Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
5563 serge 1
/*
2
 * Mesa 3-D graphics library
3
 *
4
 * Copyright (C) 1999-2008  Brian Paul   All Rights Reserved.
5
 * Copyright (C) 2009  VMware, Inc.  All Rights Reserved.
6
 *
7
 * Permission is hereby granted, free of charge, to any person obtaining a
8
 * copy of this software and associated documentation files (the "Software"),
9
 * to deal in the Software without restriction, including without limitation
10
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11
 * and/or sell copies of the Software, and to permit persons to whom the
12
 * Software is furnished to do so, subject to the following conditions:
13
 *
14
 * The above copyright notice and this permission notice shall be included
15
 * in all copies or substantial portions of the Software.
16
 *
17
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
21
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
22
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
23
 * OTHER DEALINGS IN THE SOFTWARE.
24
 */
25
 
26
 
27
/**
28
 * \file swrast/s_span.c
29
 * \brief Span processing functions used by all rasterization functions.
30
 * This is where all the per-fragment tests are performed
31
 * \author Brian Paul
32
 */
33
 
34
#include "main/glheader.h"
35
#include "main/colormac.h"
36
#include "main/format_pack.h"
37
#include "main/format_unpack.h"
38
#include "main/macros.h"
39
#include "main/imports.h"
40
#include "main/image.h"
41
#include "main/samplerobj.h"
42
 
43
#include "s_atifragshader.h"
44
#include "s_alpha.h"
45
#include "s_blend.h"
46
#include "s_context.h"
47
#include "s_depth.h"
48
#include "s_fog.h"
49
#include "s_logic.h"
50
#include "s_masking.h"
51
#include "s_fragprog.h"
52
#include "s_span.h"
53
#include "s_stencil.h"
54
#include "s_texcombine.h"
55
 
56
#include 
57
 
58
/**
59
 * Set default fragment attributes for the span using the
60
 * current raster values.  Used prior to glDraw/CopyPixels
61
 * and glBitmap.
62
 */
63
void
64
_swrast_span_default_attribs(struct gl_context *ctx, SWspan *span)
65
{
66
   GLchan r, g, b, a;
67
   /* Z*/
68
   {
69
      const GLfloat depthMax = ctx->DrawBuffer->_DepthMaxF;
70
      if (ctx->DrawBuffer->Visual.depthBits <= 16)
71
         span->z = FloatToFixed(ctx->Current.RasterPos[2] * depthMax + 0.5F);
72
      else {
73
         GLfloat tmpf = ctx->Current.RasterPos[2] * depthMax;
74
         tmpf = MIN2(tmpf, depthMax);
75
         span->z = (GLint)tmpf;
76
      }
77
      span->zStep = 0;
78
      span->interpMask |= SPAN_Z;
79
   }
80
 
81
   /* W (for perspective correction) */
82
   span->attrStart[VARYING_SLOT_POS][3] = 1.0;
83
   span->attrStepX[VARYING_SLOT_POS][3] = 0.0;
84
   span->attrStepY[VARYING_SLOT_POS][3] = 0.0;
85
 
86
   /* primary color, or color index */
87
   UNCLAMPED_FLOAT_TO_CHAN(r, ctx->Current.RasterColor[0]);
88
   UNCLAMPED_FLOAT_TO_CHAN(g, ctx->Current.RasterColor[1]);
89
   UNCLAMPED_FLOAT_TO_CHAN(b, ctx->Current.RasterColor[2]);
90
   UNCLAMPED_FLOAT_TO_CHAN(a, ctx->Current.RasterColor[3]);
91
#if CHAN_TYPE == GL_FLOAT
92
   span->red = r;
93
   span->green = g;
94
   span->blue = b;
95
   span->alpha = a;
96
#else
97
   span->red   = IntToFixed(r);
98
   span->green = IntToFixed(g);
99
   span->blue  = IntToFixed(b);
100
   span->alpha = IntToFixed(a);
101
#endif
102
   span->redStep = 0;
103
   span->greenStep = 0;
104
   span->blueStep = 0;
105
   span->alphaStep = 0;
106
   span->interpMask |= SPAN_RGBA;
107
 
108
   COPY_4V(span->attrStart[VARYING_SLOT_COL0], ctx->Current.RasterColor);
109
   ASSIGN_4V(span->attrStepX[VARYING_SLOT_COL0], 0.0, 0.0, 0.0, 0.0);
110
   ASSIGN_4V(span->attrStepY[VARYING_SLOT_COL0], 0.0, 0.0, 0.0, 0.0);
111
 
112
   /* Secondary color */
113
   if (ctx->Light.Enabled || ctx->Fog.ColorSumEnabled)
114
   {
115
      COPY_4V(span->attrStart[VARYING_SLOT_COL1], ctx->Current.RasterSecondaryColor);
116
      ASSIGN_4V(span->attrStepX[VARYING_SLOT_COL1], 0.0, 0.0, 0.0, 0.0);
117
      ASSIGN_4V(span->attrStepY[VARYING_SLOT_COL1], 0.0, 0.0, 0.0, 0.0);
118
   }
119
 
120
   /* fog */
121
   {
122
      const SWcontext *swrast = SWRAST_CONTEXT(ctx);
123
      GLfloat fogVal; /* a coord or a blend factor */
124
      if (swrast->_PreferPixelFog) {
125
         /* fog blend factors will be computed from fog coordinates per pixel */
126
         fogVal = ctx->Current.RasterDistance;
127
      }
128
      else {
129
         /* fog blend factor should be computed from fogcoord now */
130
         fogVal = _swrast_z_to_fogfactor(ctx, ctx->Current.RasterDistance);
131
      }
132
      span->attrStart[VARYING_SLOT_FOGC][0] = fogVal;
133
      span->attrStepX[VARYING_SLOT_FOGC][0] = 0.0;
134
      span->attrStepY[VARYING_SLOT_FOGC][0] = 0.0;
135
   }
136
 
137
   /* texcoords */
138
   {
139
      GLuint i;
140
      for (i = 0; i < ctx->Const.MaxTextureCoordUnits; i++) {
141
         const GLuint attr = VARYING_SLOT_TEX0 + i;
142
         const GLfloat *tc = ctx->Current.RasterTexCoords[i];
143
         if (_swrast_use_fragment_program(ctx) ||
144
             ctx->ATIFragmentShader._Enabled) {
145
            COPY_4V(span->attrStart[attr], tc);
146
         }
147
         else if (tc[3] > 0.0F) {
148
            /* use (s/q, t/q, r/q, 1) */
149
            span->attrStart[attr][0] = tc[0] / tc[3];
150
            span->attrStart[attr][1] = tc[1] / tc[3];
151
            span->attrStart[attr][2] = tc[2] / tc[3];
152
            span->attrStart[attr][3] = 1.0;
153
         }
154
         else {
155
            ASSIGN_4V(span->attrStart[attr], 0.0F, 0.0F, 0.0F, 1.0F);
156
         }
157
         ASSIGN_4V(span->attrStepX[attr], 0.0F, 0.0F, 0.0F, 0.0F);
158
         ASSIGN_4V(span->attrStepY[attr], 0.0F, 0.0F, 0.0F, 0.0F);
159
      }
160
   }
161
}
162
 
163
 
164
/**
165
 * Interpolate the active attributes (and'd with attrMask) to
166
 * fill in span->array->attribs[].
167
 * Perspective correction will be done.  The point/line/triangle function
168
 * should have computed attrStart/Step values for VARYING_SLOT_POS[3]!
169
 */
170
static inline void
171
interpolate_active_attribs(struct gl_context *ctx, SWspan *span,
172
                           GLbitfield64 attrMask)
173
{
174
   const SWcontext *swrast = SWRAST_CONTEXT(ctx);
175
 
176
   /*
177
    * Don't overwrite existing array values, such as colors that may have
178
    * been produced by glDraw/CopyPixels.
179
    */
180
   attrMask &= ~span->arrayAttribs;
181
 
