Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4358 Serge 1
/*
2
 * Permission is hereby granted, free of charge, to any person obtaining a
3
 * copy of this software and associated documentation files (the "Software"),
4
 * to deal in the Software without restriction, including without limitation
5
 * on the rights to use, copy, modify, merge, publish, distribute, sub
6
 * license, and/or sell copies of the Software, and to permit persons to whom
7
 * the Software is furnished to do so, subject to the following conditions:
8
 *
9
 * The above copyright notice and this permission notice (including the next
10
 * paragraph) shall be included in all copies or substantial portions of the
11
 * Software.
12
 *
13
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15
 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16
 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
17
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18
 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19
 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20
 *
21
 * Authors:
22
 *      Adam Rak 
23
 */
24
 
25
#include "pipe/p_defines.h"
26
#include "pipe/p_state.h"
27
#include "pipe/p_context.h"
28
#include "util/u_blitter.h"
29
#include "util/u_double_list.h"
30
#include "util/u_transfer.h"
31
#include "util/u_surface.h"
32
#include "util/u_pack_color.h"
33
#include "util/u_memory.h"
34
#include "util/u_inlines.h"
35
#include "util/u_framebuffer.h"
36
#include "r600_resource.h"
37
#include "r600_shader.h"
38
#include "r600_pipe.h"
39
#include "r600_formats.h"
40
#include "compute_memory_pool.h"
41
#include "evergreen_compute.h"
42
#include "evergreen_compute_internal.h"
43
#include 
44
 
45
/**
46
 * Creates a new pool
47
 */
48
struct compute_memory_pool* compute_memory_pool_new(
49
	struct r600_screen * rscreen)
50
{
51
	struct compute_memory_pool* pool = (struct compute_memory_pool*)
52
				CALLOC(sizeof(struct compute_memory_pool), 1);
53
 
54
	COMPUTE_DBG(rscreen, "* compute_memory_pool_new()\n");
55
 
56
	pool->screen = rscreen;
57
	return pool;
58
}
59
 
60
static void compute_memory_pool_init(struct compute_memory_pool * pool,
61
	unsigned initial_size_in_dw)
62
{
63
 
64
	COMPUTE_DBG(pool->screen, "* compute_memory_pool_init() initial_size_in_dw = %ld\n",
65
		initial_size_in_dw);
66
 
67
	pool->shadow = (uint32_t*)CALLOC(initial_size_in_dw, 4);
68
	pool->next_id = 1;
69
	pool->size_in_dw = initial_size_in_dw;
70
	pool->bo = (struct r600_resource*)r600_compute_buffer_alloc_vram(pool->screen,
71
							pool->size_in_dw * 4);
72
}
73
 
74
/**
75
 * Frees all stuff in the pool and the pool struct itself too
76
 */
77
void compute_memory_pool_delete(struct compute_memory_pool* pool)
78
{
79
	COMPUTE_DBG(pool->screen, "* compute_memory_pool_delete()\n");
80
	free(pool->shadow);
81
	if (pool->bo) {
82
		pool->screen->screen.resource_destroy((struct pipe_screen *)
83
			pool->screen, (struct pipe_resource *)pool->bo);
84
	}
85
	free(pool);
86
}
87
 
88
/**
89
 * Searches for an empty space in the pool, return with the pointer to the
90
 * allocatable space in the pool, returns -1 on failure.
91
 */
92
int64_t compute_memory_prealloc_chunk(
93
	struct compute_memory_pool* pool,
94
	int64_t size_in_dw)
95
{
96
	struct compute_memory_item *item;
97
 
98
	int last_end = 0;
99
 
100
	assert(size_in_dw <= pool->size_in_dw);
101
 
102
	COMPUTE_DBG(pool->screen, "* compute_memory_prealloc_chunk() size_in_dw = %ld\n",
103
		size_in_dw);
104
 
105
	for (item = pool->item_list; item; item = item->next) {
106
		if (item->start_in_dw > -1) {
107
			if (item->start_in_dw-last_end > size_in_dw) {
108
				return last_end;
109
			}
110
 
111
			last_end = item->start_in_dw + item->size_in_dw;
112
			last_end += (1024 - last_end % 1024);
113
		}
114
	}
115
 
