear_execute_flag)
755
            move_into = 0;
756
 
757
         if(move_into >= 0) {
758
            assert(!block_records[move_into].min_strength && !block_records[move_into].may_clear_execute_flag); /* otherwise, we just truncated */
759
 
760
            exec_list* list = move_into ? &ir->else_instructions : &ir->then_instructions;
761
            exec_node* next = ir->get_next();
762
            if(!next->is_tail_sentinel()) {
763
               move_outer_block_inside(ir, list);
764
 
765
               /* If any instructions moved, then we need to visit
766
                * them (since they are now inside the "if").  Since
767
                * block_records[move_into] is in its default state
768
                * (see assertion above), we can safely replace
769
                * block_records[move_into] with the result of this
770
                * analysis.
771
                */
772
               exec_list list;
773
               list.head = next;
774
               block_records[move_into] = visit_block(&list);
775
 
776
               /*
777
                * Then we need to re-start our jump lowering, since one
778
                * of the instructions we moved might be a jump that
779
                * needs to be lowered.
780
                */
781
               this->progress = true;
782
               goto retry;
783
            }
784
         } else {
785
            /* If we get here, then the simple case didn't apply; we
786
             * need to actually guard the instructions that follow.
787
             *
788
             * To avoid creating unnecessarily-deep nesting, first
789
             * look through the instructions that follow and unwrap
790
             * any instructions that that are already wrapped in the
791
             * appropriate guard.
792
             */
793
            ir_instruction* ir_after;
794
            for(ir_after = (ir_instruction*)ir->get_next(); !ir_after->is_tail_sentinel();)
795
            {
796
               ir_if* ir_if = ir_after->as_if();
797
               if(ir_if && ir_if->else_instructions.is_empty()) {
798
                  ir_dereference_variable* ir_if_cond_deref = ir_if->condition->as_dereference_variable();
799
                  if(ir_if_cond_deref && ir_if_cond_deref->var == this->loop.execute_flag) {
800
                     ir_instruction* ir_next = (ir_instruction*)ir_after->get_next();
801
                     ir_after->insert_before(&ir_if->then_instructions);
802
                     ir_after->remove();
803
                     ir_after = ir_next;
804
                     continue;
805
                  }
806
               }
807
               ir_after = (ir_instruction*)ir_after->get_next();
808
 
809
               /* only set this if we find any unprotected instruction */
810
               this->progress = true;
811
            }
812
 
813
            /* Then, wrap all the instructions that follow in a single
814
             * guard.
815
             */
816
            if(!ir->get_next()->is_tail_sentinel()) {
817
               assert(this->loop.execute_flag);
818
               ir_if* if_execute = new(ir) ir_if(new(ir) ir_dereference_variable(this->loop.execute_flag));
819
               move_outer_block_inside(ir, &if_execute->then_instructions);
820
               ir->insert_after(if_execute);
821
            }
822
         }
823
      }
824
      --this->loop.nesting_depth;
825
      --this->function.nesting_depth;
826
   }
827
 
828
   virtual void visit(ir_loop *ir)
829
   {
830
      /* Visit the body of the loop, with a fresh data structure in
831
       * this->loop so that the analysis we do here won't bleed into
832
       * enclosing loops.
833
       *
834
       * We assume that all code after a loop is reachable from the
835
       * loop (see comments on enum jump_strength), so the
836
       * DEAD_CODE_ELIMINATION postcondition is automatically
837
       * satisfied, as is the block.min_strength portion of the
838
       * ANALYSIS postcondition.
839
       *
840
       * The block.may_clear_execute_flag portion of the ANALYSIS
841
       * postcondition is automatically satisfied because execute
842
       * flags do not propagate outside of loops.
843
       *
844
       * The loop.may_set_return_flag portion of the ANALYSIS
845
       * postcondition is handled below.
846
       */
847
      ++this->function.nesting_depth;
848
      loop_record saved_loop = this->loop;
849
      this->loop = loop_record(this->function.signature, ir);
850
 
851
      /* Recursively lower nested jumps.  This satisfies the
852
       * CONTAINED_JUMPS_LOWERED postcondition, except in the case of
853
       * an unconditional continue or return at the bottom of the
854
       * loop, which are handled below.
855
       */
856
      block_record body = visit_block(&ir->body_instructions);
857
 
858
      /* If the loop ends in an unconditional continue, eliminate it
859
       * because it is redundant.
860
       */
861
      ir_instruction *ir_last
862
         = (ir_instruction *) ir->body_instructions.get_tail();
863
      if (get_jump_strength(ir_last) == strength_continue) {
864
         ir_last->remove();
865
      }
866
 
867
      /* If the loop ends in an unconditional return, and we are
868
       * lowering returns, lower it.
869
       */
870
      if (this->function.lower_return)
871
         lower_return_unconditionally(ir_last);
872
 
873
      if(body.min_strength >= strength_break) {
874
         /* FINISHME: If the min_strength of the loop body is
875
          * strength_break or strength_return, that means that it
876
          * isn't a loop at all, since control flow always leaves the
877
          * body of the loop via break or return.  In principle the
878
          * loop could be eliminated in this case.  This optimization
879
          * is not implemented yet.
880
          */
881
      }
882
 