182
   ATTRIB_LOOP_BEGIN
183
      if (attrMask & BITFIELD64_BIT(attr)) {
184
         const GLfloat dwdx = span->attrStepX[VARYING_SLOT_POS][3];
185
         GLfloat w = span->attrStart[VARYING_SLOT_POS][3];
186
         const GLfloat dv0dx = span->attrStepX[attr][0];
187
         const GLfloat dv1dx = span->attrStepX[attr][1];
188
         const GLfloat dv2dx = span->attrStepX[attr][2];
189
         const GLfloat dv3dx = span->attrStepX[attr][3];
190
         GLfloat v0 = span->attrStart[attr][0] + span->leftClip * dv0dx;
191
         GLfloat v1 = span->attrStart[attr][1] + span->leftClip * dv1dx;
192
         GLfloat v2 = span->attrStart[attr][2] + span->leftClip * dv2dx;
193
         GLfloat v3 = span->attrStart[attr][3] + span->leftClip * dv3dx;
194
         GLuint k;
195
         for (k = 0; k < span->end; k++) {
196
            const GLfloat invW = 1.0f / w;
197
            span->array->attribs[attr][k][0] = v0 * invW;
198
            span->array->attribs[attr][k][1] = v1 * invW;
199
            span->array->attribs[attr][k][2] = v2 * invW;
200
            span->array->attribs[attr][k][3] = v3 * invW;
201
            v0 += dv0dx;
202
            v1 += dv1dx;
203
            v2 += dv2dx;
204
            v3 += dv3dx;
205
            w += dwdx;
206
         }
207
         ASSERT((span->arrayAttribs & BITFIELD64_BIT(attr)) == 0);
208
         span->arrayAttribs |= BITFIELD64_BIT(attr);
209
      }
210
   ATTRIB_LOOP_END
211
}
212
 
213
 
214
/**
215
 * Interpolate primary colors to fill in the span->array->rgba8 (or rgb16)
216
 * color array.
217
 */
218
static inline void
219
interpolate_int_colors(struct gl_context *ctx, SWspan *span)
220
{
221
#if CHAN_BITS != 32
222
   const GLuint n = span->end;
223
   GLuint i;
224
 
225
   ASSERT(!(span->arrayMask & SPAN_RGBA));
226
#endif
227
 
228
   switch (span->array->ChanType) {
229
#if CHAN_BITS != 32
230
   case GL_UNSIGNED_BYTE:
231
      {
232
         GLubyte (*rgba)[4] = span->array->rgba8;
233
         if (span->interpMask & SPAN_FLAT) {
234
            GLubyte color[4];
235
            color[RCOMP] = FixedToInt(span->red);
236
            color[GCOMP] = FixedToInt(span->green);
237
            color[BCOMP] = FixedToInt(span->blue);
238
            color[ACOMP] = FixedToInt(span->alpha);
239
            for (i = 0; i < n; i++) {
240
               COPY_4UBV(rgba[i], color);
241
            }
242
         }
243
         else {
244
            GLfixed r = span->red;
245
            GLfixed g = span->green;
246
            GLfixed b = span->blue;
247
            GLfixed a = span->alpha;
248
            GLint dr = span->redStep;
249
            GLint dg = span->greenStep;
250
            GLint db = span->blueStep;
251
            GLint da = span->alphaStep;
252
            for (i = 0; i < n; i++) {
253
               rgba[i][RCOMP] = FixedToChan(r);
254
               rgba[i][GCOMP] = FixedToChan(g);
255
               rgba[i][BCOMP] = FixedToChan(b);
256
               rgba[i][ACOMP] = FixedToChan(a);
257
               r += dr;
258
               g += dg;
259
               b += db;
260
               a += da;
261
            }
262
         }
263
      }
264
      break;
265
   case GL_UNSIGNED_SHORT:
266
      {
267
         GLushort (*rgba)[4] = span->array->rgba16;
268
         if (span->interpMask & SPAN_FLAT) {
269
            GLushort color[4];
270
            color[RCOMP] = FixedToInt(span->red);
271
            color[GCOMP] = FixedToInt(span->green);
272
            color[BCOMP] = FixedToInt(span->blue);
273
            color[ACOMP] = FixedToInt(span->alpha);
274
            for (i = 0; i < n; i++) {
275
               COPY_4V(rgba[i], color);
276
            }
277
         }
278
         else {
279
            GLushort (*rgba)[4] = span->array->rgba16;
280
            GLfixed r, g, b, a;
281
            GLint dr, dg, db, da;
282
            r = span->red;
283
            g = span->green;
284
            b = span->blue;
285
            a = span->alpha;
286
            dr = span->redStep;
287
            dg = span->greenStep;
288
            db = span->blueStep;
289
            da = span->alphaStep;
290
            for (i = 0; i < n; i++) {
291
               rgba[i][RCOMP] = FixedToChan(r);
292
               rgba[i][GCOMP] = FixedToChan(g);
293
               rgba[i][BCOMP] = FixedToChan(b);
294
               rgba[i][ACOMP] = FixedToChan(a);
295
               r += dr;
296
               g += dg;
297
               b += db;
298
               a += da;
299
            }
300
         }
301
      }
302
      break;
303
#endif
304
   case GL_FLOAT:
305
      interpolate_active_attribs(ctx, span, VARYING_BIT_COL0);
306
      break;
307
   default:
308
      _mesa_problem(ctx, "bad datatype 0x%x in interpolate_int_colors",
309
                    span->array->ChanType);
310
   }
311
   span->arrayMask |= SPAN_RGBA;
312
}
313
 
314
 
315
/**
316
 * Populate the VARYING_SLOT_COL0 array.
317
 */
318
static inline void
319
interpolate_float_colors(SWspan *span)
320
{
321
   GLfloat (*col0)[4] = span->array->attribs[VARYING_SLOT_COL0];
322
   const GLuint n = span->end;
323
   GLuint i;
324
 
325
   assert(!(span->arrayAttribs & VARYING_BIT_COL0));
326
 
327
   if (span->arrayMask & SPAN_RGBA) {
328
      /* convert array of int colors */
329
      for (i = 0; i < n; i++) {
330
         col0[i][0] = UBYTE_TO_FLOAT(span->array->rgba8[i][0]);
331
         col0[i][1] = UBYTE_TO_FLOAT(span->array->rgba8[i][1]);
332
         col0[i][2] = UBYTE_TO_FLOAT(span->array->rgba8[i][2]);
333
         col0[i][3] = UBYTE_TO_FLOAT(span->array->rgba8[i][3]);
334
      }
335
   }
336
   else {
337
      /* interpolate red/green/blue/alpha to get float colors */
338
      ASSERT(span->interpMask & SPAN_RGBA);
339
      if (span->interpMask & SPAN_FLAT) {
340
         GLfloat r = FixedToFloat(span->red);
341
         GLfloat g = FixedToFloat(span->green);
342
         GLfloat b = FixedToFloat(span->blue);
343
         GLfloat a = FixedToFloat(span->alpha);
344
         for (i = 0; i < n; i++) {
345
            ASSIGN_4V(col0[i], r, g, b, a);
346
         }
347
      }
348
      else {
349
         GLfloat r = FixedToFloat(span->red);
350
         GLfloat g = FixedToFloat(span->green);
351
         GLfloat b = FixedToFloat(span->blue);
352
         GLfloat a = FixedToFloat(span->alpha);
353
         GLfloat dr = FixedToFloat(span->redStep);
354
         GLfloat dg = FixedToFloat(span->greenStep);
355
         GLfloat db = FixedToFloat(span->blueStep);
356
         GLfloat da = FixedToFloat(span->alphaStep);
357
         for (i = 0; i < n; i++) {
358
            col0[i][0] = r;
359
            col0[i][1] = g;
360
            col0[i][2] = b;
361
            col0[i][3] = a;
362
            r += dr;
363
            g += dg;
364
            b += db;
365
            a += da;
366
         }
367
      }
368
   }
369
 
370
   span->arrayAttribs |= VARYING_BIT_COL0;
371
   span->array->ChanType = GL_FLOAT;
372
}
373
 
374
 
375
 
376
/**
377
 * Fill in the span.zArray array from the span->z, zStep values.
378
 */
379
void
380
_swrast_span_interpolate_z( const struct gl_context *ctx, SWspan *span )
381
{
382
   const GLuint n = span->end;
383
   GLuint i;
384
 