116
	if (pool->size_in_dw - last_end < size_in_dw) {
117
		return -1;
118
	}
119
 
120
	return last_end;
121
}
122
 
123
/**
124
 *  Search for the chunk where we can link our new chunk after it.
125
 */
126
struct compute_memory_item* compute_memory_postalloc_chunk(
127
	struct compute_memory_pool* pool,
128
	int64_t start_in_dw)
129
{
130
	struct compute_memory_item* item;
131
 
132
	COMPUTE_DBG(pool->screen, "* compute_memory_postalloc_chunck() start_in_dw = %ld\n",
133
		start_in_dw);
134
 
135
	/* Check if we can insert it in the front of the list */
136
	if (pool->item_list && pool->item_list->start_in_dw > start_in_dw) {
137
		return NULL;
138
	}
139
 
140
	for (item = pool->item_list; item; item = item->next) {
141
		if (item->next) {
142
			if (item->start_in_dw < start_in_dw
143
				&& item->next->start_in_dw > start_in_dw) {
144
				return item;
145
			}
146
		}
147
		else {
148
			/* end of chain */
149
			assert(item->start_in_dw < start_in_dw);
150
			return item;
151
		}
152
	}
153
 
154
	assert(0 && "unreachable");
155
	return NULL;
156
}
157
 
158
/**
159
 * Reallocates pool, conserves data
160
 */
161
void compute_memory_grow_pool(struct compute_memory_pool* pool,
162
	struct pipe_context * pipe, int new_size_in_dw)
163
{
164
	COMPUTE_DBG(pool->screen, "* compute_memory_grow_pool() new_size_in_dw = %d\n",
165
		new_size_in_dw);
166
 
167
	assert(new_size_in_dw >= pool->size_in_dw);
168
 
169
	if (!pool->bo) {
170
		compute_memory_pool_init(pool, MAX2(new_size_in_dw, 1024 * 16));
171
	} else {
172
		new_size_in_dw += 1024 - (new_size_in_dw % 1024);
173
 
174
		COMPUTE_DBG(pool->screen, "  Aligned size = %d\n", new_size_in_dw);
175
 
176
		compute_memory_shadow(pool, pipe, 1);
177
		pool->shadow = realloc(pool->shadow, new_size_in_dw*4);
178
		pool->size_in_dw = new_size_in_dw;
179
		pool->screen->screen.resource_destroy(
180
			(struct pipe_screen *)pool->screen,
181
			(struct pipe_resource *)pool->bo);
182
		pool->bo = (struct r600_resource*)r600_compute_buffer_alloc_vram(
183
							pool->screen,
184
							pool->size_in_dw * 4);
185
		compute_memory_shadow(pool, pipe, 0);
186
	}
187
}
188
 
189
/**
190
 * Copy pool from device to host, or host to device.
191
 */
192
void compute_memory_shadow(struct compute_memory_pool* pool,
193
	struct pipe_context * pipe, int device_to_host)
194
{
195
	struct compute_memory_item chunk;
196
 
197
	COMPUTE_DBG(pool->screen, "* compute_memory_shadow() device_to_host = %d\n",
198
		device_to_host);
199
 
200
	chunk.id = 0;
201
	chunk.start_in_dw = 0;
202
	chunk.size_in_dw = pool->size_in_dw;
203
	chunk.prev = chunk.next = NULL;
204
	compute_memory_transfer(pool, pipe, device_to_host, &chunk,
205
				pool->shadow, 0, pool->size_in_dw*4);
206
}
207
 
208
/**
209
 * Allocates pending allocations in the pool
210
 */
211
void compute_memory_finalize_pending(struct compute_memory_pool* pool,
212
	struct pipe_context * pipe)
213
{
214
	struct compute_memory_item *pending_list = NULL, *end_p = NULL;
215
	struct compute_memory_item *item, *next;
216
 
217
	int64_t allocated = 0;
218
	int64_t unallocated = 0;
219
 
220
	int64_t start_in_dw = 0;
221
 
222
	COMPUTE_DBG(pool->screen, "* compute_memory_finalize_pending()\n");
223
 
224
	for (item = pool->item_list; item; item = item->next) {
225
		COMPUTE_DBG(pool->screen, "  + list: offset = %i id = %i size = %i "
226
			"(%i bytes)\n",item->start_in_dw, item->id,
227
			item->size_in_dw, item->size_in_dw * 4);
228
	}
229
 
230
	/* Search through the list of memory items in the pool */
231
	for (item = pool->item_list; item; item = next) {
232
		next = item->next;
233
 