883
      if(this->loop.break_flag) {
884
         /* We only get here if we are lowering breaks */
885
         assert (lower_break);
886
 
887
         /* If a break flag was generated while visiting the body of
888
          * the loop, then at least one break was lowered, so we need
889
          * to generate an if statement at the end of the loop that
890
          * does a "break" if the break flag is set.  The break we
891
          * generate won't violate the CONTAINED_JUMPS_LOWERED
892
          * postcondition, because should_lower_jump() always returns
893
          * false for a break that happens at the end of a loop.
894
          *
895
          * However, if the loop already ends in a conditional or
896
          * unconditional break, then we need to lower that break,
897
          * because it won't be at the end of the loop anymore.
898
          */
899
         lower_final_breaks(&ir->body_instructions);
900
 
901
         ir_if* break_if = new(ir) ir_if(new(ir) ir_dereference_variable(this->loop.break_flag));
902
         break_if->then_instructions.push_tail(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
903
         ir->body_instructions.push_tail(break_if);
904
      }
905
 
906
      /* If the body of the loop may set the return flag, then at
907
       * least one return was lowered to a break, so we need to ensure
908
       * that the return flag is checked after the body of the loop is
909
       * executed.
910
       */
911
      if(this->loop.may_set_return_flag) {
912
         assert(this->function.return_flag);
913
         /* Generate the if statement to check the return flag */
914
         ir_if* return_if = new(ir) ir_if(new(ir) ir_dereference_variable(this->function.return_flag));
915
         /* Note: we also need to propagate the knowledge that the
916
          * return flag may get set to the outer context.  This
917
          * satisfies the loop.may_set_return_flag part of the
918
          * ANALYSIS postcondition.
919
          */
920
         saved_loop.may_set_return_flag = true;
921
         if(saved_loop.loop)
922
            /* If this loop is nested inside another one, then the if
923
             * statement that we generated should break out of that
924
             * loop if the return flag is set.  Caller will lower that
925
             * break statement if necessary.
926
             */
927
            return_if->then_instructions.push_tail(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
928
         else
929
            /* Otherwise, all we need to do is ensure that the
930
             * instructions that follow are only executed if the
931
             * return flag is clear.  We can do that by moving those
932
             * instructions into the else clause of the generated if
933
             * statement.
934
             */
935
            move_outer_block_inside(ir, &return_if->else_instructions);
936
         ir->insert_after(return_if);
937
      }
938
 
939
      this->loop = saved_loop;
940
      --this->function.nesting_depth;
941
   }
942
 
943
   virtual void visit(ir_function_signature *ir)
944
   {
945
      /* these are not strictly necessary */
946
      assert(!this->function.signature);
947
      assert(!this->loop.loop);
948
 
949
      bool lower_return;
950
      if (strcmp(ir->function_name(), "main") == 0)
951
         lower_return = lower_main_return;
952
      else
953
         lower_return = lower_sub_return;
954
 
955
      function_record saved_function = this->function;
956
      loop_record saved_loop = this->loop;
957
      this->function = function_record(ir, lower_return);
958
      this->loop = loop_record(ir);
959
 
960
      assert(!this->loop.loop);
961
 
962
      /* Visit the body of the function to lower any jumps that occur
963
       * in it, except possibly an unconditional return statement at
964
       * the end of it.
965
       */
966
      visit_block(&ir->body);
967
 
968
      /* If the body ended in an unconditional return of non-void,
969
       * then we don't need to lower it because it's the one canonical
970
       * return.
971
       *
972
       * If the body ended in a return of void, eliminate it because
973
       * it is redundant.
974
       */
975
      if (ir->return_type->is_void() &&
976
          get_jump_strength((ir_instruction *) ir->body.get_tail())) {
977
         ir_jump *jump = (ir_jump *) ir->body.get_tail();
978
         assert (jump->ir_type == ir_type_return);
979
         jump->remove();
980
      }
981
 
982
      if(this->function.return_value)
983
         ir->body.push_tail(new(ir) ir_return(new (ir) ir_dereference_variable(this->function.return_value)));
984
 
985
      this->loop = saved_loop;
986
      this->function = saved_function;
987
   }
988
 
989
   virtual void visit(class ir_function * ir)
990
   {
991
      visit_block(&ir->signatures);
992
   }
993
};
994
 
995
bool
996
do_lower_jumps(exec_list *instructions, bool pull_out_jumps, bool lower_sub_return, bool lower_main_return, bool lower_continue, bool lower_break)
997
{
998
   ir_lower_jumps_visitor v;
999
   v.pull_out_jumps = pull_out_jumps;
1000
   v.lower_continue = lower_continue;
1001
   v.lower_break = lower_break;
1002
   v.lower_sub_return = lower_sub_return;
1003
   v.lower_main_return = lower_main_return;
1004
 
1005
   bool progress_ever = false;
1006
   do {
1007
      v.progress = false;
1008
      visit_exec_list(instructions, &v);
1009
      progress_ever = v.progress || progress_ever;
1010
   } while (v.progress);
1011
 
1012
   return progress_ever;
1013
}