385
   ASSERT(!(span->arrayMask & SPAN_Z));
386
 
387
   if (ctx->DrawBuffer->Visual.depthBits <= 16) {
388
      GLfixed zval = span->z;
389
      GLuint *z = span->array->z;
390
      for (i = 0; i < n; i++) {
391
         z[i] = FixedToInt(zval);
392
         zval += span->zStep;
393
      }
394
   }
395
   else {
396
      /* Deep Z buffer, no fixed->int shift */
397
      GLuint zval = span->z;
398
      GLuint *z = span->array->z;
399
      for (i = 0; i < n; i++) {
400
         z[i] = zval;
401
         zval += span->zStep;
402
      }
403
   }
404
   span->interpMask &= ~SPAN_Z;
405
   span->arrayMask |= SPAN_Z;
406
}
407
 
408
 
409
/**
410
 * Compute mipmap LOD from partial derivatives.
411
 * This the ideal solution, as given in the OpenGL spec.
412
 */
413
GLfloat
414
_swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
415
                       GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
416
                       GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
417
{
418
   GLfloat dudx = texW * ((s + dsdx) / (q + dqdx) - s * invQ);
419
   GLfloat dvdx = texH * ((t + dtdx) / (q + dqdx) - t * invQ);
420
   GLfloat dudy = texW * ((s + dsdy) / (q + dqdy) - s * invQ);
421
   GLfloat dvdy = texH * ((t + dtdy) / (q + dqdy) - t * invQ);
422
   GLfloat x = sqrtf(dudx * dudx + dvdx * dvdx);
423
   GLfloat y = sqrtf(dudy * dudy + dvdy * dvdy);
424
   GLfloat rho = MAX2(x, y);
425
   GLfloat lambda = LOG2(rho);
426
   return lambda;
427
}
428
 
429
 
430
/**
431
 * Compute mipmap LOD from partial derivatives.
432
 * This is a faster approximation than above function.
433
 */
434
#if 0
435
GLfloat
436
_swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
437
                     GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
438
                     GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
439
{
440
   GLfloat dsdx2 = (s + dsdx) / (q + dqdx) - s * invQ;
441
   GLfloat dtdx2 = (t + dtdx) / (q + dqdx) - t * invQ;
442
   GLfloat dsdy2 = (s + dsdy) / (q + dqdy) - s * invQ;
443
   GLfloat dtdy2 = (t + dtdy) / (q + dqdy) - t * invQ;
444
   GLfloat maxU, maxV, rho, lambda;
445
   dsdx2 = FABSF(dsdx2);
446
   dsdy2 = FABSF(dsdy2);
447
   dtdx2 = FABSF(dtdx2);
448
   dtdy2 = FABSF(dtdy2);
449
   maxU = MAX2(dsdx2, dsdy2) * texW;
450
   maxV = MAX2(dtdx2, dtdy2) * texH;
451
   rho = MAX2(maxU, maxV);
452
   lambda = LOG2(rho);
453
   return lambda;
454
}
455
#endif
456
 
457
 
458
/**
459
 * Fill in the span.array->attrib[VARYING_SLOT_TEXn] arrays from the
460
 * using the attrStart/Step values.
461
 *
462
 * This function only used during fixed-function fragment processing.
463
 *
464
 * Note: in the places where we divide by Q (or mult by invQ) we're
465
 * really doing two things: perspective correction and texcoord
466
 * projection.  Remember, for texcoord (s,t,r,q) we need to index
467
 * texels with (s/q, t/q, r/q).
468
 */
469
static void
470
interpolate_texcoords(struct gl_context *ctx, SWspan *span)
471
{
472
   const GLuint maxUnit
473
      = (ctx->Texture._EnabledCoordUnits > 1) ? ctx->Const.MaxTextureUnits : 1;
474
   GLuint u;
475
 
476
   /* XXX CoordUnits vs. ImageUnits */
477
   for (u = 0; u < maxUnit; u++) {
478
      if (ctx->Texture._EnabledCoordUnits & (1 << u)) {
479
         const GLuint attr = VARYING_SLOT_TEX0 + u;
480
         const struct gl_texture_object *obj = ctx->Texture.Unit[u]._Current;
481
         GLfloat texW, texH;
482
         GLboolean needLambda;
483
         GLfloat (*texcoord)[4] = span->array->attribs[attr];
484
         GLfloat *lambda = span->array->lambda[u];
485
         const GLfloat dsdx = span->attrStepX[attr][0];
486
         const GLfloat dsdy = span->attrStepY[attr][0];
487
         const GLfloat dtdx = span->attrStepX[attr][1];
488
         const GLfloat dtdy = span->attrStepY[attr][1];
489
         const GLfloat drdx = span->attrStepX[attr][2];
490
         const GLfloat dqdx = span->attrStepX[attr][3];
491
         const GLfloat dqdy = span->attrStepY[attr][3];
492
         GLfloat s = span->attrStart[attr][0] + span->leftClip * dsdx;
493
         GLfloat t = span->attrStart[attr][1] + span->leftClip * dtdx;
494
         GLfloat r = span->attrStart[attr][2] + span->leftClip * drdx;
495
         GLfloat q = span->attrStart[attr][3] + span->leftClip * dqdx;
496
 
497
         if (obj) {
498
            const struct gl_texture_image *img = obj->Image[0][obj->BaseLevel];
499
            const struct swrast_texture_image *swImg =
500
               swrast_texture_image_const(img);
501
            const struct gl_sampler_object *samp = _mesa_get_samplerobj(ctx, u);
502
 
503
            needLambda = (samp->MinFilter != samp->MagFilter)
504
               || _swrast_use_fragment_program(ctx);
505
            /* LOD is calculated directly in the ansiotropic filter, we can
506
             * skip the normal lambda function as the result is ignored.
507
             */
508
            if (samp->MaxAnisotropy > 1.0 &&
509
                samp->MinFilter == GL_LINEAR_MIPMAP_LINEAR) {
510
               needLambda = GL_FALSE;
511
            }
512
            texW = swImg->WidthScale;
513
            texH = swImg->HeightScale;
514
         }
515
         else {
516
            /* using a fragment program */
517
            texW = 1.0;
518
            texH = 1.0;
519
            needLambda = GL_FALSE;
520
         }
521
 
522
         if (needLambda) {
523
            GLuint i;
524
            if (_swrast_use_fragment_program(ctx)
525
                || ctx->ATIFragmentShader._Enabled) {
526
               /* do perspective correction but don't divide s, t, r by q */
527
               const GLfloat dwdx = span->attrStepX[VARYING_SLOT_POS][3];
528
               GLfloat w = span->attrStart[VARYING_SLOT_POS][3] + span->leftClip * dwdx;
529
               for (i = 0; i < span->end; i++) {
530
                  const GLfloat invW = 1.0F / w;
531
                  texcoord[i][0] = s * invW;
532
                  texcoord[i][1] = t * invW;
533
                  texcoord[i][2] = r * invW;
534
                  texcoord[i][3] = q * invW;
535
                  lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
536
                                                     dqdx, dqdy, texW, texH,
537
                                                     s, t, q, invW);
538
                  s += dsdx;
539
                  t += dtdx;
540
                  r += drdx;
541
                  q += dqdx;
542
                  w += dwdx;
543
               }
544
            }
545
            else {
546
               for (i = 0; i < span->end; i++) {
547
                  const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
548
                  texcoord[i][0] = s * invQ;
549
                  texcoord[i][1] = t * invQ;
550
                  texcoord[i][2] = r * invQ;
551
                  texcoord[i][3] = q;
552
                  lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
553
                                                     dqdx, dqdy, texW, texH,
554
                                                     s, t, q, invQ);
555
                  s += dsdx;
556
                  t += dtdx;
557
                  r += drdx;
558
                  q += dqdx;
559
               }
560
            }
561
            span->arrayMask |= SPAN_LAMBDA;
562
         }
563
         else {
564
            GLuint i;
565
            if (_swrast_use_fragment_program(ctx) ||
566
                ctx->ATIFragmentShader._Enabled) {
567
               /* do perspective correction but don't divide s, t, r by q */
568
               const GLfloat dwdx = span->attrStepX[VARYING_SLOT_POS][3];
569
               GLfloat w = span->attrStart[VARYING_SLOT_POS][3] + span->leftClip * dwdx;
570
               for (i = 0; i < span->end; i++) {
571
                  const GLfloat invW = 1.0F / w;
572
                  texcoord[i][0] = s * invW;
573
                  texcoord[i][1] = t * invW;
574
                  texcoord[i][2] = r * invW;
575
                  texcoord[i][3] = q * invW;
576
                  lambda[i] = 0.0;
577
                  s += dsdx;
578
                  t += dtdx;
579
                  r += drdx;
580
                  q += dqdx;
581
                  w += dwdx;
582
               }
583
            }
584
            else if (dqdx == 0.0F) {
585
               /* Ortho projection or polygon's parallel to window X axis */
586
               const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
587
               for (i = 0; i < span->end; i++) {
588
                  texcoord[i][0] = s * invQ;
589
                  texcoord[i][1] = t * invQ;
590
                  texcoord[i][2] = r * invQ;
591
                  texcoord[i][3] = q;
592
                  lambda[i] = 0.0;
593
                  s += dsdx;
594
                  t += dtdx;
595
                  r += drdx;
596
               }
597
            }
598
            else {
599
               for (i = 0; i < span->end; i++) {
600
                  const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
601
                  texcoord[i][0] = s * invQ;
602
                  texcoord[i][1] = t * invQ;
603
                  texcoord[i][2] = r * invQ;
604
                  texcoord[i][3] = q;
605
                  lambda[i] = 0.0;
606
                  s += dsdx;
607
                  t += dtdx;
608
                  r += drdx;
609
                  q += dqdx;
610
               }
611
            }
612
         } /* lambda */
613
      } /* if */
614
   } /* for */
615
}
616
 