234
		/* Check if the item is pending. */
235
		if (item->start_in_dw == -1) {
236
			/* It is pending, so add it to the pending_list... */
237
			if (end_p) {
238
				end_p->next = item;
239
			}
240
			else {
241
				pending_list = item;
242
			}
243
 
244
			/* ... and then remove it from the item list. */
245
			if (item->prev) {
246
				item->prev->next = next;
247
			}
248
			else {
249
				pool->item_list = next;
250
			}
251
 
252
			if (next) {
253
				next->prev = item->prev;
254
			}
255
 
256
			/* This sequence makes the item be at the end of the list */
257
			item->prev = end_p;
258
			item->next = NULL;
259
			end_p = item;
260
 
261
			/* Update the amount of space we will need to allocate. */
262
			unallocated += item->size_in_dw+1024;
263
		}
264
		else {
265
			/* The item is not pendng, so update the amount of space
266
			 * that has already been allocated. */
267
			allocated += item->size_in_dw;
268
		}
269
	}
270
 
271
	/* If we require more space than the size of the pool, then grow the
272
	 * pool.
273
	 *
274
	 * XXX: I'm pretty sure this won't work.  Imagine this scenario:
275
	 *
276
	 * Offset Item Size
277
	 *   0    A    50
278
	 * 200    B    50
279
	 * 400    C    50
280
	 *
281
	 * Total size = 450
282
	 * Allocated size = 150
283
	 * Pending Item D Size = 200
284
	 *
285
	 * In this case, there are 300 units of free space in the pool, but
286
	 * they aren't contiguous, so it will be impossible to allocate Item D.
287
	 */
288
	if (pool->size_in_dw < allocated+unallocated) {
289
		compute_memory_grow_pool(pool, pipe, allocated+unallocated);
290
	}
291
 
292
	/* Loop through all the pending items, allocate space for them and
293
	 * add them back to the item_list. */
294
	for (item = pending_list; item; item = next) {
295
		next = item->next;
296
 
297
		/* Search for free space in the pool for this item. */
298
		while ((start_in_dw=compute_memory_prealloc_chunk(pool,
299
						item->size_in_dw)) == -1) {
300
			int64_t need = item->size_in_dw+2048 -
301
						(pool->size_in_dw - allocated);
302
 
303
			need += 1024 - (need % 1024);
304
 
305
			if (need > 0) {
306
				compute_memory_grow_pool(pool,
307
						pipe,
308
						pool->size_in_dw + need);
309
			}
310
			else {
311
				need = pool->size_in_dw / 10;
312
				need += 1024 - (need % 1024);
313
				compute_memory_grow_pool(pool,
314
						pipe,
315
						pool->size_in_dw + need);
316
			}
317
		}
318
		COMPUTE_DBG(pool->screen, "  + Found space for Item %p id = %u "
319
			"start_in_dw = %u (%u bytes) size_in_dw = %u (%u bytes)\n",
320
			item, item->id, start_in_dw, start_in_dw * 4,
321
			item->size_in_dw, item->size_in_dw * 4);
322
 
323
		item->start_in_dw = start_in_dw;
324
		item->next = NULL;
325
		item->prev = NULL;
326
 
327
		if (pool->item_list) {
328
			struct compute_memory_item *pos;
329
 
330
			pos = compute_memory_postalloc_chunk(pool, start_in_dw);
331
			if (pos) {
332
				item->prev = pos;
333
				item->next = pos->next;
334
				pos->next = item;
335
				if (item->next) {
336
					item->next->prev = item;
337
				}
338
			} else {
339
				/* Add item to the front of the list */
340
				item->next = pool->item_list->next;
341
				if (pool->item_list->next) {
342
					pool->item_list->next->prev = item;
343
				}
344
				item->prev = pool->item_list->prev;
345
				if (pool->item_list->prev) {
346
					pool->item_list->prev->next = item;
347
				}
348
				pool->item_list = item;
349
			}
350
		}
351
		else {
352
			pool->item_list = item;
353
		}
354
 
355
		allocated += item->size_in_dw;
356
	}
357
}
358
 
359
 
360
void compute_memory_free(struct compute_memory_pool* pool, int64_t id)
361
{
362
	struct compute_memory_item *item, *next;
363
 