617
 
618
/**
619
 * Fill in the arrays->attribs[VARYING_SLOT_POS] array.
620
 */
621
static inline void
622
interpolate_wpos(struct gl_context *ctx, SWspan *span)
623
{
624
   GLfloat (*wpos)[4] = span->array->attribs[VARYING_SLOT_POS];
625
   GLuint i;
626
   const GLfloat zScale = 1.0F / ctx->DrawBuffer->_DepthMaxF;
627
   GLfloat w, dw;
628
 
629
   if (span->arrayMask & SPAN_XY) {
630
      for (i = 0; i < span->end; i++) {
631
         wpos[i][0] = (GLfloat) span->array->x[i];
632
         wpos[i][1] = (GLfloat) span->array->y[i];
633
      }
634
   }
635
   else {
636
      for (i = 0; i < span->end; i++) {
637
         wpos[i][0] = (GLfloat) span->x + i;
638
         wpos[i][1] = (GLfloat) span->y;
639
      }
640
   }
641
 
642
   dw = span->attrStepX[VARYING_SLOT_POS][3];
643
   w = span->attrStart[VARYING_SLOT_POS][3] + span->leftClip * dw;
644
   for (i = 0; i < span->end; i++) {
645
      wpos[i][2] = (GLfloat) span->array->z[i] * zScale;
646
      wpos[i][3] = w;
647
      w += dw;
648
   }
649
}
650
 
651
 
652
/**
653
 * Apply the current polygon stipple pattern to a span of pixels.
654
 */
655
static inline void
656
stipple_polygon_span(struct gl_context *ctx, SWspan *span)
657
{
658
   GLubyte *mask = span->array->mask;
659
 
660
   ASSERT(ctx->Polygon.StippleFlag);
661
 
662
   if (span->arrayMask & SPAN_XY) {
663
      /* arrays of x/y pixel coords */
664
      GLuint i;
665
      for (i = 0; i < span->end; i++) {
666
         const GLint col = span->array->x[i] % 32;
667
         const GLint row = span->array->y[i] % 32;
668
         const GLuint stipple = ctx->PolygonStipple[row];
669
         if (((1 << col) & stipple) == 0) {
670
            mask[i] = 0;
671
         }
672
      }
673
   }
674
   else {
675
      /* horizontal span of pixels */
676
      const GLuint highBit = 1 << 31;
677
      const GLuint stipple = ctx->PolygonStipple[span->y % 32];
678
      GLuint i, m = highBit >> (GLuint) (span->x % 32);
679
      for (i = 0; i < span->end; i++) {
680
         if ((m & stipple) == 0) {
681
            mask[i] = 0;
682
         }
683
         m = m >> 1;
684
         if (m == 0) {
685
            m = highBit;
686
         }
687
      }
688
   }
689
   span->writeAll = GL_FALSE;
690
}
691
 
692
 
693
/**
694
 * Clip a pixel span to the current buffer/window boundaries:
695
 * DrawBuffer->_Xmin, _Xmax, _Ymin, _Ymax.  This will accomplish
696
 * window clipping and scissoring.
697
 * Return:   GL_TRUE   some pixels still visible
698
 *           GL_FALSE  nothing visible
699
 */
700
static inline GLuint
701
clip_span( struct gl_context *ctx, SWspan *span )
702
{
703
   const GLint xmin = ctx->DrawBuffer->_Xmin;
704
   const GLint xmax = ctx->DrawBuffer->_Xmax;
705
   const GLint ymin = ctx->DrawBuffer->_Ymin;
706
   const GLint ymax = ctx->DrawBuffer->_Ymax;
707
 
708
   span->leftClip = 0;
709
 
710
   if (span->arrayMask & SPAN_XY) {
711
      /* arrays of x/y pixel coords */
712
      const GLint *x = span->array->x;
713
      const GLint *y = span->array->y;
714
      const GLint n = span->end;
715
      GLubyte *mask = span->array->mask;
716
      GLint i;
717
      GLuint passed = 0;
718
      if (span->arrayMask & SPAN_MASK) {
719
         /* note: using & intead of && to reduce branches */
720
         for (i = 0; i < n; i++) {
721
            mask[i] &= (x[i] >= xmin) & (x[i] < xmax)
722
                     & (y[i] >= ymin) & (y[i] < ymax);
723
            passed += mask[i];
724
         }
725
      }
726
      else {
727
         /* note: using & intead of && to reduce branches */
728
         for (i = 0; i < n; i++) {
729
            mask[i] = (x[i] >= xmin) & (x[i] < xmax)
730
                    & (y[i] >= ymin) & (y[i] < ymax);
731
            passed += mask[i];
732
         }
733
      }
734
      return passed > 0;
735
   }
736
   else {
737
      /* horizontal span of pixels */
738
      const GLint x = span->x;
739
      const GLint y = span->y;
740
      GLint n = span->end;
741
 
742
      /* Trivial rejection tests */
743
      if (y < ymin || y >= ymax || x + n <= xmin || x >= xmax) {
744
         span->end = 0;
745
         return GL_FALSE;  /* all pixels clipped */
746
      }
747
 
748
      /* Clip to right */
749
      if (x + n > xmax) {
750
         ASSERT(x < xmax);
751
         n = span->end = xmax - x;
752
      }
753
 
754
      /* Clip to the left */
755
      if (x < xmin) {
756
         const GLint leftClip = xmin - x;
757
         GLuint i;
758
 
759
         ASSERT(leftClip > 0);
760
         ASSERT(x + n > xmin);
761
 
762
         /* Clip 'leftClip' pixels from the left side.
763
          * The span->leftClip field will be applied when we interpolate
764
          * fragment attributes.
765
          * For arrays of values, shift them left.
766
          */
767
         for (i = 0; i < VARYING_SLOT_MAX; i++) {
768
            if (span->interpMask & (1 << i)) {
769
               GLuint j;
770
               for (j = 0; j < 4; j++) {
771
                  span->attrStart[i][j] += leftClip * span->attrStepX[i][j];
772
               }
773
            }
774
         }
775
 
776
         span->red += leftClip * span->redStep;
777
         span->green += leftClip * span->greenStep;
778
         span->blue += leftClip * span->blueStep;
779
         span->alpha += leftClip * span->alphaStep;
780
         span->index += leftClip * span->indexStep;
781
         span->z += leftClip * span->zStep;
782
         span->intTex[0] += leftClip * span->intTexStep[0];
783
         span->intTex[1] += leftClip * span->intTexStep[1];
784
 
785
#define SHIFT_ARRAY(ARRAY, SHIFT, LEN) \
786
         memmove(ARRAY, ARRAY + (SHIFT), (LEN) * sizeof(ARRAY[0]))
787
 
788
         for (i = 0; i < VARYING_SLOT_MAX; i++) {
789
            if (span->arrayAttribs & (1 << i)) {
790
               /* shift array elements left by 'leftClip' */
791
               SHIFT_ARRAY(span->array->attribs[i], leftClip, n - leftClip);
792
            }
793
         }
794
 
795
         SHIFT_ARRAY(span->array->mask, leftClip, n - leftClip);
796
         SHIFT_ARRAY(span->array->rgba8, leftClip, n - leftClip);
797
         SHIFT_ARRAY(span->array->rgba16, leftClip, n - leftClip);
798
         SHIFT_ARRAY(span->array->x, leftClip, n - leftClip);
799
         SHIFT_ARRAY(span->array->y, leftClip, n - leftClip);
800
         SHIFT_ARRAY(span->array->z, leftClip, n - leftClip);
801
         SHIFT_ARRAY(span->array->index, leftClip, n - leftClip);
802
         for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
803
            SHIFT_ARRAY(span->array->lambda[i], leftClip, n - leftClip);
804
         }
805
         SHIFT_ARRAY(span->array->coverage, leftClip, n - leftClip);
806
 
807
#undef SHIFT_ARRAY
808
 
809
         span->leftClip = leftClip;
810
         span->x = xmin;
811
         span->end -= leftClip;
812
         span->writeAll = GL_FALSE;
813
      }
814
 
815
      ASSERT(span->x >= xmin);
816
      ASSERT(span->x + span->end <= xmax);
817
      ASSERT(span->y >= ymin);
818
      ASSERT(span->y < ymax);
819
 
820
      return GL_TRUE;  /* some pixels visible */
821
   }
822
}
823
 
824
 
825
/**
826
 * Add specular colors to primary colors.
827
 * Only called during fixed-function operation.
828
 * Result is float color array (VARYING_SLOT_COL0).
829
 */
830
static inline void
831
add_specular(struct gl_context *ctx, SWspan *span)
832
{
833
   const SWcontext *swrast = SWRAST_CONTEXT(ctx);
834
   const GLubyte *mask = span->array->mask;
835
   GLfloat (*col0)[4] = span->array->attribs[VARYING_SLOT_COL0];
836
   GLfloat (*col1)[4] = span->array->attribs[VARYING_SLOT_COL1];
837
   GLuint i;
838
 
839
   ASSERT(!_swrast_use_fragment_program(ctx));
840
   ASSERT(span->arrayMask & SPAN_RGBA);
841
   ASSERT(swrast->_ActiveAttribMask & VARYING_BIT_COL1);
842
   (void) swrast; /* silence warning */
843
 
844
   if (span->array->ChanType == GL_FLOAT) {
845
      if ((span->arrayAttribs & VARYING_BIT_COL0) == 0) {
846
         interpolate_active_attribs(ctx, span, VARYING_BIT_COL0);
847
      }
848
   }
849
   else {
850
      /* need float colors */
851
      if ((span->arrayAttribs & VARYING_BIT_COL0) == 0) {
852
         interpolate_float_colors(span);
853
      }
854
   }
855
 
856
   if ((span->arrayAttribs & VARYING_BIT_COL1) == 0) {
857
      /* XXX could avoid this and interpolate COL1 in the loop below */
858
      interpolate_active_attribs(ctx, span, VARYING_BIT_COL1);
859
   }
860
 
861
   ASSERT(span->arrayAttribs & VARYING_BIT_COL0);
862
   ASSERT(span->arrayAttribs & VARYING_BIT_COL1);
863
 
864
   for (i = 0; i < span->end; i++) {
865
      if (mask[i]) {
866
         col0[i][0] += col1[i][0];
867
         col0[i][1] += col1[i][1];
868
         col0[i][2] += col1[i][2];
869
      }
870
   }
871
 
872
   span->array->ChanType = GL_FLOAT;
873
}
874
 
875
 
876
/**
877
 * Apply antialiasing coverage value to alpha values.
878
 */
879
static inline void
880
apply_aa_coverage(SWspan *span)
881
{
882
   const GLfloat *coverage = span->array->coverage;
883
   GLuint i;
884
   if (span->array->ChanType == GL_UNSIGNED_BYTE) {
885
      GLubyte (*rgba)[4] = span->array->rgba8;
886
      for (i = 0; i < span->end; i++) {
887
         const GLfloat a = rgba[i][ACOMP] * coverage[i];
888
         rgba[i][ACOMP] = (GLubyte) CLAMP(a, 0.0, 255.0);
889
         ASSERT(coverage[i] >= 0.0);
890
         ASSERT(coverage[i] <= 1.0);
891
      }
892
   }
893
   else if (span->array->ChanType == GL_UNSIGNED_SHORT) {
894
      GLushort (*rgba)[4] = span->array->rgba16;
895
      for (i = 0; i < span->end; i++) {
896
         const GLfloat a = rgba[i][ACOMP] * coverage[i];
897
         rgba[i][ACOMP] = (GLushort) CLAMP(a, 0.0, 65535.0);
898
      }
899
   }
900
   else {
901
      GLfloat (*rgba)[4] = span->array->attribs[VARYING_SLOT_COL0];
902
      for (i = 0; i < span->end; i++) {
903
         rgba[i][ACOMP] = rgba[i][ACOMP] * coverage[i];
904
         /* clamp later */
905
      }
906
   }
907
}
908
 
909
 
910
/**
911
 * Clamp span's float colors to [0,1]
912
 */
913
static inline void
914
clamp_colors(SWspan *span)
915
{
916
   GLfloat (*rgba)[4] = span->array->attribs[VARYING_SLOT_COL0];
917
   GLuint i;
918
   ASSERT(span->array->ChanType == GL_FLOAT);
919
   for (i = 0; i < span->end; i++) {
920
      rgba[i][RCOMP] = CLAMP(rgba[i][RCOMP], 0.0F, 1.0F);
921
      rgba[i][GCOMP] = CLAMP(rgba[i][GCOMP], 0.0F, 1.0F);
922
      rgba[i][BCOMP] = CLAMP(rgba[i][BCOMP], 0.0F, 1.0F);
923
      rgba[i][ACOMP] = CLAMP(rgba[i][ACOMP], 0.0F, 1.0F);
924
   }
925
}
926
 
927
 
928
/**
929
 * Convert the span's color arrays to the given type.
930
 * The only way 'output' can be greater than zero is when we have a fragment
931
 * program that writes to gl_FragData[1] or higher.
932
 * \param output  which fragment program color output is being processed
933
 */
934
static inline void
935
convert_color_type(SWspan *span, GLenum newType, GLuint output)
936
{
937
   GLvoid *src, *dst;
938
 
939
   if (output > 0 || span->array->ChanType == GL_FLOAT) {
940
      src = span->array->attribs[VARYING_SLOT_COL0 + output];
941
      span->array->ChanType = GL_FLOAT;
942
   }
943
   else if (span->array->ChanType == GL_UNSIGNED_BYTE) {
944
      src = span->array->rgba8;
945
   }
946
   else {
947
      ASSERT(span->array->ChanType == GL_UNSIGNED_SHORT);
948
      src = span->array->rgba16;
949
   }
950
 
951
   if (newType == GL_UNSIGNED_BYTE) {
952
      dst = span->array->rgba8;
953
   }
954
   else if (newType == GL_UNSIGNED_SHORT) {
955
      dst = span->array->rgba16;
956
   }
957
   else {
958
      dst = span->array->attribs[VARYING_SLOT_COL0];
959
   }
960
 
961
   _mesa_convert_colors(span->array->ChanType, src,
962
                        newType, dst,
963
                        span->end, span->array->mask);
964
 
965
   span->array->ChanType = newType;
966
   span->array->rgba = dst;
967
}
968
 
969
 
970
 
971
/**
972
 * Apply fragment shader, fragment program or normal texturing to span.
973
 */
974
static inline void
975
shade_texture_span(struct gl_context *ctx, SWspan *span)
976
{
977
   if (_swrast_use_fragment_program(ctx) ||
978
       ctx->ATIFragmentShader._Enabled) {
979
      /* programmable shading */
980
      if (span->primitive == GL_BITMAP && span->array->ChanType != GL_FLOAT) {
981
         convert_color_type(span, GL_FLOAT, 0);
982
      }
983
      else {
984
         span->array->rgba = (void *) span->array->attribs[VARYING_SLOT_COL0];
985
      }
986
 