364
	COMPUTE_DBG(pool->screen, "* compute_memory_free() id + %ld \n", id);
365
 
366
	for (item = pool->item_list; item; item = next) {
367
		next = item->next;
368
 
369
		if (item->id == id) {
370
			if (item->prev) {
371
				item->prev->next = item->next;
372
			}
373
			else {
374
				pool->item_list = item->next;
375
			}
376
 
377
			if (item->next) {
378
				item->next->prev = item->prev;
379
			}
380
 
381
			free(item);
382
 
383
			return;
384
		}
385
	}
386
 
387
	fprintf(stderr, "Internal error, invalid id %"PRIi64" "
388
		"for compute_memory_free\n", id);
389
 
390
	assert(0 && "error");
391
}
392
 
393
/**
394
 * Creates pending allocations
395
 */
396
struct compute_memory_item* compute_memory_alloc(
397
	struct compute_memory_pool* pool,
398
	int64_t size_in_dw)
399
{
400
	struct compute_memory_item *new_item = NULL, *last_item = NULL;
401
 
402
	COMPUTE_DBG(pool->screen, "* compute_memory_alloc() size_in_dw = %ld (%ld bytes)\n",
403
			size_in_dw, 4 * size_in_dw);
404
 
405
	new_item = (struct compute_memory_item *)
406
				CALLOC(sizeof(struct compute_memory_item), 1);
407
	new_item->size_in_dw = size_in_dw;
408
	new_item->start_in_dw = -1; /* mark pending */
409
	new_item->id = pool->next_id++;
410
	new_item->pool = pool;
411
 
412
	if (pool->item_list) {
413
		for (last_item = pool->item_list; last_item->next;
414
						last_item = last_item->next);
415
 
416
		last_item->next = new_item;
417
		new_item->prev = last_item;
418
	}
419
	else {
420
		pool->item_list = new_item;
421
	}
422
 
423
	COMPUTE_DBG(pool->screen, "  + Adding item %p id = %u size = %u (%u bytes)\n",
424
			new_item, new_item->id, new_item->size_in_dw,
425
			new_item->size_in_dw * 4);
426
	return new_item;
427
}
428
 
429
/**
430
 * Transfer data host<->device, offset and size is in bytes
431
 */
432
void compute_memory_transfer(
433
	struct compute_memory_pool* pool,
434
	struct pipe_context * pipe,
435
	int device_to_host,
436
	struct compute_memory_item* chunk,
437
	void* data,
438
	int offset_in_chunk,
439
	int size)
440
{
441
	int64_t aligned_size = pool->size_in_dw;
442
	struct pipe_resource* gart = (struct pipe_resource*)pool->bo;
443
	int64_t internal_offset = chunk->start_in_dw*4 + offset_in_chunk;
444
 
445
	struct pipe_transfer *xfer;
446
	uint32_t *map;
447
 
448
	assert(gart);
449
 
450
	COMPUTE_DBG(pool->screen, "* compute_memory_transfer() device_to_host = %d, "
451
		"offset_in_chunk = %d, size = %d\n", device_to_host,
452
		offset_in_chunk, size);
453
 
454
	if (device_to_host) {
455
		map = pipe->transfer_map(pipe, gart, 0, PIPE_TRANSFER_READ,
456
			&(struct pipe_box) { .width = aligned_size,
457
			.height = 1, .depth = 1 }, &xfer);
458
                assert(xfer);
459
		assert(map);
460
		memcpy(data, map + internal_offset, size);
461
		pipe->transfer_unmap(pipe, xfer);
462
	} else {
463
		map = pipe->transfer_map(pipe, gart, 0, PIPE_TRANSFER_WRITE,
464
			&(struct pipe_box) { .width = aligned_size,
465
			.height = 1, .depth = 1 }, &xfer);
466
		assert(xfer);
467
		assert(map);
468
		memcpy(map + internal_offset, data, size);
469
		pipe->transfer_unmap(pipe, xfer);
470
	}
471
}
472
 
473
/**
474
 * Transfer data between chunk<->data, it is for VRAM<->GART transfers
475
 */
476
void compute_memory_transfer_direct(
477
	struct compute_memory_pool* pool,
478
	int chunk_to_data,
479
	struct compute_memory_item* chunk,
480
	struct r600_resource* data,
481
	int offset_in_chunk,
482
	int offset_in_data,
483
	int size)
484
{
485
	///TODO: DMA
486
}