987
      if (span->primitive != GL_POINT ||
988
	  (span->interpMask & SPAN_RGBA) ||
989
	  ctx->Point.PointSprite) {
990
         /* for single-pixel points, we populated the arrays already */
991
         interpolate_active_attribs(ctx, span, ~0);
992
      }
993
      span->array->ChanType = GL_FLOAT;
994
 
995
      if (!(span->arrayMask & SPAN_Z))
996
         _swrast_span_interpolate_z (ctx, span);
997
 
998
#if 0
999
      if (inputsRead & VARYING_BIT_POS)
1000
#else
1001
      /* XXX always interpolate wpos so that DDX/DDY work */
1002
#endif
1003
         interpolate_wpos(ctx, span);
1004
 
1005
      /* Run fragment program/shader now */
1006
      if (_swrast_use_fragment_program(ctx)) {
1007
         _swrast_exec_fragment_program(ctx, span);
1008
      }
1009
      else {
1010
         ASSERT(ctx->ATIFragmentShader._Enabled);
1011
         _swrast_exec_fragment_shader(ctx, span);
1012
      }
1013
   }
1014
   else if (ctx->Texture._EnabledCoordUnits) {
1015
      /* conventional texturing */
1016
 
1017
#if CHAN_BITS == 32
1018
      if ((span->arrayAttribs & VARYING_BIT_COL0) == 0) {
1019
         interpolate_int_colors(ctx, span);
1020
      }
1021
#else
1022
      if (!(span->arrayMask & SPAN_RGBA))
1023
         interpolate_int_colors(ctx, span);
1024
#endif
1025
      if ((span->arrayAttribs & VARYING_BITS_TEX_ANY) == 0x0)
1026
         interpolate_texcoords(ctx, span);
1027
 
1028
      _swrast_texture_span(ctx, span);
1029
   }
1030
}
1031
 
1032
 
1033
/** Put colors at x/y locations into a renderbuffer */
1034
static void
1035
put_values(struct gl_context *ctx, struct gl_renderbuffer *rb,
1036
           GLenum datatype,
1037
           GLuint count, const GLint x[], const GLint y[],
1038
           const void *values, const GLubyte *mask)
1039
{
1040
   gl_pack_ubyte_rgba_func pack_ubyte = NULL;
1041
   gl_pack_float_rgba_func pack_float = NULL;
1042
   GLuint i;
1043
 
1044
   if (datatype == GL_UNSIGNED_BYTE)
1045
      pack_ubyte = _mesa_get_pack_ubyte_rgba_function(rb->Format);
1046
   else
1047
      pack_float = _mesa_get_pack_float_rgba_function(rb->Format);
1048
 
1049
   for (i = 0; i < count; i++) {
1050
      if (mask[i]) {
1051
         GLubyte *dst = _swrast_pixel_address(rb, x[i], y[i]);
1052
 
1053
         if (datatype == GL_UNSIGNED_BYTE) {
1054
            pack_ubyte((const GLubyte *) values + 4 * i, dst);
1055
         }
1056
         else {
1057
            assert(datatype == GL_FLOAT);
1058
            pack_float((const GLfloat *) values + 4 * i, dst);
1059
         }
1060
      }
1061
   }
1062
}
1063
 
1064
 
1065
/** Put row of colors into renderbuffer */
1066
void
1067
_swrast_put_row(struct gl_context *ctx, struct gl_renderbuffer *rb,
1068
                GLenum datatype,
1069
                GLuint count, GLint x, GLint y,
1070
                const void *values, const GLubyte *mask)
1071
{
1072
   GLubyte *dst = _swrast_pixel_address(rb, x, y);
1073
 
1074
   if (!mask) {
1075
      if (datatype == GL_UNSIGNED_BYTE) {
1076
         _mesa_pack_ubyte_rgba_row(rb->Format, count,
1077
                                   (const GLubyte (*)[4]) values, dst);
1078
      }
1079
      else {
1080
         assert(datatype == GL_FLOAT);
1081
         _mesa_pack_float_rgba_row(rb->Format, count,
1082
                                   (const GLfloat (*)[4]) values, dst);
1083
      }
1084
   }
1085
   else {
1086
      const GLuint bpp = _mesa_get_format_bytes(rb->Format);
1087
      GLuint i, runLen, runStart;
1088
      /* We can't pass a 'mask' array to the _mesa_pack_rgba_row() functions
1089
       * so look for runs where mask=1...
1090
       */
1091
      runLen = runStart = 0;
1092
      for (i = 0; i < count; i++) {
1093
         if (mask[i]) {
1094
            if (runLen == 0)
1095
               runStart = i;
1096
            runLen++;
1097
         }
1098
 
1099
         if (!mask[i] || i == count - 1) {
1100
            /* might be the end of a run of pixels */
1101
            if (runLen > 0) {
1102
               if (datatype == GL_UNSIGNED_BYTE) {
1103
                  _mesa_pack_ubyte_rgba_row(rb->Format, runLen,
1104
                                     (const GLubyte (*)[4]) values + runStart,
1105
                                     dst + runStart * bpp);
1106
               }
1107
               else {
1108
                  assert(datatype == GL_FLOAT);
1109
                  _mesa_pack_float_rgba_row(rb->Format, runLen,
1110
                                   (const GLfloat (*)[4]) values + runStart,
1111
                                   dst + runStart * bpp);
1112
               }
1113
               runLen = 0;
1114
            }
1115
         }
1116
      }
1117
   }
1118
}
1119
 
1120
 
1121
 
1122
/**
1123
 * Apply all the per-fragment operations to a span.
1124
 * This now includes texturing (_swrast_write_texture_span() is history).
1125
 * This function may modify any of the array values in the span.
1126
 * span->interpMask and span->arrayMask may be changed but will be restored
1127
 * to their original values before returning.
1128
 */
1129
void
1130
_swrast_write_rgba_span( struct gl_context *ctx, SWspan *span)
1131
{
1132
   const SWcontext *swrast = SWRAST_CONTEXT(ctx);
1133
   const GLuint *colorMask = (GLuint *) ctx->Color.ColorMask;
1134
   const GLbitfield origInterpMask = span->interpMask;
1135
   const GLbitfield origArrayMask = span->arrayMask;
1136
   const GLbitfield64 origArrayAttribs = span->arrayAttribs;
1137
   const GLenum origChanType = span->array->ChanType;
1138
   void * const origRgba = span->array->rgba;
1139
   const GLboolean shader = (_swrast_use_fragment_program(ctx)
1140
                             || ctx->ATIFragmentShader._Enabled);
1141
   const GLboolean shaderOrTexture = shader || ctx->Texture._EnabledCoordUnits;
1142
   struct gl_framebuffer *fb = ctx->DrawBuffer;
1143
 
1144
   /*
1145
   printf("%s()  interp 0x%x  array 0x%x\n", __FUNCTION__,
1146
          span->interpMask, span->arrayMask);
1147
   */
1148
 
1149
   ASSERT(span->primitive == GL_POINT ||
1150
          span->primitive == GL_LINE ||
1151
	  span->primitive == GL_POLYGON ||
1152
          span->primitive == GL_BITMAP);
1153
 
1154
   /* Fragment write masks */
1155
   if (span->arrayMask & SPAN_MASK) {
1156
      /* mask was initialized by caller, probably glBitmap */
1157
      span->writeAll = GL_FALSE;
1158
   }
1159
   else {
1160
      memset(span->array->mask, 1, span->end);
1161
      span->writeAll = GL_TRUE;
1162
   }
1163
 
1164
   /* Clip to window/scissor box */
1165
   if (!clip_span(ctx, span)) {
1166
      return;
1167
   }
1168
 
1169
   ASSERT(span->end <= SWRAST_MAX_WIDTH);
1170
 
1171
   /* Depth bounds test */
1172
   if (ctx->Depth.BoundsTest && fb->Visual.depthBits > 0) {
1173
      if (!_swrast_depth_bounds_test(ctx, span)) {
1174
         return;
1175
      }
1176
   }
1177
 
1178
#ifdef DEBUG
1179
   /* Make sure all fragments are within window bounds */
1180
   if (span->arrayMask & SPAN_XY) {
1181
      /* array of pixel locations */
1182
      GLuint i;
1183
      for (i = 0; i < span->end; i++) {
1184
         if (span->array->mask[i]) {
1185
            assert(span->array->x[i] >= fb->_Xmin);
1186
            assert(span->array->x[i] < fb->_Xmax);
1187
            assert(span->array->y[i] >= fb->_Ymin);
1188
            assert(span->array->y[i] < fb->_Ymax);
1189
         }
1190
      }
1191
   }
1192
#endif
1193
 
1194
   /* Polygon Stippling */
1195
   if (ctx->Polygon.StippleFlag && span->primitive == GL_POLYGON) {
1196
      stipple_polygon_span(ctx, span);
1197
   }
1198
 
1199
   /* This is the normal place to compute the fragment color/Z
1200
    * from texturing or shading.
1201
    */
1202
   if (shaderOrTexture && !swrast->_DeferredTexture) {
1203
      shade_texture_span(ctx, span);
1204
   }
1205
 
1206
   /* Do the alpha test */
1207
   if (ctx->Color.AlphaEnabled) {
1208
      if (!_swrast_alpha_test(ctx, span)) {
1209
         /* all fragments failed test */
1210
         goto end;
1211
      }
1212
   }
1213
 
1214
   /* Stencil and Z testing */
1215
   if (ctx->Stencil._Enabled || ctx->Depth.Test) {
1216
      if (!(span->arrayMask & SPAN_Z))
1217
         _swrast_span_interpolate_z(ctx, span);
1218
 
1219
      if (ctx->Transform.DepthClamp)
1220
	 _swrast_depth_clamp_span(ctx, span);
1221
 
1222
      if (ctx->Stencil._Enabled) {
1223
         /* Combined Z/stencil tests */
1224
         if (!_swrast_stencil_and_ztest_span(ctx, span)) {
1225
            /* all fragments failed test */
1226
            goto end;
1227
         }
1228
      }
1229
      else if (fb->Visual.depthBits > 0) {
1230
         /* Just regular depth testing */
1231
         ASSERT(ctx->Depth.Test);
1232
         ASSERT(span->arrayMask & SPAN_Z);
1233
         if (!_swrast_depth_test_span(ctx, span)) {
1234
            /* all fragments failed test */
1235
            goto end;
1236
         }
1237
      }
1238
   }
1239
 
1240
   if (ctx->Query.CurrentOcclusionObject) {
1241
      /* update count of 'passed' fragments */
1242
      struct gl_query_object *q = ctx->Query.CurrentOcclusionObject;
1243
      GLuint i;
1244
      for (i = 0; i < span->end; i++)
1245
         q->Result += span->array->mask[i];
1246
   }
1247
 
1248
   /* We had to wait until now to check for glColorMask(0,0,0,0) because of
1249
    * the occlusion test.
1250
    */
1251
   if (fb->_NumColorDrawBuffers == 1 && colorMask[0] == 0x0) {
1252
      /* no colors to write */
1253
      goto end;
1254
   }
1255
 
1256
   /* If we were able to defer fragment color computation to now, there's
1257
    * a good chance that many fragments will have already been killed by
1258
    * Z/stencil testing.
1259
    */
1260
   if (shaderOrTexture && swrast->_DeferredTexture) {
1261
      shade_texture_span(ctx, span);
1262
   }
1263
 
1264
#if CHAN_BITS == 32
1265
   if ((span->arrayAttribs & VARYING_BIT_COL0) == 0) {
1266
      interpolate_active_attribs(ctx, span, VARYING_BIT_COL0);
1267
   }
1268
#else
1269
   if ((span->arrayMask & SPAN_RGBA) == 0) {
1270
      interpolate_int_colors(ctx, span);
1271
   }
1272
#endif
1273
 
1274
   ASSERT(span->arrayMask & SPAN_RGBA);
1275
 
1276
   if (span->primitive == GL_BITMAP || !swrast->SpecularVertexAdd) {
1277
      /* Add primary and specular (diffuse + specular) colors */
1278
      if (!shader) {
1279
         if (ctx->Fog.ColorSumEnabled ||
1280
             (ctx->Light.Enabled &&
1281
              ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)) {
1282
            add_specular(ctx, span);
1283
         }
1284
      }
1285
   }
1286
 
1287
   /* Fog */
1288
   if (swrast->_FogEnabled) {
1289
      _swrast_fog_rgba_span(ctx, span);
1290
   }
1291
 
1292
   /* Antialias coverage application */
1293
   if (span->arrayMask & SPAN_COVERAGE) {
1294
      apply_aa_coverage(span);
1295
   }
1296
 
1297
   /* Clamp color/alpha values over the range [0.0, 1.0] before storage */
1298
   if (ctx->Color.ClampFragmentColor == GL_TRUE &&
1299
       span->array->ChanType == GL_FLOAT) {
1300
      clamp_colors(span);
1301
   }
1302
 
1303
   /*
1304
    * Write to renderbuffers.
1305
    * Depending on glDrawBuffer() state and the which color outputs are
1306
    * written by the fragment shader, we may either replicate one color to
1307
    * all renderbuffers or write a different color to each renderbuffer.
1308
    * multiFragOutputs=TRUE for the later case.
1309
    */
1310
   {
1311
      const GLuint numBuffers = fb->_NumColorDrawBuffers;
1312
      const struct gl_fragment_program *fp = ctx->FragmentProgram._Current;
1313
      const GLboolean multiFragOutputs =
1314
         _swrast_use_fragment_program(ctx)
1315
         && fp->Base.OutputsWritten >= (1 << FRAG_RESULT_DATA0);
1316
      GLuint buf;
1317
 
1318
      for (buf = 0; buf < numBuffers; buf++) {
1319
         struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buf];
1320
 
1321
         /* color[fragOutput] will be written to buffer[buf] */
1322
 
1323
         if (rb) {
1324
            /* re-use one of the attribute array buffers for rgbaSave */
1325
            GLchan (*rgbaSave)[4] = (GLchan (*)[4]) span->array->attribs[0];
1326
            struct swrast_renderbuffer *srb = swrast_renderbuffer(rb);
1327
            GLenum colorType = srb->ColorType;
1328
 
1329
            assert(colorType == GL_UNSIGNED_BYTE ||
1330
                   colorType == GL_FLOAT);
1331
 
1332
            /* set span->array->rgba to colors for renderbuffer's datatype */
1333
            if (span->array->ChanType != colorType) {
1334
               convert_color_type(span, colorType, 0);
1335
            }
1336
            else {
1337
               if (span->array->ChanType == GL_UNSIGNED_BYTE) {
1338
                  span->array->rgba = span->array->rgba8;
1339
               }
1340
               else {
1341
                  span->array->rgba = (void *)
1342
                     span->array->attribs[VARYING_SLOT_COL0];
1343
               }
1344
            }
1345
 
1346
            if (!multiFragOutputs && numBuffers > 1) {
1347
               /* save colors for second, third renderbuffer writes */
1348
               memcpy(rgbaSave, span->array->rgba,
1349
                      4 * span->end * sizeof(GLchan));
1350
            }
1351
 
1352
            ASSERT(rb->_BaseFormat == GL_RGBA ||
1353
                   rb->_BaseFormat == GL_RGB ||
1354
                   rb->_BaseFormat == GL_RED ||
1355
                   rb->_BaseFormat == GL_RG ||
1356
		   rb->_BaseFormat == GL_ALPHA);
1357
 
1358
            if (ctx->Color.ColorLogicOpEnabled) {
1359
               _swrast_logicop_rgba_span(ctx, rb, span);
1360
            }
1361
            else if ((ctx->Color.BlendEnabled >> buf) & 1) {
1362
               _swrast_blend_span(ctx, rb, span);
1363
            }
1364
 
1365
            if (colorMask[buf] != 0xffffffff) {
1366
               _swrast_mask_rgba_span(ctx, rb, span, buf);
1367
            }
1368
 
1369
            if (span->arrayMask & SPAN_XY) {
1370
               /* array of pixel coords */
1371
               put_values(ctx, rb,
1372
                          span->array->ChanType, span->end,
1373
                          span->array->x, span->array->y,
1374
                          span->array->rgba, span->array->mask);
1375
            }
1376
            else {
1377
               /* horizontal run of pixels */
1378
               _swrast_put_row(ctx, rb,
1379
                               span->array->ChanType,
1380
                               span->end, span->x, span->y,
1381
                               span->array->rgba,
1382
                               span->writeAll ? NULL: span->array->mask);
1383
            }
1384
 
1385
            if (!multiFragOutputs && numBuffers > 1) {
1386
               /* restore original span values */
1387
               memcpy(span->array->rgba, rgbaSave,
1388
                      4 * span->end * sizeof(GLchan));
1389
            }
1390
 
1391
         } /* if rb */
1392
      } /* for buf */
1393
   }
1394
 
1395
end:
1396
   /* restore these values before returning */
1397
   span->interpMask = origInterpMask;
1398
   span->arrayMask = origArrayMask;
1399
   span->arrayAttribs = origArrayAttribs;
1400
   span->array->ChanType = origChanType;
1401
   span->array->rgba = origRgba;
1402
}
1403
 
1404
 
1405
/**
1406
 * Read float RGBA pixels from a renderbuffer.  Clipping will be done to
1407
 * prevent reading ouside the buffer's boundaries.
1408
 * \param rgba  the returned colors
1409
 */
1410
void
1411
_swrast_read_rgba_span( struct gl_context *ctx, struct gl_renderbuffer *rb,
1412
                        GLuint n, GLint x, GLint y,
1413
                        GLvoid *rgba)
1414
{
1415
   struct swrast_renderbuffer *srb = swrast_renderbuffer(rb);
1416
   GLenum dstType = GL_FLOAT;
1417
   const GLint bufWidth = (GLint) rb->Width;
1418
   const GLint bufHeight = (GLint) rb->Height;
1419
 
1420
   if (y < 0 || y >= bufHeight || x + (GLint) n < 0 || x >= bufWidth) {
1421
      /* completely above, below, or right */
1422
      /* XXX maybe leave rgba values undefined? */
1423
      memset(rgba, 0, 4 * n * sizeof(GLchan));
1424
   }
1425
   else {
1426
      GLint skip, length;
1427
      GLubyte *src;
1428
 
1429
      if (x < 0) {
1430
         /* left edge clipping */
1431
         skip = -x;
1432
         length = (GLint) n - skip;
1433
         if (length < 0) {
1434
            /* completely left of window */
1435
            return;
1436
         }
1437
         if (length > bufWidth) {
1438
            length = bufWidth;
1439
         }
1440
      }
1441
      else if ((GLint) (x + n) > bufWidth) {
1442
         /* right edge clipping */
1443
         skip = 0;
1444
         length = bufWidth - x;
1445
         if (length < 0) {
1446
            /* completely to right of window */
1447
            return;
1448
         }
1449
      }
1450
      else {
1451
         /* no clipping */
1452
         skip = 0;
1453
         length = (GLint) n;
1454
      }
1455
 
1456
      ASSERT(rb);
1457
      ASSERT(rb->_BaseFormat == GL_RGBA ||
1458
	     rb->_BaseFormat == GL_RGB ||
1459
	     rb->_BaseFormat == GL_RG ||
1460
	     rb->_BaseFormat == GL_RED ||
1461
	     rb->_BaseFormat == GL_LUMINANCE ||
1462
	     rb->_BaseFormat == GL_INTENSITY ||
1463
	     rb->_BaseFormat == GL_LUMINANCE_ALPHA ||
1464
	     rb->_BaseFormat == GL_ALPHA);
1465
 
1466
      assert(srb->Map);
1467
 
1468
      src = _swrast_pixel_address(rb, x + skip, y);
1469
 
1470
      if (dstType == GL_UNSIGNED_BYTE) {
1471
         _mesa_unpack_ubyte_rgba_row(rb->Format, length, src,
1472
                                     (GLubyte (*)[4]) rgba + skip);
1473
      }
1474
      else if (dstType == GL_FLOAT) {
1475
         _mesa_unpack_rgba_row(rb->Format, length, src,
1476
                               (GLfloat (*)[4]) rgba + skip);
1477
      }
1478
      else {
1479
         _mesa_problem(ctx, "unexpected type in _swrast_read_rgba_span()");
1480
      }
1481
   }
1482
}
1483
 
1484
 
1485
/**
1486
 * Get colors at x/y positions with clipping.
1487
 * \param type  type of values to return
1488
 */
1489
static void
1490
get_values(struct gl_context *ctx, struct gl_renderbuffer *rb,
1491
           GLuint count, const GLint x[], const GLint y[],
1492
           void *values, GLenum type)
1493
{
1494
   GLuint i;
1495
 
1496
   for (i = 0; i < count; i++) {
1497
      if (x[i] >= 0 && y[i] >= 0 &&
1498
	  x[i] < (GLint) rb->Width && y[i] < (GLint) rb->Height) {
1499
         /* inside */
1500
         const GLubyte *src = _swrast_pixel_address(rb, x[i], y[i]);
1501
 
1502
         if (type == GL_UNSIGNED_BYTE) {
1503
            _mesa_unpack_ubyte_rgba_row(rb->Format, 1, src,
1504
                                        (GLubyte (*)[4]) values + i);
1505
         }
1506
         else if (type == GL_FLOAT) {
1507
            _mesa_unpack_rgba_row(rb->Format, 1, src,
1508
                                  (GLfloat (*)[4]) values + i);
1509
         }
1510
         else {
1511
            _mesa_problem(ctx, "unexpected type in get_values()");
1512
         }
1513
      }
1514
   }
1515
}
1516
 
1517
 
1518
/**
1519
 * Get row of colors with clipping.
1520
 * \param type  type of values to return
1521
 */
1522
static void
1523
get_row(struct gl_context *ctx, struct gl_renderbuffer *rb,
1524
        GLuint count, GLint x, GLint y,
1525
        GLvoid *values, GLenum type)
1526
{
1527
   GLint skip = 0;
1528
   GLubyte *src;
1529
 
1530
   if (y < 0 || y >= (GLint) rb->Height)
1531
      return; /* above or below */
1532
 
1533
   if (x + (GLint) count <= 0 || x >= (GLint) rb->Width)
1534
      return; /* entirely left or right */
1535
 
1536
   if (x + count > rb->Width) {
1537
      /* right clip */
1538
      GLint clip = x + count - rb->Width;
1539
      count -= clip;
1540
   }
1541
 
1542
   if (x < 0) {
1543
      /* left clip */
1544
      skip = -x;
1545
      x = 0;
1546
      count -= skip;
1547
   }
1548
 
1549
   src = _swrast_pixel_address(rb, x, y);
1550
 
1551
   if (type == GL_UNSIGNED_BYTE) {
1552
      _mesa_unpack_ubyte_rgba_row(rb->Format, count, src,
1553
                                  (GLubyte (*)[4]) values + skip);
1554
   }
1555
   else if (type == GL_FLOAT) {
1556
      _mesa_unpack_rgba_row(rb->Format, count, src,
1557
                            (GLfloat (*)[4]) values + skip);
1558
   }
1559
   else {
1560
      _mesa_problem(ctx, "unexpected type in get_row()");
1561
   }
1562
}
1563
 
1564
 
1565
/**
1566
 * Get RGBA pixels from the given renderbuffer.
1567
 * Used by blending, logicop and masking functions.
1568
 * \return pointer to the colors we read.
1569
 */
1570
void *
1571
_swrast_get_dest_rgba(struct gl_context *ctx, struct gl_renderbuffer *rb,
1572
                      SWspan *span)
1573
{
1574
   void *rbPixels;
1575
 
1576
   /* Point rbPixels to a temporary space */
1577
   rbPixels = span->array->attribs[VARYING_SLOT_MAX - 1];
1578
 
1579
   /* Get destination values from renderbuffer */
1580
   if (span->arrayMask & SPAN_XY) {
1581
      get_values(ctx, rb, span->end, span->array->x, span->array->y,
1582
                 rbPixels, span->array->ChanType);
1583
   }
1584
   else {
1585
      get_row(ctx, rb, span->end, span->x, span->y,
1586
              rbPixels, span->array->ChanType);
1587
   }
1588
 
1589
   return rbPixels;
1590
}